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lonization potentials and excitation energies of rubidium and cesium atoms are computed using the
relativistic coupled clustefCC) method. The effect of electron correlations on the ground and
excited state properties is investigated using different levels of CC approximations and truncation
schemes. The present work demonstrates tha¢lee-parity channdiruncation scheme produces
results almost as accurate as obtained from &aligoarity channelapproximation scheme at a
reduced computational cost. The present study also indicates that for a given basis the linearized CC
method tends to overestimate the ground and excited state properties compared to the full CC
method. © 2003 American Institute of Physic§DOI: 10.1063/1.162161]6

I. INTRODUCTION found to be crucial for an accurate determination of state
energies, bond cleavage energies and related spectroscopic
The ground and excited state properties of alkali metatonstants. Since the order-by-order MBPT expansion terms
atoms are subject of theoretical and experimental interest berre directly related to the CC equatiotas the latter is an
cause of their simple electronic structure, having one valencgll-order version of the former scheinghe CC results can
electron well separated from the inner core. Moreover, théye improved by adding the important omitted diagrams with
heavier alkali metal atoms, such as rubidium, cesium, ang¢he aid of low order MBPT.
francium, etc. are prime candidates to probe for physics that The ground and excited states of Rb and Cs atoms were
departs from the predictions of the Standard Model of elpreviously studied by Johnsat al® and Blundellet al? us-
ementary particle physics. In recent years, high-precision exng diagrammatic many-body perturbation thediBPT).
periments, measuring the parity-nonconservisg-gs tran-  Since the expressions beyond second order MBPT are com-
sition of Cs; have shown that atomic experiments arepjicated, these direct perturbative studies were limited to
competitive in investigating weak interactions between elthird and partial fourth order. Later Blundedt al® and Sa-
ementary particles. High precision atomic calculations arefronovaet al® incorporated all order effects through a linear-
therefore, necessary to obtain information about the wealged CC schemewith partial triple3 and computed the
Interaction _constar?t. _ _ ~ground and excited state properties of the alkali metal atoms.
Extensive theoretical studies on the ground and excite&jmilar but more rigorous theoretical studies on the ground
state properties of systems containing heavy atoms havgnd excited states of alkali-metal atoms were reported by
shown that accurate prediction of transition energies and rezjiay et al” who employed a full CCSD to compute the ion-
lated properties requires the incorporation of both relativistiGzation and excitation energies of alkali metal atoms. How-
and high order correlation and relaxation effects as thesgyer, in their full CCSD calculations, partial triples and deep
effects are strongly entangled. The relativistic and dynamicatore excitations were not included. It is, therefore, desirable
electron correlation effects can be incorporated in manytg incorporate these two factors in the CC-scheme to explore
electron systems through a variety of many-body methods ofng identify their effects on the ground and excited state
which the coupled cluster methd@CM) has emerged as properties.
one of the most powerful and effective tool for a high preci- | thjs article, we compute the ground and excited state
sion description of electron correlations in many-eIectronproperties of Rb and Cs using the LCCSD and CCSD
systems. The CCM is an all-order nonperturbative schemechemgwith and without partial triplesto estimate the non-
and therefore, the higher order electron correlation effect§near effects arising from CCSD and to access the relative
can be .incorporat(.ad more efficiently than.using the Order‘byperformance and accuracy of these two schemes. Here, we
order diagrammatic many-body perturbation the®BPT).  g,qy the effect of dynamical electron correlations arising
The CC method is size-extensive, a property which has beefoy’ qoubly excited cluster amplitudes whose first order

contribution to the electron correlation is zero due to a Cou-
dAlso at INCASR, Bangalore 560064, India. lomb selection rule. This work also investigates the correla-
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tion contribution of the deep-lying core orbitals to the groundThe cluster amplitud€T) determining equations are obtained
and excited state properties. by projecting Eq.2.6) onto theN-electron excited determi-
Section Il briefly reviews the open-shell CC method andnants(®*|,
the inclusion of partial triples excitations. Computational de- —
(®*[H|P)=0. (2.9

tails and results are discussed in the subsequent section.
Equations(2.7) and (2.9) are the closed-shell coupled

cluster equations. In the first step, the set of equati@r®
Il. METHODOLOGY: OPEN-SHELL CC THEORY are solved to obtain the cluster amplitudgsvhich are used
FOR ENERGY-DIFFERENCES to construct the dressed Hamiltoniahto evaluate the cor-
The Dirac—Coulomb Hamiltonian for a many-electron relation energyE,,. In the CCSD approximation, the clus-
system can be conveniently written as ter operatolT is composed of one- and two-body excitation
operators, i.e.,T=T,+T,, which are expressed in terms of
second quantization. Equati@B.9) can be expressed in the

N
H:igl [ea-pi (B~ 1)ME+ Vodri)] following matrix form:

1 g2 A+B®T=0 (LCCSD), (2.10
+=2, — (2.1
21 ri—rjl and
in which the Dirac operator& and 8 are expressed by the A+B(T)®T=0 (CCSD), (2.11

matrices

wly o elo ]

whereA is a constant vector which consists of the elements
(®*|H|®) andT is the vector of the excitation amplitudes.
Since the matrixB(T) itself depends on the cluster ampli-
) , ) ) tudes, Eq.(2.1)) is solved iteratively. At this juncture, we
where o stands for the Pauli matrices ahds the 2<2 unit o\ jhaqi76 that due to the spherical symmetry of atoms, the
matnx._To capture the effect arising frof" f_|mte_-sm_e-n_uclearabove derived equations can be separated into a radial and an
corre<_:t|on, we have used a charge distribution inside theotngular part, which considerably simplifies the computa-
Fermi nucleus of the form, tional effort. The radial Coulomb integrals, which is the most
ngfmeo[lﬂLeXF((r—C)/a)]fl, time consuming part of the computation, can be stored in
RAM (random access memorywhereas the angular parts
that consist of much simpler algebraic expressions, can be
evaluated on the fly.
t=41In3a. In our calculations we made use of the CCSD-EPC
approximatior? which reduces the number of cluster ampli-
tudes by a factor of 2. Ideally, the two-body cluster ampli-
tudes {T,=(pq|ts|ab)) can have any multipole momeris
that satisfies

) (2.2

wherec is the cut-off radius at whichpgam= po/2. The pa-

rametera is related to skin thicknes$) by

In the present calculation skin thickngssis set to 2.30 fm.

In the CC approach, we begin with thid-electron
closed-shell Dirac—FockDF) reference statéP) and write
the exact ground state as

W)= eT|®), 2.3 o= lalsk=|la 1] [lg—lplsks|lg+1y], (2.12
whereT is the hole-particle electron excitation operator. Theand
Schralinger equation (—)'atle=(—)latlb, (2.13
He'|®)=Ee'|®) (2.4 The Coulomb matrix elemerpg|V¥|ab) is, however, only
leads to the exact ground state eneEgyHowever, it is tech-  Nonzero if
nically simpler to define first the normal ordered Hamil- lo+1a+k=even, l,+1,+k=even (2.14

tonian, . N - . )
in addition to the conditions given in Eq$2.12—(2.13.

H=H—(®[H|®)=H—Ep, (2.5  Therefore, according to MBPT the two-body cluster ampli-
tudes satisfying Coulomb selection rules are only nonzero at
the first order(in Coulomb level. The remaining two-body
~ cluster amplitudes are zero at the first order level but nonzero
He'|®)=(E—Eppe’|®)=E,£'| D). (2.6)  at higher order level. It can easily be shown that Coulomb
allowed two-body cluster amplitudes are evenly spaced, i.e.,
these are either 0, 2, 4, etc. or 1, 3, 5, etc. We call the
_ Coulomb allowed two-body cluster amplitudes as even-
(®|H|D)=Econ, (2.7 parity channel or EPC and Coulomb rule violating two-body
where we have defined the dressed, normal ordered Hami?—IuSter amplitudes as odd-parity channel or OPC. It immedi-
tonian ately follows from the above argument that the number of
_ ~ two-body cluster operator in EPC approximation is roughly
H=e "THe"=H+[H,T]+3[[H,T],T]+--. (2.8 half of the all-parity channels or APEPC+OPOQO.

with the DF energyEpe and then solve the modified Schro
dinger equation,

Premultiplying bye™ T and projecting o{®| we obtain the
ground state correlation energy,
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Since the ground state of alkali metal atoms contains VT,+ V5,
only one electron in its outermost occupisdorbital, the Shok=
ground and excited state energiatso the propertigcan be
conveniently computed through the Fock-space-relativistiovhereSigy are the amplitudes corresponding to the simulta-
coupled cluster method. In this method, the Dirac—Fock-N€ous excitation of orbitals, b, k to p, g, r; VT, VSare the
Coulomb (DFC) equations are solved for the positive ion contraction of all creation/annihilation operators; af]dls
M™ which defines the (n,Op) valence Sector[Note that the orbital energy of thath orbital. This contribution is
(mh,np) valence sector corresponds to the set of all exciteddded to the energy obtained using singles and doubles.
(N—m-+n) electron determinants witim hole andn particle =~ However, the contribution of triples can be incorporated in
occupancies in the active hole, particle orbifaEhe ion is the CC computations in two ways. The simplest and inex-
then correlated by CCSD and one electron is then added€ensive approach is the inclusion of the lowest order contri-

: (2.20)

€Ext EptT e €Ep—€Eq— €

following the Fock-space scherfe, bution of triples ofH . through the converged andS clus-
N ter amplitudes. In this approac®fy} is not coupled to one
M™(0,0)+e—M(0,1). (219 and two-body S-amplitudes. Following the notations of

When the valence electron is attached to the first unoccupiedaldor™ and Bartlett>** this scheme is called CCSD/
s orbital of the ion (M) we get the ground state of M. LCCSD+T. Alternatively, the effect of triples can be incor-
Similarly, the valence electron can be attached to any arbiPorated in the CC equations through thack couplingof
trary virtual orbital to obtain the excited states of M. In ordertriples to one and two-bodys-amplitudes viaAE,. This
to add an electron to thkth virtual orbital of the DF refer- Scheme is known as CC$D/LCCSD(T).***3
ence state, we define
|@E+1>Eal|<b> (2.16 I1l. COMPUTATION

_ ) ) + The Fock-space relativistic coupled cluster method is ap-
with the help of the particle creation operay. We now pjied to compute the ground and excited state energies of Rb
define the exact state using excitation operqtors for both,. thend cs. The Dirac—Fock equations are first solved for the
core electrons and the valence electron, in the followingyaii metal ion M", which defines th€0-hole, 0-particle
way. sector of the Fock space. The ion is then correlated using the

| W0ty =eT{eS}| @I, (2.17)  closed shell CCSD/LCCSD, after which one-electron is

added following the Fock-space scheme:
where{S,} is the normal ordered valence electron excitation .
operator’ Since S, has to contain the particle annihilation M™(0,0—M(0,).
operatoray, it cannot, due to the normal ordering, be con-  Both the DF and relativistic CC programs utilize the
nected with any other valence electron excitation operatogngular momentum decomposition of the wave functions and
{S¢} so that{eS} reduces to (¥ S,) and we can rewrite Eq. CC equations. Using the Jucys—Levinson—Vanagas
(2.17 as theoremt* the Goldstone diagrams are expressed as a prod-
n+1y _ AT n+1 ucts of angular momentum diagrams and reduced matrix el-

W)=l (1489|077 218 ment. This procedure simplifies the computational complex-
Following the same procedure as in the closed shell apity of the DF and relativistic CC equations. Appropriate
proach, we obtain a set of equations constraints are also imposed to avoid “variational collapse”
and “continuum dissolution.”

n+1y 1, n+1y _ _
(O IH(L+S9| i) = AE=Her, (2.19 In the actual computation, the DF ground state and ex-
and cited state properties of Rb and Cs are computed using the
— finite basis set expansion meth@@BSE (Ref. 15 with a
(D "HH(L+ 5k)|‘1>rk1+1>:<q)§’n+1|5k|q)ﬂ+l>A|(52k 2 large basis set of (380p20d15f) Gaussian functions of the
: form,

Here,AE, is the difference between the energy of the closed
shell state¥ and the single valence stat&] "’ i.e., the
energy which is released when an electron is attached to the
kth virtual orbital of the closed shell state. Equati@®0 iS  TABLE I. Comparison of valence electron removal enerdiescm ) of
nonlinear inS, because the energy differena&, itself isa  rubidium obtained from APC and EPC coupled cluster met@@M) with
function of S,. The S, amplitude determining equations are all active and frozen coréNe-core orbital calculations.

solved in a self-consistent way where process begins with an

Fi,k(r)zr"-e*“ir2 (3.9

initial guess for theS, amplitudes, e.9.5,=0, evaluate the All-core Ne-core

energy difference using Eq42.19. With the updated\E,, Orbital CCSD-APC CCSD-APC CCSD-EPC

Eqg. (2.20 is solved to determine thg§, amplitudes and the 5s 33558.88 33563.59 33559.80

process is iterated unt#, amplitudes converges. 5p1p 21016.47 21017.71 21016.01
Since the full couple cluster with singles, double, and  Pa2 20780.17 20781.59 20779.75

triples (CCSDT) is computationally expensive, the effect of 2; 1;3333; 15’;‘33:: 15’;35'125

triples is included in the open-shell CC equations in an ap- Gp;z 9843.28 9843.75 084335

proximate way,
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TABLE Il. Comparison of valence electron removal enerdiescm ) of TABLE IV. Percentage of errofabsolute in the estimation of valence elec-
cesium obtained from APC and EPC coupled cluster meti@€iM) with tron removal energies of rubidium using the coupled cluster meG&iM).
frozen core(Ne-core orbitals calculations.

Safronova Eliav

Ne-core Orbital CCSOT) CCSD LCCSD LCCsSDn) et al? et al?
Orbital CCSD-APC CCSD-EPC 55 0240 0377 0131  0.003 0125  0.089
5p 0152 0469 0341  0.043 0000  0.023
6s 81275.11 b 5ps, 0.206 0467 0426  0.187 0.000  0.019
6Py 20114.71 20114.23 6s 0.089 0457 0390  0.000 0221  0.052
6p3 19570.61 19570.55 6Dy 0020 0551 0511  0.000 0070  1.193
s 12809.71 12810.89 6D 0081 058 0535  0.061 0061  1.313
P12 9570.19 9570.71 Average  0.131 0484  0.389 0.049 0.080  0.448
7Pan 9382.45 9382.94 Error

“Reference 6.
bReference 7.

with k=0,1,... fors, p,... type functions, respectively. For

the exponents, the even tempering condition IV. RESULTS AND DISCUSSIONS
_— Table | collects the valence electron removal energies of
@i = aof (32 Rp obtained from all core computationsith 12s11p9d5f

. ) ) ) ) active orbital$ and the corresponding results obtained with a
is app_hed. HereN is the numbe_r of basis fur_1ct|ons for a frozen Ne-core. Whereas thes Sevel energy changes by
specific symmetry. The self-consistent DF orbitals are storegje more than 0.01%, the other ones remain practically un-
on a grid. It is assumed that virtual orbitals with high ener-changed. These numbers justify the approach to freeze inner
gies do not contribute significantly to properties like IPs. IN¢ore orpitals for excitation energy studies, as carried out in
the CCSD calculations, we therefore truncate the virtual orgaylier workst For the frozen Ne-core, a computation using
bital space above a certain threshold. the EPC approximation is adde@olumn 4. Again, the
The ground and excited state properties of Rb are comMghanges are of the order of 0.01% and therefore of no rel-
puted with two sets of basis functions wiily=0.00525 and  eyance even for ambitious projects. Because of the Coulomb
p=2.73. While the first set consists 0f.211p, 9d, and §  selection rule, the first order OPC amplitudes are zero, and,
active orbitals, the second set consists o, 1®p, 10d, and  hence their contribution to the second order state energy is
5f active orbitals][The unoccupied orbitals with orbital en- 5150 zero. This explains why the contribution of OPC ampli-
ergy above 1500 a.(for sandp) and 200 a.ufor d) are not  ydes to the ground and excited state energies is negligibly
included in the CC calculationisTo examine the core effects gmall. The results displayed in Table Il prove that the same
on the IPs, two sets of calculations are performed. In the firsgqds for Cs. The EPC approximation, although taking only
set all occupied orbitals are kept active and in the second sghe half of the computation time, leads to results that differ
1s, 2s, and 2 are kept frozertfrozen Ne-corg i.e., exci-  py |ess than 0.01% compared to the more complete APC
tations out these orbitals are absent in ThendS amplitude  gcheme.
determining CC equations. Similarly, to estimate the contri- - tapje |1l reports the valence electron removal energies of
bution of the odd-parity channel clus®PQ amplitudes o Rp obtained from CC theory with the experimérand with
the ground state and excited/ionized state energies, we COMBther theoretical calculations. The computed quantities dis-
pute the ground and excited state energy levels of Rb usingjayed in Tables I11-VI are obtained from 482p10d5f ac-
Fock-space CC equations witeven-parityand all-parity  tjye orbitals EPC-CC calculations with all active core. A
channel cluster amplitudes.

TABLE V. Valence electron removal energiéa cm %) of cesium obtained
from the coupled cluster methd@CM) with even-parity channels.

TABLE Ill. Valence electron removal energigm cm ) of rubidium ob-

tained from the coupled cluster meth@dCM) with even-parity channels. Method 6 6P 6p3 7s TP TP3pe
Method o 5py 5pas 6s 6Dy 6Pap LCCSD 31485 20191 19637 12858 9592 9402
LCCSD+T 31382 20187 19616 12880 9622 9425
LCCSD 33647 21040 20785 13504 9925 9846 LCCSD(T) 31381 20186 19615 12878 9620 9424
LCCSD+T 33690 21105 20837 13557 9977 9894 CCSD 31358 20139 19590 12830 9580 9390
LCCSOT) 33690 21103 20835 13557 9976 9893 CCSD+T 31252 20136 19573 12848 9610 9413
CCSD 33563 21013 20777 13495 9921 9841 CCSDT) 31250 20137 19574 12848 9609 9413
CCSD+T 33603 21080 20831 13546 9974 9891 Safronovaet al? 31262 20204 19652 12801 9621 9442
CCSsOT) 33603 21080 20831 13545 9974 9891 Eliav et al® 31442 20224 19662 12876 9552 9354
Safronovaet al? 33649 21111 @875 13527 9969 9893  Blundell et al® 31291 20187 19645 12828 9623 9443
Eliav et al® 33721 21117 20878 13564 9857 9769 Experimen‘f 31407 20229 19674 12872 9641 9459
Experiment 33691 21112 20874 13557 9976 9899
“Reference 6.
®Reference 6. PReference 7.
PReference 7. ‘Reference 4.

‘Reference 16. dReference 16.
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TABLE VI. Error in valence electron removal energy computations of cesium using the coupled cluster method.
(Value within parentheses are obtained from the CESI.CCSD+T scheme.

Orbital CCSOT) CCSD LCCSD LCCSDN Blundellet al2 Safronovaet al® Eliav et al®

6s 0.5000.494 0.156 0.248 0.088.080 0.369 0.462 0.114
6P/ 0.4550.455 0.445 0.188 0.218.208 0.208 0.124 0.025
6p3)» 0.5080.513 0.429 0.188 0.298.299 0.147 0.112 0.061
7s 0.1860.1869 0.326 0.109 0.04D.062 0.342 0.552 0.031
TP 0.3220.322 0.633 0.508 0.218.197 0.187 0.207 0.923
7P3 0.4860.480 0.729 0.603 0.370.359 0.169 0.180 1.110
Average 0.40@0.410 0.453 0.307 0.208.200 0.237 0.273 0.377
Error

@Reference 4.
PReference 6.
‘Reference 7.

similar basis is also applied for Cs but with a little more is no objection against an implementation of these approxi-
active orbitals (1812p10d7f). While Table V compares the mations which can save a significant amount of computa-
calculated valence electron removal energies of Cs with théonal effort.

experiment® and with other theoretical results, Table VI col- Satisfactory results are obtained for the valence electron
lects the error in the estimated quantities. The present calcuienization potentials. Our LCCSD) results differ by 0.05%
lations clearly show that triples excitations contribute sub{Rb) and 0.2%(Cs) from the experiments and are therefore
stantially to the estimated state energy. For instance, theloser than earlier works. It is remarkable that higher level
inclusion of partial triples improves the accuracy of the esti-CCSIO(T) approximation leads in average to less accurate
mated state energy of Rb and Cs by 0.35% and 0.20%, rezumbers.

spectively(see Tables IV and VI The present as well as the

previous theoretical calculations suggest that the linearized

CC fares better than CC. In fact, our LCCAD results for 1'\1-9'3090‘“3“ B. P. Masterson, and C. E. Wienman, Phys. Rev.&&®10
both, Cs and Rb, are closer to the experiment than any othe;rb. A?ﬁaldi, A. Bohm, L. S. Durkin, P. Langacker, A. K. Mann, W. J.
computation presented so far, including our own CCBD Marciano, A. Sirlin, and H. H. Williams, Phys. Rev. 85, 1385(1987).
results. However, this is likely to be a spurious effect, be- *W. R. Johnson, M. Indrees, and J. Sapirstein, Phys. Re85A3218
C.ause. CCSD/C.CSU) is theoretic.a”y more. acqurate tha.n its 4g9§?éizd2ezléu%£§&johnson, and J. Sapirstein, Phys. Re38A4961
linearized version. The cumulative contributions of higher (19gg: 42 3751(1990.

order excitations in the CC scheme, as well as Breit and®s. A. Blundell, W. R. Johnson, and J. Sapirstein, Phys. Rev. 6&ttl411
QED effects are expected to improve the accuracy of (199D; Phys. Rev. M3 3407(1993. ,

CCSD(T) compared to its linearized version. More detailed 4M472'(1S£§”°"a' W. R. Johnson, and A. Derevianko, Phys. R&0A
investigation of this point is therefore necessary and researchg, giiay, u. Kaldor, and Y. Ishikawa, Phys. Rev.58, 1121 (1994,

in this direction is in progress. 8Z. W. Liu and H. P. Kelly, Phys. Rev. A3, 3305(1991).
°D. Mukherjee and S. Pal, Adv. Quantum Che2f), 281 (1989.
101, Lindgren and J. MorrsionAtomic Many-Body Theoryedited by G.
V. CONCLUDING REMARKS Ecker, P. Lambropoulos, and H. Walth@pringer-Verlag, Berlin, 1985
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