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Ionization potentials and excitation energies of rubidium and cesium atoms are computed using the
relativistic coupled cluster~CC! method. The effect of electron correlations on the ground and
excited state properties is investigated using different levels of CC approximations and truncation
schemes. The present work demonstrates that theeven-parity channeltruncation scheme produces
results almost as accurate as obtained from theall-parity channel approximation scheme at a
reduced computational cost. The present study also indicates that for a given basis the linearized CC
method tends to overestimate the ground and excited state properties compared to the full CC
method. © 2003 American Institute of Physics.@DOI: 10.1063/1.1621616#
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I. INTRODUCTION

The ground and excited state properties of alkali me
atoms are subject of theoretical and experimental interes
cause of their simple electronic structure, having one vale
electron well separated from the inner core. Moreover,
heavier alkali metal atoms, such as rubidium, cesium,
francium, etc. are prime candidates to probe for physics
departs from the predictions of the Standard Model of
ementary particle physics. In recent years, high-precision
periments, measuring the parity-nonconserving 6s→7s tran-
sition of Cs,1 have shown that atomic experiments a
competitive in investigating weak interactions between
ementary particles. High precision atomic calculations a
therefore, necessary to obtain information about the w
interaction constant.2

Extensive theoretical studies on the ground and exc
state properties of systems containing heavy atoms h
shown that accurate prediction of transition energies and
lated properties requires the incorporation of both relativis
and high order correlation and relaxation effects as th
effects are strongly entangled. The relativistic and dynam
electron correlation effects can be incorporated in ma
electron systems through a variety of many-body method
which the coupled cluster method~CCM! has emerged a
one of the most powerful and effective tool for a high pre
sion description of electron correlations in many-electr
systems. The CCM is an all-order nonperturbative sche
and therefore, the higher order electron correlation effe
can be incorporated more efficiently than using the order-
order diagrammatic many-body perturbation theory~MBPT!.
The CC method is size-extensive, a property which has b
a!Also at JNCASR, Bangalore 560064, India.

10630021-9606/2003/119(20)/10633/5/$20.00

Downloaded 18 Nov 2008 to 203.200.35.12. Redistribution subject to AIP
l
e-

ce
e
d
at
l-
x-

l-
,
k

d
ve
e-
c
e

al
-

of

-
n
e,
ts
-

en

found to be crucial for an accurate determination of st
energies, bond cleavage energies and related spectros
constants. Since the order-by-order MBPT expansion te
are directly related to the CC equations~as the latter is an
all-order version of the former scheme!, the CC results can
be improved by adding the important omitted diagrams w
the aid of low order MBPT.

The ground and excited states of Rb and Cs atoms w
previously studied by Johnsonet al.3 and Blundellet al.4 us-
ing diagrammatic many-body perturbation theory~MBPT!.
Since the expressions beyond second order MBPT are c
plicated, these direct perturbative studies were limited
third and partial fourth order. Later Blundellet al.5 and Sa-
fronovaet al.6 incorporated all order effects through a linea
ized CC scheme~with partial triples! and computed the
ground and excited state properties of the alkali metal ato
Similar but more rigorous theoretical studies on the grou
and excited states of alkali-metal atoms were reported
Eliav et al.7 who employed a full CCSD to compute the ion
ization and excitation energies of alkali metal atoms. Ho
ever, in their full CCSD calculations, partial triples and de
core excitations were not included. It is, therefore, desira
to incorporate these two factors in the CC-scheme to exp
and identify their effects on the ground and excited st
properties.

In this article, we compute the ground and excited st
properties of Rb and Cs using the LCCSD and CC
scheme~with and without partial triples! to estimate the non-
linear effects arising from CCSD and to access the rela
performance and accuracy of these two schemes. Here
study the effect of dynamical electron correlations aris
from doubly excited cluster amplitudes whose first ord

contribution to the electron correlation is zero due to a Cou-
lomb selection rule. This work also investigates the correla-

3 © 2003 American Institute of Physics
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tion contribution of the deep-lying core orbitals to the grou
and excited state properties.

Section II briefly reviews the open-shell CC method a
the inclusion of partial triples excitations. Computational d
tails and results are discussed in the subsequent section

II. METHODOLOGY: OPEN-SHELL CC THEORY
FOR ENERGY-DIFFERENCES

The Dirac–Coulomb Hamiltonian for a many-electro
system can be conveniently written as

H5(
i 51

N

@cai "pi1~b i21!mc21Vnuc~r i !#

1
1

2 (
iÞ j

e2

ur i2r j u
~2.1!

in which the Dirac operatorsa and b are expressed by th
matrices

a5S 0 s

s 0 D , b5S I 0

0 2I D , ~2.2!

wheres stands for the Pauli matrices andI is the 232 unit
matrix. To capture the effect arising from finite-size-nucle
correction, we have used a charge distribution inside
Fermi nucleus of the form,

rFermi
nuc 5r0@11exp~~r 2c!/a!#21,

wherec is the cut-off radius at whichrFermi
nuc 5r0/2. The pa-

rametera is related to skin thickness~t! by

t54 ln 3a.

In the present calculation skin thickness~t! is set to 2.30 fm.
In the CC approach, we begin with theN-electron

closed-shell Dirac–Fock~DF! reference stateuF& and write
the exact ground state as

uC&5eTuF&, ~2.3!

whereT is the hole-particle electron excitation operator. T
Schrödinger equation

HeTuF&5EeTuF& ~2.4!

leads to the exact ground state energyE. However, it is tech-
nically simpler to define first the normal ordered Ham
tonian,

H̃[H2^FuHuF&5H2EDF, ~2.5!

with the DF energyEDF and then solve the modified Schro¨-
dinger equation,

H̃eTuF&5~E2EDF!eTuF&[Ecorre
TuF&. ~2.6!

Premultiplying bye2T and projecting on̂Fu we obtain the
ground state correlation energy,

^FuH̄uF&5Ecorr, ~2.7!

where we have defined the dressed, normal ordered Ha
tonian

10634 J. Chem. Phys., Vol. 119, No. 20, 22 November 2003
H̄5e2TH̃eT5H1@H,T#1 1
2@@H,T#,T#1¯. ~2.8!
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The cluster amplitude~T! determining equations are obtaine
by projecting Eq.~2.6! onto theN-electron excited determi
nants^F* u,

^F* uH̄uF&50. ~2.9!

Equations~2.7! and ~2.9! are the closed-shell couple
cluster equations. In the first step, the set of equations~2.9!
are solved to obtain the cluster amplitudesT, which are used
to construct the dressed HamiltonianH̄ to evaluate the cor-
relation energyEcorr. In the CCSD approximation, the clus
ter operatorT is composed of one- and two-body excitatio
operators, i.e.,T5T11T2 , which are expressed in terms o
second quantization. Equation~2.9! can be expressed in th
following matrix form:

A1B^ T50 ~LCCSD!, ~2.10!

and

A1B~T! ^ T50 ~CCSD!, ~2.11!

whereA is a constant vector which consists of the eleme
^F* uH̃uF& andT is the vector of the excitation amplitude
Since the matrixB(T) itself depends on the cluster ampl
tudes, Eq.~2.11! is solved iteratively. At this juncture, we
emphasize that due to the spherical symmetry of atoms,
above derived equations can be separated into a radial an
angular part, which considerably simplifies the compu
tional effort. The radial Coulomb integrals, which is the mo
time consuming part of the computation, can be stored
RAM ~random access memory!, whereas the angular part
that consist of much simpler algebraic expressions, can
evaluated on the fly.

In our calculations we made use of the CCSD-EP
approximation,8 which reduces the number of cluster amp
tudes by a factor of 2. Ideally, the two-body cluster amp
tudes (T25^pqut2

kuab&) can have any multipole momentsk
that satisfies

u l p2 l au<k<u l a1 l pu u l q2 l bu<k<u l q1 l bu, ~2.12!

and

~2 ! l a1 l p5~2 ! l q1 l b. ~2.13!

The Coulomb matrix element^pquVkuab& is, however, only
nonzero if

l p1 l a1k5even, l q1 l b1k5even ~2.14!

in addition to the conditions given in Eqs.~2.12!–~2.13!.
Therefore, according to MBPT the two-body cluster amp
tudes satisfying Coulomb selection rules are only nonzer
the first order~in Coulomb! level. The remaining two-body
cluster amplitudes are zero at the first order level but nonz
at higher order level. It can easily be shown that Coulo
allowed two-body cluster amplitudes are evenly spaced,
these are either 0, 2, 4, etc. or 1, 3, 5, etc. We call
Coulomb allowed two-body cluster amplitudes as eve
parity channel or EPC and Coulomb rule violating two-bo
cluster amplitudes as odd-parity channel or OPC. It imme
ately follows from the above argument that the number

Chaudhuri et al.
two-body cluster operator in EPC approximation is roughly
half of the all-parity channels or APC~EPC1OPC!.
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Since the ground state of alkali metal atoms conta
only one electron in its outermost occupieds orbital, the
ground and excited state energies~also the properties! can be
conveniently computed through the Fock-space-relativi
coupled cluster method. In this method, the Dirac–Foc
Coulomb ~DFC! equations are solved for the positive io
M1 which defines the (0h,0p) valence sector.@Note that
(mh,np) valence sector corresponds to the set of all exc
(N2m1n) electron determinants withm hole andn particle
occupancies in the active hole, particle orbitals.# The ion is
then correlated by CCSD and one electron is then add
following the Fock-space scheme,9

M1~0,0!1e→M~0,1!. ~2.15!

When the valence electron is attached to the first unoccu
s orbital of the ion (M1) we get the ground state of M
Similarly, the valence electron can be attached to any a
trary virtual orbital to obtain the excited states of M. In ord
to add an electron to thekth virtual orbital of the DF refer-
ence state, we define

uFk
n11&[ak

†uF& ~2.16!

with the help of the particle creation operatorak
† . We now

define the exact state using excitation operators for both,
core electrons and the valence electron, in the follow
way:

uCk
n11&5eT$eSk%uFk

n11&, ~2.17!

where$Sk% is the normal ordered valence electron excitat
operator.10 SinceSk has to contain the particle annihilatio
operatorak , it cannot, due to the normal ordering, be co
nected with any other valence electron excitation opera
$Sk% so that$eSk% reduces to (11Sk) and we can rewrite Eq
~2.17! as

uCk
n11&5eT~11Sk!uFk

n11&. ~2.18!

Following the same procedure as in the closed shell
proach, we obtain a set of equations

^Fk
n11uH̄~11Sk!uFk

n11&5DEk[Heff , ~2.19!

and

^Fk*
,n11uH̄~11Sk!uFk

n11&5^Fk*
,n11uSkuFk

n11&DEk .
~2.20!

Here,DEk is the difference between the energy of the clos
shell stateC and the single valence stateCk

n11, i.e., the
energy which is released when an electron is attached to
kth virtual orbital of the closed shell state. Equation~2.20! is
nonlinear inSk because the energy differenceDEk itself is a
function of Sk . TheSk amplitude determining equations a
solved in a self-consistent way where process begins with
initial guess for theSk amplitudes, e.g.,Sk50, evaluate the
energy difference using Eq.~2.19!. With the updatedDEk ,
Eq. ~2.20! is solved to determine theSk amplitudes and the
process is iterated untilSk amplitudes converges.

Since the full couple cluster with singles, double, a
triples ~CCSDT! is computationally expensive, the effect

J. Chem. Phys., Vol. 119, No. 20, 22 November 2003
triples is included in the open-shell CC equations in an ap
proximate way,
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pqr5

VT̂21VŜ2

ea1eb1ek2ep2eq2e r
, ~2.21!

whereSabk
pqr are the amplitudes corresponding to the simul

neous excitation of orbitalsa, b, k to p, q, r; VT̂, VŜ are the
contraction of all creation/annihilation operators; ande i is
the orbital energy of theith orbital. This contribution is
added to the energy obtained using singles and doub
However, the contribution of triples can be incorporated
the CC computations in two ways. The simplest and in
pensive approach is the inclusion of the lowest order con
bution of triples ofHeff through the convergedT andS clus-
ter amplitudes. In this approachSabk

pqr is not coupled to one
and two-body S-amplitudes. Following the notations o
Kaldor11 and Bartlett,12,13 this scheme is called CCSD
LCCSD1T. Alternatively, the effect of triples can be inco
porated in the CC equations through theback couplingof
triples to one and two-bodyS-amplitudes viaDEk . This
scheme is known as CCSD~T!/LCCSD~T!.12,13

III. COMPUTATION

The Fock-space relativistic coupled cluster method is
plied to compute the ground and excited state energies o
and Cs. The Dirac–Fock equations are first solved for
alkali metal ion M1, which defines the~0-hole, 0-particle!
sector of the Fock space. The ion is then correlated using
closed shell CCSD/LCCSD, after which one-electron
added following the Fock-space scheme:

M1~0,0!→M~0,1!.

Both the DF and relativistic CC programs utilize th
angular momentum decomposition of the wave functions
CC equations. Using the Jucys–Levinson–Vana
theorem,14 the Goldstone diagrams are expressed as a p
ucts of angular momentum diagrams and reduced matrix
ement. This procedure simplifies the computational compl
ity of the DF and relativistic CC equations. Appropria
constraints are also imposed to avoid ‘‘variational collaps
and ‘‘continuum dissolution.’’

In the actual computation, the DF ground state and
cited state properties of Rb and Cs are computed using
finite basis set expansion method~FBSE! ~Ref. 15! with a
large basis set of (34s30p20d15f ) Gaussian functions of the
form,

Fi ,k~r !5r k
•e2a i r

2
~3.1!

TABLE I. Comparison of valence electron removal energies~in cm21! of
rubidium obtained from APC and EPC coupled cluster method~CCM! with
all active and frozen core~Ne-core! orbital calculations.

Orbital
All-core

CCSD-APC

Ne-core

CCSD-APC CCSD-EPC

5s 33558.88 33563.59 33559.80
5p1/2 21016.47 21017.71 21016.01
5p3/2 20780.17 20781.59 20779.75
6s 13495.87 13495.46 13495.25
6p1/2 9922.08 9922.48 9922.16

10635Relativistic calculation for rubidium and cesium
- 6p3/2 9843.28 9843.75 9843.35

 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



r

a
re
er
In
o

om

-

s
fir

s

tr

o
sin

of

a
y
un-
nner
t in
g

rel-
mb
nd,
y is
li-
ibly
me
nly
fer
PC

of

dis-

A

6

1

-

8

2

0

with k50,1,... for s, p,... type functions, respectively. Fo
the exponents, the even tempering condition

a i5a0b i 21 ~3.2!

is applied. Here,N is the number of basis functions for
specific symmetry. The self-consistent DF orbitals are sto
on a grid. It is assumed that virtual orbitals with high en
gies do not contribute significantly to properties like IPs.
the CCSD calculations, we therefore truncate the virtual
bital space above a certain threshold.

The ground and excited state properties of Rb are c
puted with two sets of basis functions witha050.00525 and
b52.73. While the first set consists of 12s, 11p, 9d, and 5f
active orbitals, the second set consists of 13s, 12p, 10d, and
5 f active orbitals.@The unoccupied orbitals with orbital en
ergy above 1500 a.u.~for s andp! and 200 a.u.~for d! are not
included in the CC calculations.# To examine the core effect
on the IPs, two sets of calculations are performed. In the
set all occupied orbitals are kept active and in the second
1s, 2s, and 2p are kept frozen~frozen Ne-core!, i.e., exci-
tations out these orbitals are absent in theT andSamplitude
determining CC equations. Similarly, to estimate the con
bution of the odd-parity channel cluster~OPC! amplitudes to
the ground state and excited/ionized state energies, we c
pute the ground and excited state energy levels of Rb u
Fock-space CC equations witheven-parity and all-parity
channel cluster amplitudes.

TABLE II. Comparison of valence electron removal energies~in cm21! of
cesium obtained from APC and EPC coupled cluster method~CCM! with
frozen core~Ne-core! orbitals calculations.

Orbital

Ne-core

CCSD-APC CCSD-EPC

6s 31275.11 31275.24
6p1/2 20114.71 20114.23
6p3/2 19570.61 19570.55
7s 12809.71 12810.89
7p1/2 9570.19 9570.71
7p3/2 9382.45 9382.94

TABLE III. Valence electron removal energies~in cm21! of rubidium ob-
tained from the coupled cluster method~CCM! with even-parity channels.

Method 5s 5p1/2 5p3/2 6s 6p1/2 6p3/2

LCCSD 33647 21040 20785 13504 9925 984
LCCSD1T 33690 21105 20837 13557 9977 9894
LCCSD~T! 33690 21103 20835 13557 9976 9893
CCSD 33563 21013 20777 13495 9921 984
CCSD1T 33603 21080 20831 13546 9974 9891
CCSD~T! 33603 21080 20831 13545 9974 9891
Safronovaet al.a 33649 21111 20875 13527 9969 9893
Eliav et al.b 33721 21117 20878 13564 9857 9769
Experimentc 33691 21112 20874 13557 9976 9899

aReference 6.
b

10636 J. Chem. Phys., Vol. 119, No. 20, 22 November 2003
Reference 7.
cReference 16.
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IV. RESULTS AND DISCUSSIONS

Table I collects the valence electron removal energies
Rb obtained from all core computations~with 12s11p9d5 f
active orbitals! and the corresponding results obtained with
frozen Ne-core. Whereas the 5s level energy changes b
little more than 0.01%, the other ones remain practically
changed. These numbers justify the approach to freeze i
core orbitals for excitation energy studies, as carried ou
earlier works.11 For the frozen Ne-core, a computation usin
the EPC approximation is added~column 4!. Again, the
changes are of the order of 0.01% and therefore of no
evance even for ambitious projects. Because of the Coulo
selection rule, the first order OPC amplitudes are zero, a
hence their contribution to the second order state energ
also zero. This explains why the contribution of OPC amp
tudes to the ground and excited state energies is neglig
small. The results displayed in Table II prove that the sa
holds for Cs. The EPC approximation, although taking o
one half of the computation time, leads to results that dif
by less than 0.01% compared to the more complete A
scheme.

Table III reports the valence electron removal energies
Rb obtained from CC theory with the experiment16 and with
other theoretical calculations. The computed quantities
played in Tables III–VI are obtained from 13s12p10d5 f ac-
tive orbitals EPC-CC calculations with all active core.

TABLE IV. Percentage of error~absolute! in the estimation of valence elec
tron removal energies of rubidium using the coupled cluster method~CCM!.

Orbital CCSD~T! CCSD LCCSD LCCSD~T!
Safronova

et al.a
Eliav
et al.b

5s 0.240 0.377 0.131 0.003 0.125 0.089
5p1/2 0.152 0.469 0.341 0.043 0.000 0.023
5p3/2 0.206 0.467 0.426 0.187 0.000 0.019
6s 0.089 0.457 0.390 0.000 0.221 0.052
6p1/2 0.020 0.551 0.511 0.000 0.070 1.193
6p3/2 0.081 0.586 0.535 0.061 0.061 1.313
Average 0.131 0.484 0.389 0.049 0.080 0.44
Error

aReference 6.
bReference 7.

TABLE V. Valence electron removal energies~in cm21! of cesium obtained
from the coupled cluster method~CCM! with even-parity channels.

Method 6s 6p1/2 6p3/2 7s 7p1/2 7p3/2

LCCSD 31485 20191 19637 12858 9592 940
LCCSD1T 31382 20187 19616 12880 9622 9425
LCCSD~T! 31381 20186 19615 12878 9620 9424
CCSD 31358 20139 19590 12830 9580 939
CCSD1T 31252 20136 19573 12848 9610 9413
CCSD~T! 31250 20137 19574 12848 9609 9413
Safronovaet al.a 31262 20204 19652 12801 9621 9442
Eliav et al.b 31442 20224 19662 12876 9552 9354
Blundell et al.c 31291 20187 19645 12828 9623 9443
Experimentd 31407 20229 19674 12872 9641 9459

aReference 6.
bReference 7.
c

Chaudhuri et al.
Reference 4.
dReference 16.
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TABLE VI. Error in valence electron removal energy computations of cesium using the coupled cluster m
~Value within parentheses are obtained from the CCSD1T/LCCSD1T scheme.!

Orbital CCSD~T! CCSD LCCSD LCCSD~T! Blundell et al.a Safronovaet al.b Eliav et al.c

6s 0.500~0.494! 0.156 0.248 0.083~0.080! 0.369 0.462 0.114
6p1/2 0.455~0.455! 0.445 0.188 0.213~0.208! 0.208 0.124 0.025
6p3/2 0.508~0.513! 0.429 0.188 0.298~0.294! 0.147 0.112 0.061
7s 0.186~0.186! 0.326 0.109 0.047~0.062! 0.342 0.552 0.031
7p1/2 0.322~0.322! 0.633 0.508 0.218~0.197! 0.187 0.207 0.923
7p3/2 0.486~0.486! 0.729 0.603 0.370~0.359! 0.169 0.180 1.110
Average 0.409~0.410! 0.453 0.307 0.205~0.200! 0.237 0.273 0.377
Error

aReference 4.
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bReference 6.
c

similar basis is also applied for Cs but with a little mo
active orbitals (13s12p10d7 f ). While Table V compares the
calculated valence electron removal energies of Cs with
experiment16 and with other theoretical results, Table VI co
lects the error in the estimated quantities. The present ca
lations clearly show that triples excitations contribute su
stantially to the estimated state energy. For instance,
inclusion of partial triples improves the accuracy of the e
mated state energy of Rb and Cs by 0.35% and 0.20%
spectively~see Tables IV and VI!. The present as well as th
previous theoretical calculations suggest that the linear
CC fares better than CC. In fact, our LCCSD~T! results for
both, Cs and Rb, are closer to the experiment than any o
computation presented so far, including our own CCSD~T!
results. However, this is likely to be a spurious effect, b
cause CCSD/CCSD~T! is theoretically more accurate than i
linearized version. The cumulative contributions of high
order excitations in the CC scheme, as well as Breit a
QED effects are expected to improve the accuracy
CCSD~T! compared to its linearized version. More detail
investigation of this point is therefore necessary and rese
in this direction is in progress.

V. CONCLUDING REMARKS

The relativistic open-shell coupled cluster scheme
direct energy difference calculations is presented and app
to Rb and Cs atoms. In this work, we investigate the effe
of electron correlations on the ground and excited state p
erties using different levels of CC approximations. We ha
shown that neither the freezing of inner core orbitals~Ne-
core! nor the neglection of odd-parity channel amplitud

Reference 7.
by more than about 0.01%. At least for th
and the properties under investigation, the

v 2008 to 203.200.35.12. Redistribution subject to AIP
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is no objection against an implementation of these appro
mations which can save a significant amount of compu
tional effort.

Satisfactory results are obtained for the valence elec
ionization potentials. Our LCCSD~T! results differ by 0.05%
~Rb! and 0.2%~Cs! from the experiments and are therefo
closer than earlier works. It is remarkable that higher le
CCSD~T! approximation leads in average to less accur
numbers.
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