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ABSTRACT

We examine the propagation of kink and longitudinal waves in the solar magnetic network. Previously, we
investigated the excitation of network oscillations in vertical magnetic flux tubes through buffeting by gran-
ules and found that footpoint motions of the tubes can generate sufficient wave energy for chromospheric
heating. We assumed that the kink and longitudinal waves are decoupled and linear. We overcome these limi-
tations by treating the nonlinear MHD equations for coupled kink and longitudinal waves in a thin flux tube.
For the parameters we have chosen, the thin tube approximation is valid up to the layers of formation of the
emission features in the H and K lines of Ca 11, at a height of about 1 Mm. By solving the nonlinear, time-
dependent MHD equations we are able to study the onset of wave coupling, which occurs when the Mach
number of the kink waves is of the order of 0.3. We also investigate the transfer of energy from the kink to the
longitudinal waves, which is important for the dissipation of the wave energy in shocks. We find that kink
waves excited by footpoint motions of a flux tube generate longitudinal modes by mode coupling. For
subsonic velocities, the amplitude of a longitudinal wave increases as the square of the amplitude of the
transverse wave, and for amplitudes near Mach number unity, the coupling saturates and becomes linear

when the energy is nearly evenly divided between the two modes.
Subject headings: MHD — Sun: magnetic fields — Sun: oscillations

1. INTRODUCTION

It is well known that magnetic fields play an important
role in the dynamics and heating of the solar chromosphere.
In the quiet chromosphere we distinguish the magnetic net-
work on the boundary of supergranulation cells, where
strong magnetic fields are organized in magnetic flux tubes,
and internetwork regions in the cell interior, where magnetic
fields are weak and dynamically unimportant.

Ground-based observations of the Ca m H and K lines,
which are formed in the low chromosphere, show similar
emission from network and internetwork regions. While
instantaneous grains from the internetwork may outshine
network bright points (see Fig. 1 of Lites, Rutten, &
Kalkofen 1993), the long-time average intensity shows total
calcium emission from the network to be more important
(see Fig. 1 of von Uexkiill & Kneer 1995). In addition to
having higher average intensity, network bright points also
have longer periods, typically about minutes (Lites et al.
1993; Curdt & Heinzel 1998), and the time variation of their
intensity profile is much less peaked. Note that recent obser-
vations by McAteer et al. (2002) suggest the presence of
multiple peaks in the power spectrum, with periods in the
4—-15 minute range.

Space-based observations of UV spectral lines and con-
tinua provide important constraints on the structure and
dynamics of the chromosphere and chromosphere-corona
transition region. Observations with SUMER have shown
that the UV lines are always in emission, consistent with
semiempirical models in which the temperature in the
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chromosphere increases with height at all times (Vernazza,
Avrett, & Loeser 1981). Internetwork regions show large-
scale coherent oscillations with length scales of 3-7 Mm and
periods between 120 and 200 s in spectral lines of neutral
and singly ionized species, and sometimes also in lines from
higher ionization states (Carlsson, Judge, & Wilhelm 1997;
Wikstel et al. 2000; Mclntosh et al. 2001). These oscilla-
tions, which have also been seen with TRACE (Rutten, de
Pontieu, & Lites 1999; Judge, Tarbell, & Wilhelm 2001;
Krijger et al. 2001), suggest that there are upward-
propagating waves in the nonmagnetic chromosphere that
sometimes drive oscillations in the overlying transition
region. Network regions are brighter than internetwork
regions and show strong oscillatory power only at lower fre-
quencies (Judge, Carlsson, & Wilhelm 1997). Transition
region lines from the network show persistent redshifts, and
the line widths indicate the presence of subsonic, unresolved
nonthermal Doppler motions of several kilometers per sec-
ond (Dere & Mason 1993; Peter 2001). Furthermore, there
is a strong correlation between high intensity and redshift
(Hansteen, Betta, & Carlsson 2000). Curdt & Heinzel (1998)
found evidence for upward propagating waves within the
network (also see Heinzel & Curdt 1999). However, they
were unable to identify the wave modes responsible for these
oscillations.

The phenomena in the magnetic network and in the non-
magnetic cell interior show superficial similarity. Yet while
the physics of the cell interior is fairly well understood
(although controversial), the same cannot be claimed for
the network. It is therefore instructive to compare our
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understanding of the phenomena in the two media. The
steady radiative emission of the nonmagnetic chromosphere
is well described by the empirical models of Vernazza et al.
(1981) and Fontenla, Avrett, & Loeser (1993). The models
imply that the nonmagnetic chromosphere is continually
heated, perhaps by ubiquitous weak shocks. In addition,
there are stronger, more intermittent shocks that are
responsible for the internetwork grains seen in the Ca 1 H
and K lines (Carlsson & Stein 1995, 1997). According to the
empirical models by Vernazza et al. (1981) and Fontenla et
al. (1993), the temperature structure of the magnetic chro-
mosphere is very similar to that of the nonmagnetic chro-
mosphere, suggesting that the heating mechanisms in the
two media may be similar. However, the statistics of H and
K line asymmetries and the periods of oscillations in the
magnetic network are significantly different from those of
calcium grains in the cell interior (Grossmann-Doerth,
Kneer, & von Uexkiill 1974). These differences may find an
explanation in the wave modes and the mechanisms of exci-
tation of oscillations in the two media.

G-band (4305 A) observations have revealed the presence
of bright points in the magnetic network, which are in a
highly dynamical state due to the buffeting action of gran-
ules (e.g., Muller 1985; Muller et al. 1994; van Ballegooijen
et al. 1998). The magnetic field in the network can be ideal-
ized in terms of isolated vertical flux tubes in the photo-
sphere that fan out with height. It is well known that flux
tubes support a variety of wave modes: the sausage or longi-
tudinal mode, the kink or transverse mode, and the tor-
sional Alfvén mode (Spruit 1982; Roberts & Ulmschneider
1997). The earliest studies on MHD wave excitation were
based on extensions of the Lighthill (1952) mechanism
(Kulsrud 1955; Osterbrock 1961; Stein 1967, 1968;
Musielak & Rosner 1987; Collins 1989, 1992). More
recently, Musielak, Rosner, & Ulmschneider (1989),
Musielak et al. (1995), Huang, Musielak & Ulmschneider
(1995), and Ulmschneider & Musielak (1998) examined the
generation of longitudinal and transverse waves in a flux
tube by turbulent motions in the convection zone. An alter-
native scenario motivated by observational considerations
suggests that transverse waves can be generated through the
impulse imparted by granules to magnetic flux tubes
(Choudhuri, Auffret, & Priest 1993; Choudhuri, Dikpati, &
Banerjee 1993; Kalkofen 1997; Steiner et al. 1998). These
investigations suggested that the kink wave energy flux
could be important for coronal heating.

Hasan & Kalkofen (1999, hereafter Paper I) investigated
the impulsive excitation of transverse and longitudinal
waves by granular motions in the magnetic network. The
response of a flux tube to a single granular impact is the
same for both transverse and longitudinal waves: the buffet-
ing action excites a pulse that propagates along the flux tube
with the kink or longitudinal tube speed, respectively. For
strong magnetic fields, most of the energy goes into trans-
verse waves, and only a much smaller fraction into longitu-
dinal waves. After the passage of the pulse, the atmosphere
gradually relaxes to a state in which it oscillates at the cutoff
period of the mode. These results show that the first pulse
carries most of the energy and after this pulse has passed the
atmosphere oscillates in phase without energy transport.
The period observed in the magnetic network is interpreted
as the cutoff period of transverse waves, which leads natu-
rally to an oscillation at this period (typically in the 7 minute
range) as proposed by Kalkofen (1997). In reality, we expect

the excitation of waves in a tube to occur not as a single
impact but continually, due to the highly turbulent and
stochastic motion of granules.

Hasan, Kalkofen, & van Ballegooijen (2000) modeled the
excitation of waves in the network due to the observed
motions of G-band bright points, which were taken as a
proxy for footpoint motions of flux tubes. For a typical mag-
netic element in the network they predicted that the injection
of energy into the chromosphere takes place in brief and
intermittent bursts, lasting typically 30 s, separated by long
periods with low energy flux; this implies a high intermit-
tency in chromospheric emission, which is incompatible
with observations. They concluded that there must be other
high-frequency motions (periods 5-50 s) which cannot be
detected as proper motions of G-band bright points. Adding
such high-frequency motions to the simulations, they
obtained much better agreement with the persistent emission
observed from the magnetic network. They speculated that
the high-frequency motions could be due to turbulence in
intergranular lanes, but some aspects of this model need fur-
ther investigation and will be considered in a future study.

The above-mentioned work was based on a linear
approximation in which the longitudinal and transverse
waves are decoupled. However, the velocity amplitude v(z)
for the two modes increases with height z (for a thin flux
tube in an isothermal atmosphere, as v & exp(z/4H), where
H is the pressure scale height), due to which the motions
become supersonic higher up in the atmosphere. At such
heights, nonlinear effects become important, leading to cou-
pling between the transverse and longitudinal modes. Some
progress on this question has been made using the nonlinear
equations for a thin flux tube (Ulmschneider, Zéhringer, &
Musielak 1991; Huang, Musielak, & Ulmschneider 1995).
This work has been extended to include a treatment of
kink and longitudinal shocks (Zhugzhda, Bromm, &
Ulmschneider 1995). These investigations have concen-
trated primarily on wave propagation in the photosphere
and in the lower chromosphere. The motivation for the
present work is to examine in detail the onset of nonlinear
effects along with their implications in a vertical flux tube.
These produce significant mode coupling, leading to a trans-
fer of energy between the modes, which is likely to have
important consequences for the dynamics and energy trans-
port in the solar network.

The main aim of this study is to extend the calculations of
Paper I and include the coupling of transverse and longitu-
dinal modes through nonlinear effects. We use the thin flux
tube approximation in an isothermal atmosphere, which
has the advantage that the linear solutions can be deter-
mined analytically and compared with the nonlinear ones.
This enables us to delineate the regions of the atmosphere
where nonlinear effects become important. The emphasis in
this investigation is to understand the nature of mode cou-
pling and its consequences. In future work we hope to
extend the present calculations to more general conditions.

The organization of this paper is as follows: in § 2 we
present a two-dimensional model of a magnetic flux tube to
justify the use of the thin tube approximation up to heights
in the middle chromosphere. Section 3 discusses the excita-
tion of MHD waves by footpoint motions in a ““ thin > flux
tube. In § 4, we present the results of model calculations to
focus on nonlinear effects and mode coupling. The broad
implications of our investigation along with its main conclu-
sions are presented in § 5.
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2. TWO-DIMENSIONAL FLUX TUBE MODEL

Let us consider a flux tube extending vertically through
the photosphere and chromosphere of the Sun. We model
its structure in cylindrical geometry assuming axial symme-
try. The flux tube is contained within a cylinder of radius
Ry, which represents the space available to the flux tube in
the solar atmosphere. The total magnetic flux of the tube is
given by ®. The flux tube radius R(z) is a function of height
z above the level where the optical depth 750090 = 1 in the
nonmagnetic photosphere. Below some height z., the radius
R(z) is less than Ry, and the tube is embedded in a field-free
medium that fills the remainder of the cylindrical space. At
these heights there is a sharp boundary between the flux
tube and its local surroundings. The flux tube radius R(z)
increases with height, and at z = z, (the “ canopy ™ height)
the boundary of the flux tube reaches the wall of the cylin-
der, R(z.) = Ry. Above this height the magnetic field is ver-
tical along the cylinder wall. This model simulates the effect
of neighboring flux tubes, which prevent the further expan-
sion of the tube with height (we assume that neighboring
flux tubes have the same magnetic polarity). Therefore, the
quantity 2Ry can be interpreted as the distance between
neighboring flux tubes. In this paper we consider a model
with &y = 5 x 10'® Mx, Ry = 1000 km, and z, = 1200 km.
The cylinder extends from z, = —300 km below the photo-
sphere to z, = 2500 km in the corona.

Appendix A describes how the magnetic structure of the
flux tube is computed. Briefly, the interior of the flux tube
is assumed to be in magnetostatic equilibrium and the gas
pressures inside and outside the flux tube are based on the
semiempirical models of Vernazza, Avrett, & Loeser
(1981). The magnetic field strength at z = 0 in the photo-
sphere is about 1590 G, and the flux tube radius at that
height is 33 km. Figure 1 shows the result of the numerical
computation. The solid lines show the magnetic field lines,
including the field line that forms the boundary between
the flux tube and the external medium. The dashed line
shows the location of the boundary as computed using the
thin flux tube approximation (R o p;2>%). For z < 1000 km
the tube radii calculated from the two-dimensional model
and from the thin tube approximation are nearly identical.
At z = 1000 km the difference is only 9%, even though the
flux tube radius at this height (about 354 km) is greater
than the local pressure scale height (about 150 km). At
larger heights, the thin tube approximation fails rapidly
owing to the expansion of the flux tube near the ““ canopy”
height of 1200 km.

Another method for comparing the two-dimensional and
thin tube models is to consider the radial variation of mag-
netic field strength across the tube. The thin tube approxi-
mation assumes that the field strength is constant with
radius. The inset in Figure 1 shows the variation of field
strength at heights of 800 and 1000 km in the two-
dimensional model. We find that the field strength decreases
from the axis of the tube to the boundary by about 9% and
27%, respectively. We conclude that the thin tube approxi-
mation is valid up to a height of about 1000 km.

3. WAVE EXCITATION DUE TO FOOTPOINT MOTION

In this section we study wave propagation in a tube over a
height range where the thin flux tube approximation is valid.
We may assume that the atmosphere is isothermal since
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FiG. 1.—Model of a thin magnetic flux tube on the quiet Sun (magnetic
flux @9 = 5 x 10! Mx). The model has cylindrical symmetry. The flux tube
is embedded in a field-free region and is in pressure balance with its sur-
roundings. The solid lines show selected magnetic field lines that expand
with height in the solar atmosphere. The dashed line shows the flux tube
boundary for the thin tube approximation. The inset shows the magnetic
field strength as a function of radius at z = 800 km (solid curve) and z =
1000 km (dashed curve).

our focus is on the dynamics, which is insensitive to the
temperature structure.

3.1. Initial Flux Tube Model

We assume that the flux tube is ““thin”’ and initially in
hydrostatic equilibrium and isothermal, with the same tem-
perature as the external medium, and consider a tube with
a radius of 40 km and a field strength of B=1700 G at
z = 0, corresponding to a plasma (3 of 0.18 (which remains
constant with height). We also assume that the temperature
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F1G. 2.—Variation of the transverse v, (solid lines) and the longitudinal v. (dashed lines) components of the velocity as functions of height z at various epochs
for (@) vy = 2.0km s~ ! and (b) vy = 4.0 km s~!. The numbers beside the curves denote the time (in seconds).

is T = 6650 K (corresponding to a scale height H = 155
km). The radius of the tube increases with z as exp(z/4H).

3.2. Method of Solution

The basic equations for adiabatic longitudinal-transverse
MHD waves in a thin flux tube consist of a set of coupled
differential equations (see Ulmschneider et al. 1991 for
details) which are solved numerically using the method of
characteristics. In the present work we adopt this method,
modified to include shocks, based on the treatment of
Zhugzhda et al. (1995). The computational domain in the
vertical direction has an equidistant grid of size 5 km. The
Courant condition is used to select the time step to advance
the equations in time.

3.3. Boundary Conditions

At the lower boundary, taken at z = 0, we assume that
the flux tube has a transverse motion which consists of a
single impulse with a velocity of the form:

0x(0, £) = vpe =0/ | (1)

where vy is the specified velocity amplitude, #, denotes the
time when the motions have maximum amplitude, and 7 is
the time constant of the impulse. The longitudinal compo-
nent of the velocity at the base is assumed to be zero. In the
present calculations we take 7 = 50 sand 7 = 20s.

At the upper boundary of the computational domain (at
z = 1500 km) we use transmitting boundary conditions, fol-
lowing Ulmschneider et al. (1977), and assume that the
velocity amplitude remains constant along the outward
propagating characteristics. The characteristic equations
are used to self-consistently determine physical quantities at
the boundary.

4. RESULTS

The initial equilibrium model is perturbed with a trans-
verse motion at z = 0 in the form of an impulse with a veloc-
ity given by equation (1). This impulse generates a
transverse wave that propagates upward with the kink wave

tube speed ¢, which is about 7.9 km s~! for the equilibrium
model. The resulting motion in the tube as a function of
height and time follows from the time-dependent MHD
equations for a thin flux tube.

Figures 2a and 2b show the variation of the transverse v,
(solid lines) and longitudinal v, (dashed lines) components of
the velocity as a function of height z at various epochs of
time ¢ for vgp = 2.0 km s~! and vy = 4.0 km s~!, respectively.
The numbers beside the curves denote the time 7 (in sec-
onds). We find that low in the atmosphere, where the trans-
verse velocity amplitude is small (compared to the kink
wave speed ¢,;), the longitudinal component of the velocity
is negligible. As the initial pulse propagates upward, the
transverse velocity amplitude increases. Due to nonlinear
effects, beginning when the Mach number M = v, /¢, is as
low as 0.3, longitudinal motions are generated. The effi-
ciency of the nonlinear coupling increases with the ampli-
tude of the transverse motions. When v, ~ ¢., the
amplitudes in the transverse and longitudinal components
become comparable. The longitudinal motions, being com-
pressive, steepen with height and eventually form shocks.
The steepening is clearly visible in Figure 2b, especially at
t =150 s in the longitudinal component. These results
are reminiscent of those found by Hollweg, Jackson, &
Galloway (1982), who studied the nonlinear coupling of
torsional Alfvén waves and longitudinal waves in the solar
atmosphere. Their results, however, did not show any
wakes, which arise due to the presence of a cutoff frequency,
which is absent for torsional Alfvén waves.

Let us now examine the temporal behavior of the velocity.
Figure 3 shows the variation of the transverse v, (solid lines)
and longitudinal v, (dashed lines) components of the velocity
as functions of time ¢ at z = 1000 km for vy = 0.5 km s~ !.
The vertical scale on the right corresponds to v,. The first
maxima in the velocities denote the arrival of the transverse
and longitudinal components of the impulse, which travel at
approximately the same speed (since ¢, = c7).

After the passage of the primary pulses, which eventually
propagate out through the top boundary, the transverse
and longitudinal components oscillate with different peri-
ods. At this stage, since the velocity amplitudes are small,
the two modes essentially decouple. We find that in the
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Fi1G. 3.—Variation of the transverse vy (solid lines) and the longitudinal
v. (dashed lines), components of the velocity as functions of time 7 at
z=1000km forvy = 0.5kms!.

asymptotic time limit, the periods of the two modes closely
match their cutoff periods, which are about 490 and 230 s
for kink and longitudinal waves, respectively. This result is
in agreement with the linear analysis of Paper 1.

We now focus on the coupling between the two modes
which, as stated earlier, arises solely due to nonlinear effects.
Figure 4 shows the variation of the longitudinal wave ampli-
tude v, as a function of the transverse wave amplitude v, at
different heights in a flux tube for vy = 2.0 km s~!. At each
height, we use the maximum value of the amplitude in the
two components associated with the transverse and longitu-
dinal pulses. At low values of v,, there is essentially no cou-
pling with the longitudinal mode, and hence v, is practically
zero. However, as v, increases, nonlinear effects become

v (kms")

Fi16. 4.—Variation of the longitudinal wave amplitude v. as a function of
the transverse wave amplitude v, at different heights in a flux tube for
vg = 2.0 km s~!. At each height, we use the maximum value of the ampli-
tude in the two components associated with each pulse.
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FiG. 5.—Variation of v2/(v2 + v}) at z = 1000 km as a function of vy, the
forcing transverse velocity amplitude at z = 0. We use the maximum value
of the amplitude in the two components associated with the transverse and
longitudinal pulses.

important and longitudinal oscillations are excited. This
coupling is quadratic because these oscillations are gener-
ated by the centrifugal force that arises from the curvature
of the field lines when the tube exhibits a kink oscillation.
However, once v, = ¢, the two modes have comparable
amplitudes and v, increases linearly with v,..

It is instructive to consider the partitioning of energy
between the two modes as the forcing amplitude of
the transverse velocity at the base of the flux tube increases.
Figure 5 shows the variation at z= 1000 km of
e. = v2/(v? + v3), the ratio of the wave energy in longitudi-
nal motions to the total energy as a function of vy, and the
forcing transverse velocity amplitude at z = 0. Once again
we use the maximum value of the velocity amplitude in
the two pulses. When v, < ¢, then e. ~ v2/v3 ~ v2, since
v. ~ v2 for small v,. However, as vy increases, v, and v.
become comparable, and e, saturates at a value near 0.5.
The saturation value is less than 0.5 for two reasons: first,
there is a nonlinear feedback from the longitudinal mode to
the transverse mode, which prevents the two amplitudes
from becoming the same and secondly, when the two modes
have different phase speeds, the coupling becomes less effi-
cient. In the present case, since ¢, =~ ¢, we expect the non-
linear feedback to be the dominant reason.

Finally, we compare the results of the present calculation
with those obtained in the linear approximation. Such a
comparison helps us to delineate the regions in the atmo-
sphere where nonlinear effects become important. As was
shown in Paper I, the propagation of kink waves in a thin
flux tube is governed by the Klein-Gordon equation, which
can be solved exactly for an isothermal atmosphere. We
consider the excitation of kink waves in an isothermal tube
extending from z = 0 up to z = 1200 km. Furthermore, we
only consider upward-propagating waves and disregard
reflections. Figure 6 shows the variation of the transverse
velocity vy as a function of height z at various epochs of time
t for vy = 2.0 km s~!, keeping other parameters the same as
before. The solid and dotted lines correspond to the linear
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F1G. 6.—Variation of the transverse v, velocity as a function of height z
at various epochs for the linear and nonlinear cases, denoted by solid and
dotted lines, respectively, assuming vy = 2.0 km s~! and the same parame-
ters as before. The numbers beside the curves denote the time (in seconds).

and nonlinear cases, respectively. The numbers beside the
curves denote the time 7 (in seconds). We find that low in the
atmosphere (z < 300 km), where the transverse velocity
amplitude is much less than the kink wave speed c,, the
linear approximation is excellent. However, as the initial
pulse reaches the lower chromosphere (z ~ 600 km), one
can clearly see the breakdown of the linear approximation.
These results also provide a powerful test of our nonlinear
code—the excellent agreement between the two sets of
results for small to moderate velocity amplitudes demon-
strates its accuracy.

5. DISCUSSION AND SUMMARY

The purpose of this investigation was to extend the linear
calculations of Paper I to include nonlinear effects with a
view to determining the nature of mode coupling between
the transverse and longitudinal modes in the magnetic net-
work. We modeled the excitation of these oscillations
through impulsive footpoint motions. We found that when
the transverse velocities are significantly less than the kink
wave speed (the linear regime), there is essentially no excita-
tion of longitudinal waves. However, at heights where
vy ~ 0.3 ¢,, longitudinal modes begin to be excited, and
when v, &~ ¢,, longitudinal wave generation becomes effi-
cient, leading to the modes having comparable amplitudes.
A comparison of the results with the exact linear solution
for transverse waves enables us to locate the regions in the
atmosphere where nonlinear effects are important.

We found that a transverse impulse delivered to the base
of a flux tube as it travels upward generates a longitudinal
pulse that eventually leads to low-amplitude wakes repre-
senting decoupled longitudinal and kink waves, oscillating
at their respective cutoff periods. Since the cutoff periods are
well separated, this could provide an observational test of
the model, which predicts that the signature of impulsive
footpoint motions would be two distinct peaks in the wave
power spectrum of network oscillations in the middle to
upper chromosphere. We expect that the dominant peak
with a period in the 6-7 minute range would correspond to
the low-frequency transverse oscillations, whereas the sec-
ondary peak in the 3 minute range could be identified with
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longitudinal oscillations. There is a hint that these features
may be present in the observations of Lites et al. (1993),
although Krijger et al. (2001) suggest a more cautious inter-
pretation, based on a reanalysis of the same data. We
should, however, note that the theoretical results presented
by us are based on the assumption of the flux tube foot-
points being shaken impulsively. In reality, the footpoint
motion consists of several impacts (e.g., Muller et al. 1994)
that probably occur stochastically, so that the power spec-
trum of oscillations is unlikely to show a clear separation of
peaks that would occur for a single impulse.

We have examined the coupling between the two modes
and find that v, increases quadratically with v, at low
Mach number M (with respect to ¢,) and linearly with v,
for M — 1. Transverse waves lose energy due to mode
coupling. The fractional wave energy in longitudinal
motions increases rapidly at first with the forcing transverse
velocity, vy, before eventually saturating at a value of about
0.45, which is close to equipartition of energy between the
two modes.

We have found that large-amplitude longitudinal waves
are generated in the upper photosphere from transverse
waves through mode coupling; they steepen and attain
shock strength in the chromosphere. Longitudinal waves,
being compressive, will be rapidly dissipated once they form
shocks and thereby contribute to chromospheric heating.
Detailed calculations on shock heating by longitudinal
waves will be taken up in a subsequent investigation, in
which dissipative effects are included in the treatment. Kink
or transverse waves, on the other hand, being almost incom-
pressible, cannot easily dissipate and hence can propagate
through the transition region into the corona. An estimate
of the transverse energy flux entering the corona would
require a more elaborate calculation than the present one.

Before concluding, let us briefly comment on some of the
assumptions made in this paper and their range of validity.
The theoretical treatment of MHD waves used the thin tube
approximation, which simplifies the treatment considerably
by allowing us to examine a complex multidimensional phe-
nomenon in one dimension. By comparing the exact magne-
tostatic solution for an axisymmetric flux tube with that
obtained in the thin flux tube approximation, we showed
that the latter is reasonable up to height of about a 1 Mm
above the photospheric base even though the radius at this
height is larger than the pressure scale height. However,
strictly speaking this analysis is valid for small isolated net-
work element with a filling factor below 0.1% on the solar
surface. It could be argued that such elements are rare on
the Sun. For higher filling factors (say about 1%), the height
up to which the thin flux tube approximation is valid would
of course decrease, and a more elaborate treatment would
be required to treat the merging of different tubes. Neverthe-
less, we believe that the essential features of our analysis on
the nonlinear generation of longitudinal waves from trans-
verse waves, the nature of the mode coupling in flux tubes
and the implications for chromospheric heating are likely to
hold qualitatively in the solar network, independent of the
above approximation. We also reiterate that our interest in
the present work is in regions of the network where the Ca
K emission occurs and where the magnetic elements are still
distinct.

It is interesting to comment on phenomena occurring in
the higher chromosphere, particularly above the canopy,
where field lines from various flux tubes merge and waves



1144 HASAN ET AL.

from different tubes interact with each other. This problem
is clearly outside the scope of the present investigation.
However, some progress has been made in this direction
by Rosenthal et al. (2002), who have carried out two-
dimensional simulations to examine how the field geometry
in network and internetwork regions influences wave propa-
gation in the solar photosphere and chromosphere. Their
investigation treats magneto-acoustic waves in a two-
dimensional slab geometry in which the displacements lie in
a plane perpendicular to the invariant direction. These
waves, however, are different from the kink and sausage
modes we considered , for which three-dimensional simula-
tions would be required but have not yet been carried out.
Nevertheless, the above work by Rosenthal et al. represents
a useful beginning that should be followed up by more
refined calculations to allow a realistic comparison with
observations.

The other assumptions that were part of the model were
the use of an isothermal atmosphere and the neglect of
energy losses. The isothermal approximation is reasonable
in the photosphere and lower chromosphere but breaks
down in the upper regions. However, it was used mainly to
make comparisons with our earlier linear analysis of
Paper I, based on this approximation. Furthermore, the
qualitative aspects of our results are unlikely to be affected
by this assumption. The use of an adiabatic energy equation
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is unrealistic and was made solely for mathematical reasons.
We hope to incorporate these refinements in subsequent
work.

In summary, we have examined in detail the coupling of
transverse and longitudinal waves in a flux tube. The thin
flux tube approximation was adopted to focus in a mathe-
matically tractable manner on the physical nature of wave
propagation and the onset of nonlinear effects. For small
wave amplitudes we found excellent agreement between the
linear and nonlinear treatments. However, when the veloc-
ity amplitudes become large (but still subsonic), nonlinear
effects become important, owing to which kink waves
excited by footpoint motions get converted into longitudi-
nal waves. An important feature of the results is the pres-
ence of wakes that arise after the propagation of the pulse
and are related to the existence of cutoff frequencies. After
the main pulse has propagated away, the atmosphere
relaxes to the linear state, with the transverse and longitudi-
nal modes oscillating independently at their respective cut-
off frequencies. We suggest that chromospheric heating
occurs because of the dissipation of longitudinal waves,
whereas kink waves can propagate into the corona, where
they might contribute to heating.

We thank the referee for helpful comments and acknowl-
edge support from NASA and NSF.

APPENDIX A

TWO-DIMENSIONAL FLUX TUBE MODEL

As described in § 2, the flux tube is embedded in a cylinder with radius Ry. The interior of the flux tube is assumed to be in

magnetostatic equilibrium:

—Vp+pg+ (4n) (VX BYX B=0, (A1)

where B = [B,(r,z),0, B.(r,z)] is the magnetic field in cylindrical coordinates, p is the gas pressure, p is the density, and
g = —gz is the acceleration due to gravity. This equation implies hydrostatic equilibrium along the field lines, dp/dz = —py,
where d /dz is the derivative along the field lines. Furthermore, pressure balance with the surroundings requires

pint(z) + m

87'[' :Pext(z)»

forz <z, (A2)

where Bini(z) = B[R(z), z] is the magnetic field strength just inside the boundary of the flux tube and pex(z) is the external gas
pressure. The gas pressure and density can be written as functions of ® and z, where ®(r, z) is the magnetic flux contained
within a circle of radius r centered on the flux tube axis (0 < ® < ®). We use the following expression for the pressure distri-
bution inside the flux tube:

P(®,2) = pint(2) + [Paxis(2) — pinc(2)]./ (2)/f(0) (A3)

where p,is(z) is the gas pressure on the flux tube axis, pin(z) is the pressure just inside the boundary of the flux tube, and the
function f(®) is defined in equation (A9) below. Then the hydrostatic equilibrium condition yields

p(®,2) = pini(2) + [Paxis(2) — pinc ()] (®) /£ (0) (A4)

where pin(z) = —g 'dpint/dz and payis(2) = —g~'dpaxis/dz. The internal pressures p,yis(z) and piy(z) are taken from the semi-
empirical models C and A of Vernazza, Avrett, & Loeser (1981) and Fontenla, Avrett, & Loeser (1990, 1991, 1993). The exter-
nal pressure pex(z) is taken from model MCO of Avrett (1995). The MCO model is used only below the canopy height. Since
the magnetic field has a null point at z = z. and r = Ry, the height scale of model A was shifted such that pj,(z.) = pext(zc)-
The height scale of model C was shifted such that at large depth in the flux tube the gas pressure is constant across the flux
tube.

It can be shown that the solution of equations (A1) and (A2) correspond to minima of the following Lagrangian:

z Rz TR2 Ze
WE/ / {sB—p@,Z)]Wd’d” / Pext(2)TR(2)d= (AS)
z 0 ™ Zp
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The first term represents the magnetic and thermal energy of the flux tube, and the second term represents the work done
against the external pressure when the flux tube radius R(z) is increased. Therefore, the magnetostatic problem can be solved
using a variational method. The magnetic field is described in terms of the shapes of the field lines, r(®, z), and this function is
varied until W reaches a minimum (conjugate gradient method, see Press et al. 1992). This yields the magnetic field compo-
nents B,(r, z) and B.(r, z), gas pressure p(r, z), and mass density p(r, z).

The magnetic field in the upper part of the cylinder is assumed to be nearly vertical, so that the total pressure B2/(87) + p is

constant in horizontal planes. We assume that the vertical field at the upper boundary is given by

-1

g

2
Bi(0.z) = B |14 30(1- ) | (A6

where (3 is a parameter describing the radial variation of field strength. Integrating d®/B. = 2nrdr over radius, we obtain

D 1
WRZ:/O d® _ &g <1+;ﬂx2>dx:@0<l+éﬁ>, (A7)

Fz B Bint 0

Bint

which yields Bin = Bo(1 + 3/6), where By = ®/(wR3) is the average field at the upper boundary. Inserting equation (A6) into

the expression for the total pressure, we obtain

B?
P(®,z) = pim(z0) + 81;7(‘1’) ; (A8)
where
I o\?]"
f(@)=1- 1+§5(1(}TO> ) (A9)

Comparison of equations (A3) and (A8) shows that Ap/f(0)

B2 /(8), where Ap = payis(z,) — pint(z;) is the pressure differ-

ence between models C and A at the upper boundary of the cylinder. Inserting the expression for B, from equation (A7) yields

1 \? 1\ | 8rAp
(”66) 1—<1+§ﬂ) = ; (A10)

an equation for (:

Bj

which is solved by iteration. We find that in the present model By = 1.59 G and 5 = 3.78, i.e., gas pressure difference produces
a significant variation of magnetic field strength across the upper boundary of the flux tube model.
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