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Abstract. Theories with Lagrangians nonlinear in the curvature scalar can be reduced by appropriate
transformations to a form similar to the Brans-Dicke model. This may enable us to have extended inflation
in the early universe without the difficulties of introducing scalar fields.

1. Introduction

The inflationary picture while providing an attractive possible solution to the problems
confronting the earliest epochs of the standard Big-Bang model (such as the horizon
and flatness problems) has run into serious difficulties. Moreover, it introduces massive
scalar fields with very special properties and fine-tuned arbitrary small couplings. The
masses of the scalar particles can become divergent due to radiative corrections (these
difficulties are not there for fermions). As a partial solution to lessen some of these
difficulties, recently the so-called extended and hyperextended inflationary models were
proposed (Steinhardt and Accetta, 1991).

These models invoke versions of the Brans—Dicke theory of gravity as the appropriate
theory for the very early universe, rather than the standard general relativity which is
used in the usual inflation formulations. Also the scalar field ¢ is non-minimum coupled
to the curvature scalar R. In the initial extended inflation picture only quadratic
couplings like 7¢*R were considered. However, higher-order couplings are expected as
well. Again as ¢ is coupled to the curvature its expectation value would contribute
corrections to the effective gravitational constant in the early universe as

Ger = [f(P]71, (D
where f(¢) can be a general interaction f(¢)R of the form
(@)~ ¢5 + n¢* + n(¢p*/Pp¢) + higher powers..., )

i.e., expansion in small ¢, for ¢ < ¢, the VEV of ¢, corresponding to a mass or energy
of ~ Mp,, the Planck mass.
The corresponding Lagrangian was of the form

L= —f((P)R + % a,ud) a# + Lmatter . (3)

It was indicated in the above work that the higher-order non-minimum couplings
enhance the inflationary scenario and enable its comparison for a wide range of initial
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parameters. Such corrections to Einstein gravity arise in most unified theories coupling
gravity to particles physics like superstring models. The analysis is simpler to handle
if the model is recast in a form similar to the Brans-Dicke (B-D) theory. If ¢ = f(¢),
we can write L as

L=—¢R+% 3,0 0"+ - + Linueeer s 4)

and w(¢) can be written as w(¢p) = f/(f')*, where f = df/d¢. The net inflationary factor
in the scale factor R(¢) can be expressed as a ratio of [¢(zf)/¢(ti)]‘/k”, where 7, and ¢;
correspond to the start and the end of the inflation and & is a numerical factor ~ 1. The
higher-order couplings are found to have the desirable effect of slowing down the drastic
expansion.

However, the above picture still invokes a scalar field with its attendant difficulties,
independent of its use for inflation. In the next section we shall consider a Lagrangian
solely involving a nonlinear function of the curvature scalar R, i.e., of the form
Lz ~ f(R). Such corrections to the usual Hilbert action of Einstein gravity (which is
linear in R) involving higher powers of the curvature also arise in almost all models
involving unification of gravity with particle physics. By suitable transformation L, can
be brought to a form resembling B-D. We shall consider special forms of L, as
appropriate to describe extended inflation in the early universe.

2. Theory with Nonlinear Curvature Lagrangian

If we consider in general a Lagrangian

L~ f(R), )
the field equations are of the form (Barrow and Ottewill, 1983; Sivaram, 1979)

S (Rap = 385R) + 38,6(RS = f) = Vo Vaf + 8,501 =0, (6)
where

O = g,VV7. (7
By use of the conformal transformation

8ap = K 8up (8)
or

2= R, ©)
so that /"(R) = A*, Equations (6) and (7) take the form

Rig—5fsR = R~ 38,4R + 6} Vo' Vef — 121fz 208"V -

S ANy (10)
A A
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Moreover, if we define
¢=3In[f(R)], (11)

Equation (10) becomes
w5~ 28R = 3V.,0V50 — 22,5(V, 0V 9) — 38,5(/) 2R = f). (12

The effective gravitational constant in Equations (10) and (12) is defined in terms of the
derivative of the function f of the curvature scalar as

G~ (f'(R) 2. (13)

Since R and ¢ are related through Equation (11), it is possible to express G4 in the form
given by Equation (1).

We note that in Equation (6), the function f(R) enters explicitly up to its third
derivative. The trace of Equation (6) is

SR=2f +3f"0OR+3f"R, ,R*=0. (14)

As indicated in Equations (6) and (12) and elaborated below, constant curvature
solutions are obtained for the case of

fFR-f=0. (15)

One can linearize the trace equation around a constant curvature R = R, solution by
putting

R=Ry+ .
This gives for f”(R,) # 0 (Schmidt, 1987; Sivaram, 1987)

Oy +m?>y=0, (16)
with

m = {3[Ry = f"(Ro)If" (Ro)I}'*. 17)

Equations (16) and (17) show the formal analogy with a theory of a massive scalar field.

3. Equivalence between Theories with f(R) and Ordinary GR with Massive
Self-Interacting Non-Minimally Coupled Scalar Fields

To illustrate this equivalence we consider a theory with

L~ f(R),

where
JR)=R+R*+ L, s (18)
with transformations

&mn = (1 +2R)g,,, (19)
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and
¢=aln(l + 2R), (20)

a is numerical constant. We have

L~{R(g") ~ (V') - 3[1 - exp(¢/a)’]}, (21)
with the corresponding field equations

G = V0V, = 3V ) 2 = V(D) & = Ty - (22)
In Equation (22), ¥(¢) is given by

V(y) = 3(1 = exp(¢/a)’), (23)

which can be expanded to a form similar to Equation (2), i.e., in powers of ¢, containing
non-minimum terms like ¢2, ¢*, etc. The constant a would fix the scale of the VEV of
¢o- With this expansion, we would have a formal similarity between Equations (3) and
(21). Again by defining ¢ = f(¢), we can bring L into the form of Equation (4) which
is of the Brans-Dicke form with w(¢) again given by

w(P) = fI(f). 24)

In the general case of L ~ f(R) and the field equations given by Equations (6) and (12),
the effective potential V(¢) is given by

Vig)=3(/)"* RS - /). (25)

We do not consider d dimensions here, but the formalism can be easily extended to this
case.

Thus the formal equivalence between theories with a nonlinear Lagrangian to a theory
with non-minimum massive self-interacting scalar fields coupled to curvature (a gener-
alization of B-D theory) makes these theories suitable as a basis for extended inflation
in the early universe.

The net inflationary factor can again be expressed as the ratio of (¢(z,)/P(z,))*/*.

Or as R(t)/R(1;) = e/, w defined in terms of Equation (24), w,, w; values of w at
the beginning and end of inflation.

The evolution is of the type

H2=8ﬂ)—éH+9<é>2. (26)
3 ¢ 6 \¢

In general case, R(z) grows as a power law of the form
R() = R,(1 + Hit/w?)**, 27)

where H, is the initial value of H.
The density perturbations dp/p so as ~H?/¢.
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4. Inflation with Inhomogeneous Metrics

In this type of theories one can also get inflationary type behaviour even in the case of
an inhomogeneous or anisotropic metric as the starting point.
We can consider a metric of the form

ds? = —di? + 4(r, 1) dr? + B2(r, 1) dQ?, (28)

where
dQ? = d9* + d¢p? sin?9 .
The Ricci curvature scalar for this metric is

A B B B 1
R=2[—+2—+—+2—+—}—
A B B AB B

4 B” B2 A’B’)
-—12 + -2 ==, 29
AZ( B B2 AB 29)

As an illustration consider the Lagrangian density
L~R+aR*+1L,
L,, corresponding to a fluid with
T,, = (p+putu’+pg,,, (30)
p=0-1p. (31)
I' is the adiabatic index. This would give the field equations

AB B? 1 B” B'? A'B’
(1+2ch)[2—+—+—:|—<2 +——2—>/A2=
AB B?> B2 B B2 AB

R2
:20:(—4—+ DR)+20¢R;,t—p, (32)

B B 1 B
(1+2aR)<21_3+—+—_ )=

B> B?> B*4?

R2
=2a(-4—+ DR)—2aR;,,—p; (33)

A B AB (B" A'B
(1+2ozR)[—+;+——<—— >/A2}=
A B AB \B AB

R2
- 20((?4- DR) ~ 2R 4o —p;  (34)

AB' B’
2(1 + 2aR) <— - —> = 20R., .
AB B ’
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One can look for solutions of the form

A(r,) = A,(NA(),  B(r,1) = B.(nNB0). (35)

We can consider the case I' = 0, i.e., for p = —p.
For this case, by use of the relations (Berkin, 1990; Miji¢ et al., 1986) we obtain

.. . R
R +3HR + — = (4 - 3y), (36)
60
. R? H K KR
R=—__HR- - - + P 37)
12H 2o 6aHA? 3HA: 6aH

We can find the time part of the solution as

A, =Agexp(/p/3 1) for K=0,
A, = /K/psinh(\/p/3t+ A4,) for K>0, (38)

A, = (-K/p)'"* cosh(/p/3t+ Ay)for K<O0;

A, 1s an integration constant (see also Sivaram et al., 1974, 1975). The solutions for
K # 0 also tends to the exponential form for large ¢ > £,,,;.;- We thus find inflationary
solutions evne in the inhomogeneous non-flat metrics. The metric (28) can be shown
to take the form

ds? = —dr® — A2[42 dr* + B2 dQ?],

which can be put in the generalized R-W form for arbitrary K. For the Lagrangian
dominated by cubic curvature terms, the theory is equivalent to chaotic inflation domi-
nated by ¢*-type of model (Sivaram, 1987; Schmidt, 1987).
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