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1. Introduction

This paper is aimed at illustrating some general relativis-
tic effects concerning one class of compact objects : neutron
stars. These are associated with (a) pulsars, believed to be
rotating neutron stars and (b) compact X-ray objects, some of
which are neutron stars in close binary orbits with more ordinary
stars. Pulsar physics, which is two decades old, has seen a recent
revival of interest with the discovery (Backer et al. 1982) of
a new pulsar, PSR 1937+214, having an astonishingly large rate
of rotation (about 640 rotations per second around the axis, corres-
ponding to an observed period P = 1.5578 ms). Since then, four
more such rapidly rotating pulsars have (so far) been discovered.
The extremely large rotation rates of the neutron stars associated
with fast pulsars suggest that besides the large spacetime curvature,
general relativistic effects of rotation will be important. Specifi-
cally, the aspects of interest are the structure and photon trajec-
tories near the surface (and the consequent implications for the
redshift factor and other emission characteristics). Also important
in this connection are general vrelativistic instabilities and
gravitational radiation, but these are discussed by other authors
in this volume. General relativistic aspects of neutron stars
have been reviewed earlier (see e.g. Iyer and Vishveshwara 1985)
using the core-envelope model. Here, we emphasize on the general
relativistic effects of rotation, namely dragging of inertial
frames which will affect the structure as well radiation characteris-
tics of pulsars.

2. The Structure

A first estimate of rotation induced deformation in
the structure of fast pulsars can be obtained using Hartle's
prescription (Hartle 1967), according to which the spherical deforma-
tion terms are the leading correction terms, proportional to£X
(£ = angular velocity) for a fixed central density. The fractional
change in gravitational mass ( &M/M) and radius ( & R/R) are given
in terms of radial distributions of the mass and pressure perturbation
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factors m(r) and F,(r) (Hartle 1967):
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where J is the angular momentum of the star, and P(r) and P
the pressure and total mass-energy density at point T " The

nonrotating mass M and radius R are obtained by integrating the

relativistic equations for hydrostatic equilibrium (see e.gq.,

Arnett & Bowers 1977).

The Hartle prescription is relativistic, but is usually
called a ‘'slow' rotation approximation because it 1is valid for
Q slow in comparison to the critical £2¢=(GM/R*)2 Models of rapidly
rotating relativistic stars have been calculated based on incompressi-
ble fluids and polytropic equations of state, and such formalism
has been adopted by Friedman et al. (1986) for neutron stars.

3. Rotational Instability in a Fluid Star

Uniformly rotating self-gravitating bodies with axially
symmetric configuration and uniform density (Maclaurin spheroids)
become secularly unstable beyond a certain £L= {1y (Tassoul 1978):

0/ (27mGF) = 0.18 (3)
S

( 2 = mean density). Neutron stars are relativistic configurations..
But because their density profiles are remarkably flat, they may
be presumed to resemble the Maclaurin sequence in order to serve
as an approximate guide to determine the rotational instabilities.
Eq.(3) considered for the fast pulsar PSR 19374214 (making the
plausible assumption that it rotates close to £2g ) implies © =
2.4%10'"% g cm® , which therefore may be taken as the minimum average
density for fast pulsars to be rotationally stable. This criterion
thus allows one to estimate lower limits on M and moment of inertia
(I) and upper Timit on R for fast pulsars.

Eq.(3) is a particular case (m = 2) of secular instabilit

to non-axisymmetric modes with angular dependence eim® ( ¢ =
azimuthal angle coordinate). Friedman (1983) suggests that the
m = 3 or the m = 4 mode is more likely to set the rotational

instability point, and the Tlimiting angular velocity £g can be
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in the range (0.55 - 0.75) €Y. instead of 0.52 €. corresponding to
Eq.(3). However, if neutron star interiors possess large bulk
viscosity (which will be the case if there is a significant concentra-
tion of hyperons), then because viscosity is expected to damp out
a gravitational wave driven instability (that arises due to non-
axisymmetric perturbation modes), the above conclusion regarding
the m = 3 or 4 mode may not be valid. In any case, Eq.(3) provides
a first estimate of the rotational constraint on the structure.

4. Bending of Light Rays in a Rotating Spacetime

In a rotating spacetime the trajectory of a photon will
be different from that given by the usual Tlight bending formula

in general relativity. The net angle of deflection |dgl will
be made up of bending in the azimuthal direction (¢ ) and the polar
direction (6 ): 5 o
i)m = jdr¢>/1§ + dr 6 /T (4)
o
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where a dot represents differentiation with respect to an affine
parameter, 7Ye is the initial radial location of the photon and
D the radial location of a remote observer. The Hartle metric
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(here N , ¥, M, A are functions of T ) refers to a rotationally
perturbed spacetime; so, we may write '

D .
!l = gdrcb/fﬂ (6)
Te

Eq.(6) 1is conveniently evaluated in terms of the photon impact
parameter (Q_) which is given by (Kapoor & Datta 1984):
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Then,
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From above it follows that rotation induced inertial
frame drag effect will alter the trajectory of even a radially
emitted photon (i.e. with §=0 ), unlike in the case of nonrotational
(Schwarzschild) spacetime. A schematic illustration of the bending
effect is shown in Fig.1.

Fig. 1.

Since for a remote observer o~ O , the change in the azimuthal
angle will be:

5 —> S = O 7 ol (11)

Because g is not symmetric under the transformation 8- -8, photons
with initial azimuthal angles 8 will not end up with+d respec-
tively, implying an azimuthal asymmetry of the bending Tt comes
because of rotation.

5. The Redshift Factor

The redshift factor can be obtained from the general
expression
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14z = A/, = (u-b)ob/(wb)em (12)

«
where B is the direction of null ray, u“em = dxq/ds and w
= (1,0,0,0). Corresponding to the metric, Eq.(5) one gets ob

{+09
1+ 2 - s (13)
e (1=v)
Because of inertial frame dragging, will not be

same for all photons but will be maximum for photons emitted tangen-
tailly backward (that is, from the equatorial 1limb of the star
that moves away from the observer) and minimum for photons emitted
tangentially forward (that is, from the equatorial 1limb of the

star that moves towards the observer). The quantity gq will
be positive whereas g  will be negative and R
min
Hrox = ~ Tuim (14)
a manifestation of inertial frame dragging. This implies that,

in the rotational spacetime (assuming that the line is Tlocalized
and isotropic), a line emission will not only get shifted to a
lower frequency spectral 1line, but because of Eqg.(14), it will
get broadened into a band. This is schematically illustrated in
Fig. 2. If the emitted photon has an energy
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Fig. 2.

E, then the line broadening will be given by

w = E[ {4+z(am;r?}".—{|+z(q"?w?] (15)
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The 1line centre will correspond to g = 0, and its redshift will
be given by Eq.(13). Because of inertial frame dragging, the broadened
spectrum will be asymmetric with respect to the redshifted Tine
centre.

6. The Pulsar Pulse Profile in a Rotating Spacetime

Let us make the standard assumption that emission from
a pulsar is in the form of a narrow conical beacon (width ~ 10°)
which corotates with the pulsar (Radhakrishnan and Cooke 1969).
From what has been discussed in Section 4, it follows that the
axis of the pulsar cone, characterized by &=0 , will acquire
a tilt in the direction of rotation. This tilt angle will be given
by the net bending suffered by a §=0 photon. Other photons, within
the confines of the cone and on either side of 6=0 will get deflected
towards the surface of the pulsar due to spacetime curvature, and
in addition, be tilted (like the =0 photon) in the direction
of rotation of the pulsar. There will be a gradation in the magnitude
of the tilt, depending on & . The net effect on the pulse cone
will be (apart from an overall tilt in the direction of rotation)
a widening of the pulse cone width and an overall asymmetry in
the final pulse profile (assuming an initial pulse profile symmetric
in § about d=0) because the photon impact parameter is not symmetric
in +3 as a result of inertial frame dragging. The cone widen-
ing, in turn, will imply a reduction in the pulse intensity, because
the total energy flux must be conserved.

7. Arrival Times of Pulses with Different Frequencies

The frequency of the coherent radiation from a pulsar
depends (assuming the standard polar cap model) on the Tlocation
( e ) of emission. A higher frequency pulse has a smaller 7 ,
and pulses at different frequencies correspond to a set of nested
cones with a common axis. This idea is supported by observational
data, and is called radius-to-frequency mapping. For two pulses
of radiation having frequencies 94 and ¥V, (£ V) emitted from radial
locations 7, and v, (> Ty, ), radius-to-frequency mapping will imply
that the arrival time of the former will be delayed with respect
to the latter by an amount given by

AT = AT + AT (16)
ret drag

where ATt is the time for the pulse to travel the distance
Ar=7,-1, (assuming simultaneous emission), called the retardation
time and ATy,qq 1S the time delay arising due to rotation (assuming
rigid corotation of the pulses, as in polar cap models), and is
called the drag or aberration term. If effects of general relativity
are not important, then

A’Kmt = Ar/c (17)
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and
Tirag = sine Ar/c (18)
where o 1is the angle between the rotational and magnetic axes.

For fast pulsars, general relativistic effects will
modify Eqs.(17) and (18) to

rz °
AT = S‘ dT‘ t/?j'
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= dT‘ ge (19)
A )?- 9 2V-2¢ ‘/2
. = (1+ g, "% ]
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drag 2T o 27 > o 1279
where the angles |dg| are the pulse cone axis tilt in the direction

of rotation, and P is the pulsar period.
8. Results and Discussion

Magnitudes of the above effects, calculated for the
millisecond pulsar PSR 1937+214, are expected to be generally valid
for fast pulsars, since these have a common genesis and evolution.
Results of such calculations wusing available realistic neutron
star models are summarized below (for details, see Datta 1988).

Rotation induced spherical deformations in the mass
and radius for pulsars rotating at the secular instability Tlimit
are 10% and 5% respectively. Lower limit of mass of fast pulsars,
estimated on grounds of secular rotational instability, is (0.6-
0.8) Mgy for the softer equation of state models and (1-1.54) Mg
for the comparatively stiffer models. For the moment of inertia
of ﬁ%st pulsars, the following range is indicated : (0.24-3.44 )xlO45
g cm”.

Turning to radiation characteristics, a large rotation
will transform a line emission into a broadened band with a highly
asymmetric intensity profile. In view of this, the concept of
detection of a line emission as a line from fast pulsars - and
the wusual interpretation of the redshift factor in terms of mass-
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to-radius ratio - will no longer hold good.

Detailed calculations (Datta & Kapoor 1985) indicate
that spacetime curvature will make a pulse cone wider by a factor
~2, and that the pulse intensity peak will get reduced by an order
of magnitude. Also rotation will make an initially symmetric pulse
profile asymmetric. The magnitude of this effect turns out to
be small. Observationally pulsars are known to possess narrow
pulse profiles. Therefore, the above results can be taken to imply
that at the emission location, the pulse must be spiky in shape.
It would then follow that brightness temperature (proportional.
to the intensity) of pulsars in general (since the curvature effects
dominate over the rotational effects) are larger by an order of
magnitude than have been hitherto presumed.

Multifrequency timing analysis of signals from PSR
1937+214 1imit time delay discrepancies to within 6 ®S , assuming
emission region thickness AT =~ 4 Km (Cordes & Stinebring 1984).
However, calculations using Egs.(19) and (20) give the estimate
of the net arrival time advancement to be much larger, about (25-
50) m4S (Kapoor & Datta 1986). Therefore, to conform to the observa-
tional data, a possible conclusion is that Ar be much thinner
(= 1 Km instead of 4 Km). On the other hand, if one insists on
retaining AT = 4 Km, alternate conclusions could be (a) a polar
cap model, but without a radius-to-frequency mapping (Arons 1979)
is perhaps a more viable model for fast pulsars, or (b) the radiation
mechanism is altogether different from the standard polar cap models,
as also suggested by the extremely narrow pulse width of PSR 1937+214
(Backer 1984).

We have confined our discussions to the framework suggested
by Hartle (1967) to describe the rotating spacetime geometry.
This formalism is fully relativistic, but not valid for arbitrarily
high 0 . Even so, this provides a first estimate of a wide variety
of fast pulsar properties. Models of relativistic, rapidly rotating
stars (see Friedman et al. 1986), which go beyond the Hartle approxi-
mation, will reiterate the trends of the results presented here
more strongly.
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