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Abstract. We show that considering the torsion in early universe, we are led to an inflationary expansion
with only a massless scalar field, so avoiding all physical questions that we are facing when working with
massive scalar field.

In some recent work (de Sabbata and Sivaram, 1990a) we had considered the simplest
Einstein—Cartan generalization of standard Big Bang cosmology by considering the
Universe filled with spinning fluid and solving the modified Einstein equations
G*#({ }) = x0° (where { } are Christoffel symbols, §is T + t with T the usual energy-
momentum tensor and 7 representing the contribution of an effective spin—spin inter-
action). In the comoving frame u* = (0,0,0,1) the modified equations of the
Robertson-Walker metric is of the general form

R?/R? = 87G/3) [p — (2/3)nGc?/c*] + Ac?/3 — kc¢?/R?, (1)

where p, o depend only on time. We note that the quantity within the square brackets
corresponds to an effective density of the form

Peir = [p — 2/3)nG0?[c*] . ()

It was noted in the above work that the torsion term (i.e., the second term within the
square brackets) was at the Planck epoch equal and opposite in sign to the cosmological
term Ap,c2 ~ 1087 at that epoch, i.e., we had — (87G/3) (2/3)nGc?/c* ~ — 10%7. Again
the 87Gp/3 term is also of comparable magnitude (with p Planck density). This raises
the question of whether p.can become negative just around or before the Planck epoch.
If p. and consequently (as in general, from kinetic considerations p g = kp.gc?, where
k is a numerical coefficient & 1) the pressure p 4 becomes negative, we have the required
condition for inflation, as negative pressure drives inflation. So inflation would follow
as a natural consequence of a spin-dominated (i.e., torsion-dominated) phase in the very
early universe, spin being a basic property besides the mass. We can see that this could
indeed be the case from Equations (1) and (2).
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Indeed in another recent work (cf. de Sabbata and Sivaram, 1989) we had pointed
out the relation G ~ E~2, i.e., an energy-dependent G in the very early universe. With
G going as E~ 2, np, would go as ~ E* and using the relation J going as E 2 for the spin
of the particles increasing in mass just prior to the Planck epoch (i.e., a Regge relation)
we find that the second term in the square brackets of Equation (1) increases faster with
energy than the first term before the Planck epoch. So we could easily have had an
effective negative density at the earliest phase. This would also be tantamount to the
particle masses being effectively negative thereby implying a repulsive gravitational field
with a negative mass source. As follows from the weak equivalence principle, a negative
mass source will repel all test particles (positive and negative). The condition for an
inflationary expansion are thus satisfied. Again G going as £~ 2, would also resolve a
paradoxical situation with the uncertainty principle (as arises in string theories (cf.
Veneziano, 1989) as the spectrum of masses, with multiples of the Planck mass, no
longer have Gm/c? = h/mc, so their Compton length decreases whereas their horizon
increases). G varying with m ~ 2, would ensure equality of Gm/c? and #/mc at all energies.

With torsion present it also turns out that we could realise an inflationary expansion
with only a massless scalar field with no quartic self-coupling. As is known, in the usual
inflationary scenario, the presence of a massive scalar field is essential. A massive scalar
field possesses several physical questions besides having arbitrary couplings and particle
masses. A massless scalar field with an improved (with torsion) energy-momentum
tensor is physically more satisfactory, with just one effective coupling. We shall consider
the case of a massless scalar field coupled to the Einstein—Cartan Lagrangian. So the
action density is of the form

1
5~ VEIRID) + 201+ (1/2)/ - ¢ (.9 0“9 — n¢”R(D)) (3)
Keft
(n<1). (We could also add higher-order terms like R*¢?, RQ, etc., but we do not
consider them here.)

The quantity R(I") is constructed from the non-symmetric affine connection

0
I, = { } - K.’ )
Uy
where K,,,” is the contorsion tensor, related to the torsion Q,,” =1",,” by
Kp.vp = = Qy.vp - .puv + f.u > (5)
The modified torsion tensor is
T,uv'.D = Q,uv.p + 26F#Qv]5 . (6)

The variation with respect to g,, and K, .” gives

Gyv[{ }] + (1 - Xeﬁ’7¢2)_ lAgyv = Xeff(Tp.v + Tyv) + (1 - Xeffr]¢2)Agyv =

= Lo Ty + 4555 T + 20770 — 10 1,5, —
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- (1/2)gpv(4r&ﬂ [ptl.x.‘,)B] + Taﬂptcxﬁp) -

(1 ) (1= 208,009+ Q1= (1) 2,05, -
- 29(T,,* + T,,°) 0,9 + 2ng,,¢ O ¢ — 2n¢p {:v} 0,9 -
- 277¢K.p(uv) ap(P + 2’7¢T(u¢v)} . (7)

We see that due to torsion-scalar field coupling, tensor 7, is related to the gradient of
a function of the scalar field

T[;Lv]p =‘25[101,L5v] ]‘n(]‘ - Xeﬂn¢2) (8)
and

O¢ + npR(I) = 0. ®
For a homogeneous, isotropic space-time such as that described by the R—-W metric

ds? = di? — R2(1) (dx2 + dy? + dz?),

the torsion (and the scalar fields) are solely functions of time and in fact the only
surviving terms are

TO(I) = To% = Tog ~ ’7¢¢;Xefrs (10)

where y.q is the effective Einstein gravitational constant whose evolution in time with
energy was considered in detail (de Sabbata and Sivaram, 1989). Here in the spirit of
induced gravity where the gravitational constant is described as the VEV of the scalar
field (see Sivaram, 1983, 1986) (in fact in the induced gravity formalism, the Newtonian
constant is generated by a scalar field with a non-zero vacuum expectation value (VEV)
(¢ as Gy ~ 1/{¢)? related to the mass M of the field as G ~ 1/M? with M ~ My,
G~ Gy):

or in terms of energy
Aer~ M2, (11)

For the case of the above metric, the field equations (7) (with .4 varying with epoch
as above) become

R 2 2 R ' 242 (2 A_
(E) = xeﬂ{qb -2 R PP + 8 ¢~ ¢~ + 3xeﬁ}, (12)
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R R - -
=+ = yenl — 240207 2 — a2 + (1/2)) 2 -
2 ot T el 224070707 = xen P + (1/2) ¢

— 209 ¢ — AnpP(R/R)A/3yeq] - (13)
As n < 1, we have, after simplification
R/R = 2 ((1/6)"2 — nopx i) ; (14)

and substituting for y.; we find that

» ¢ 1/2 1/2Y ~ 1 (P

R/R:m ((1/6)/ *’1/ ) =~ (1/61) 2 E s (15)
which admits of a solution

R(t) = Ry {p()}/om ™. (16)

If #'/? ~ 10 ~ ! (for arguments regarding this value of coupling of torsion see de Sabbata
and Sivaram (1990b)) R(7) ~ Ryd(1)*?; (¢(t) ~ Eo/E(f) with E, the initial particle
energy).

Again if ¢/¢ remains constant in some interval (0, ¢),

R(t) = Ry exp (kt/(6n)'> where k= ¢/p> 1.
In terms of energy,
R(t) = Ryexp(B/M)t (P is constant ~10). 17)

We thus have a mechanism to initiate inflationary expansion phase, with only a massless
scalar field. Again anisotropic metrics of the type

ds? = —dr? + A2 dx? + B2 (dy? + dz?),

where B = B(f) and A = A(x, y, z, t) with spin sources, can be shown to possess
exponential expansion phases B = B, exp(kt), P = —3k?, in the early universe, spin
again playing the role of a negative pressure (Berman, 1990). In the usual inflationary
scenarios there are problems with the mechanism in anisotropic conditions.
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