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We study the quantum phase transitions in a two component bose-mixture in a one-dimensional
optical lattice. The calculations have been performed in the framework of the extended Bose-
Hubbard model using the finite size density matrix renormalization group method. We obtain
different phase transitions for the system for integer filling. When the inter-species on-site and the
nearest neighbor interactions are larger than the intra-species on-site and also the nearest neighbor
interactions, the system exhibits a phase separated charge density wave (PSCDW) order that is
characterized by the two species being spatially separated and existing in the density wave phases.
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I. INTRODUCTION

Ultra cold atoms in the optical lattices can provide
new insights into quantum phase transitions [1]. The
remarkable control of the interaction strengths between
the atoms by tuning the laser intensity [2] leads to the
experimental realization of the superfluid (SF) to Mott
insulator (MI) transition which was predicted by Jaksch
et al [3]. The observation of the SF to MI transition
in the one-dimensional (1D) optical lattice [4] has fur-
ther enhanced the interest in the search for new quan-
tum phases in the low dimensional bosonic systems. Re-
cent realization of Bose-Einstein condensation (BEC) in
strongly dipolar 52Cr atoms [5] has enlarged the do-
main of interaction space to investigate various quantum
phase transitions and other possible subtle characters of
bosons at different limit that can be experimentally ob-
served. When atoms with large dipole moments loaded
into the optical lattices, the long range interaction be-
tween the atoms plays very important role, in addition to
the onsite interaction, in the determination of the ground
state. This system can be described by the extended
Bose-Hubbard (EBH) model, which includes the near-
est neighbor interaction along with the onsite repulsion,
exhibiting many new phases such as charge density wave
(CDW) (sometime known as mass density wave (MDW))
[6, 7], Haldane insulator order[8] and exotic supersolid [9]
et cetera..

On the other hand, the study of mixtures of atoms such
as bose-bose [10, 11], bose-fermi [12, 13] and fermi-fermi
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[14, 15] have attracted much attention in recent years
because of the successful realization of such systems in
optical lattices. In the case of bose-bose mixture, the
theoretical models take on-site intra- and inter-species
interactions into consideration to describe the system in
a large domain of system parameters and the competi-
tion between them opens-up many new possible quan-
tum phases [16, 17, 18, 19]. Recent studies in the one-
dimensional two species bose mixtures have revealed a
spatially phase separated (PS) phase [20, 21], when the
inter-species interaction is greater than the intra-species
interaction. This phase separation can either of SF or MI
type depending upon the strong interplay between the
on-site intra-species and inter-species interactions [20].
In this context, it is very interesting and relevant to study
the bose mixtures of dipolar atoms to investigate the
underlying influence of long range interactions on these
phases. Prior theoretical studies of such systems will be
helpful to guide the direction of experimental investiga-
tions. Our aim of this work is to extend the search for
new possible phases by taking into account the nearest
neighbor interactions along with the onsite intra- and
inter- species interactions in the two species bose mixture
which we have studied earlier [20]. We employ the finite
size density matrix renormalization group (FS-DMRG)
method to study the system.

We have organized the remaining part of the paper in
the following way. In Sec. II, we present the theoretical
model that we have considered, followed by the method
of calculations. We have given a brief discussions of the
cases that we have taken into account in this work and
a detailed analysis of the results in Sec. III and Sec. IV,
respectively. Finally, we conclude our findings in the last
section.
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II. MODEL HAMILTONIAN AND METHOD OF

CALCULATIONS

In this work, we consider bose mixtures of dipolar
atoms in an 1D optical lattice. The corresponding ef-

fective Hamiltonian for such systems can be expressed
as

H =
∑

c=a,b







∑

i
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nc
i (n
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+
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where ci and c†i (with c = a, b) represent the annihilation
and creation operators, respectively, for bosonic atoms of
a or b types on site i whose number operators are defined

by nc
i = c†ici. In the above equation, tc, U c and V c are

the amplitudes for the hopping between nearest neighbor-
ing sites, the on-site and nearest neighbor intra-species
repulsive interactions, respectively. The inter-species on-
site and nearest neighbor interactions are represented by
Uab and V ab, respectively. It is obvious from Eq. (1)
that there are at least 8 independent parameters in the
model. Since it is not possible to vary all these param-
eters at a time to grasp the underlying physics of the
above model, we restrict ourselves to some special range
of parameters which are guided by some cases that have
already been studied earlier [6, 20]. We also keep the
symmetry between both the a and b types of bosons by
assuming ta = tb = t, Ua = U b = U and V a = V b = V .
We scale the energy of the whole system with respect to
t by setting its value as unity.

In our earlier study in the absence of nearest neigh-
bor interactions; i.e. V = V ab = 0, many interesting
phases had been predicted. In particular, our work re-
vealed the possible existence of both the species being in
SF phases, the system as a whole existing as a MI and
phase separated superfluid (PSSF) and phase separated
Mott insulator (PSMI) [20] by varying the onsite inter-
action strengths of both a and b type bosons. It was
shown that a phase separation between SF phases of a
and b is possible when Uab is considered (slightly) larger
than U . When the total density of the system was an
integer (ρ = 1) with density of each species equal to half
(ρa = ρb = 1/2), we had predicted SF, PSSF and PSMI
phases in the U and Uab phase space. Furthermore, in
the incommensurate densities with ρa = 1, ρb = 1/2 and
ρ = 3/2, we had found only the SF and PSSF phases.
In contrast to this case, when Uab ≤ U was considered,
only the SF phase was possible for the incommensurate
densities while signatures of both the SF and MI phases
with a continuous SF to MI phase transitions were found
for the commensurate densities.

The aim of this work is to investigate how these phases
evolve in the presence of intra- and inter-species nearest
neighbor interactions. For a better analysis of a particu-

lar situation, we restrict ourselves to the commensurate
densities, especially the case when ρa = ρb = 1/2 with
ρ = 1. This choice is governed by the knowledge that
we have acquired from the following studies in the phase
diagram of (i) the extended Bose Hubbard model for den-
sity ρ = 1 [6] for a single species boson and (ii) the two
species Bose Hubbard model for densities ρa = ρb = 1/2
and ρ = 1 [20]. Our analysis of the results from the
present study is based upon the findings of the above two
cases and conclusions are drawn with respect to them.

Model (1) is a difficult problem to study analyti-
cally. We have employed FS-DMRG method with open-
boundary condition to determine the ground state. This
method has been proved to be one of the most powerful
techniques for 1D systems [6, 22, 23]. We have consid-
ered a soft-core case by keeping the number of bosonic
states per site for each species as four (4). We allow
up to 128 states in the density matrix of the left and
right blocks in each iteration of the FS-DMRG calcula-
tions. The weight of the states neglected in the density
matrix of left and right blocks are less than 10−6. To
get a better convergence of the ground state energies of
various phases, especially for larger values of intra- and
inter-species nearest neighbor interactions, we have per-
formed the finite size sweeping procedure [6] twice in
each iteration of the FS-DMRG method.

To identify the ground states of various phases of the
model Hamiltonian given by Eq. (1), we calculate the
single particle excitation gap GL defined as the difference
between the energies needed to add and remove one atom
from a system of atoms; i.e.

GL = EL(Na + 1, Nb) + EL(Na − 1, Nb) − 2EL(Na, Nb)
(2)

We also calculate the on-site number density as

〈nc
i 〉 = 〈ψLNaNb

|nc
i |ψLNaNb

〉. (3)

Here c, as mentioned before, is an index representing type
a or b bosons, with Na (Nb) corresponds to total number
of a (b) bosons in the ground state |ψLNaNb

〉 of a system
of length L with the ground state energy EL(Na, Nb).

In 1D the appearance the SF phase is signaled by
GL → 0 for L → ∞. However, for a finite system GL is
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finite, and we must extrapolate to L → ∞ limit, which
is best done by finite size scaling of gap[6, 24]. In the
critical region

GL ≡ L−1f(L/ξ) (4)

where ξ is the correlation length which diverges in the SF
phase. Thus plots of LGL versus interaction for different
values of L coalesce in the SF phase. On the other hand,
when this trend does not follow then the system can be
said to be in the MI phase.

We also define the CDW order parameter for the
bosons as

Oc
CDW =

1

L

∑

i

〈ψLNaNb
|(|nc

i − ρ|)|ψLNaNb
〉. (5)

So when the CDW order parameter of the system is fi-
nite then the system is assumed to be in the CDW phase.
Since ρ of the system is constant, it is clear from the
above equation that the density of the bosons will oscil-
late when they are in the CDW phase.

To find whether the ground state is in the spatially
phase separated, we calculate the PS order parameter,
which is given by

OPS =
1

L

∑

i

〈ψLNaNb
|(|na

i − nb
i |)|ψLNaNb

〉. (6)

When OPS is finite, the system is said to be in the
PS phase. Therefore, the system can be simultaneously
in PS and one of the SF, MI or CDW phases which can
be distinguished by determining both OPS and one of
the above properties to identify the other corresponding
phase.

III. PRE-ANALYSIS OF RESULTS

Before presenting the details of our results, we first
summarize the main features of our study here. In this
study, our main focus is to understand the effects of intra-
and inter-species nearest neighbor interactions between
the atoms on the PSMI phase. As mentioned earlier, the
PSMI phase is possible only if ∆U ≡ Uab/U > 1, when
V = V ab = 0. As we show below there is a stringent
condition for the PSMI phases when the nearest neigh-
bor interactions are finite. In the present work, we fix
∆U = 1.05 and consider two values of intra-species on-
site interaction U = 6 and 9. Our previous study [20] had
yielded the ground state of model (1) with ρa = ρb = 1/2
is in PSMI phase for these values of intra- and inter-
species on-site interactions. Similarly, the phase diagram
of the single species EBH model [6] shows that ground
state for U = 6 varies first from MI to SF as the near-
est neighbor interaction V increases from zero and then
to the CDW phase for the larger values of V . However,
for U = 9, there is no SF phase sandwiched between the
MI and CDW phases and the transition between them is
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FIG. 1: Gap GL versus 1/L for different values of V for U = 9,
∆U = 1.05 and ∆V = 0.5. GL→∞ converges to a finite values
signaling Mott insulator phase.
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FIG. 2: Plots of 〈na

i 〉 and 〈nb

i 〉 versus i for V = 0 and 1,
respectively, showing PSMI and MI phases.

direct. We present below the results obtained from this
investigation, where the nearest neighbor interactions are
finite.

One feature which emerges from our study is that when
intra- and inter-species nearest neighbor interactions are
finite, the PSMI phase is possible only for V ab > V . We
find that for a fixed ∆V = V ab/V = 1.25 and U = 6,
the ground state evolves from PSMI to PSSF phases as
V steadily increases from an initial value of zero and at
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FIG. 3: Plots of 〈na

i 〉 and 〈nb

i〉 versus i for V = 4 showing
intermingled CDW phases for a and b types of bosons.
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FIG. 4: Plot of CDW order parameter Oa

CDW for a-type
atoms as a function of 1/L for values of V ranging from 0.6 to
3.8 in steps of 0.2. The Oa

CDW goes to zero for V < VC ≃ 1.2
where as it is nonzero for higher values of V which shows the
transition to CDW phase at VC ≃ 1.2.

some critical value it evolves into the PSCDW phase,
where a and b species of atoms reside in the opposite
sides of the lattice and each of them showing a density
oscillation as expected in the CDW phase. However, for
U = 9, the transition from PSMI to PSCDW phase is
direct with no PSSF phase sandwiched between them.
In other words for ∆U > 1 and ∆V > 1, each type of

bosons are phase separated, thus minimizing the energy
corresponding to inter-species on-site and nearest neigh-
bor interactions and the PS regions behave like a single
species EBH model.

However, for V ab < V , small value of V is sufficient
enough to destroy the PSMI phase and the system evolves
into the MI phase where the densities of a and b bosons
are equal, but with a finite gap in the single particle en-
ergy spectrum. As V increases further the system evolves
into a CDW phase with densities of both a and b type
atoms exhibiting oscillations. However, these oscillations
are shifted by one lattice site. This behavior is distinctly
different from the single species EBH model.

IV. RESULTS AND DISCUSSIONS

We now present the details of our results. We begin
with the case ∆U = 1.05, ∆V = 0.5, U = 9. Calculating
the gap in the energy spectrum using Eq. (2), we observe
that the system is always gapped for the entire range of
V . Figure (1) shows a plot of gap GL versus 1/L for few
values of V . A finite gap is a signature of the insulator
phase in the system.
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FIG. 5: Scaling of gap LGL is plotted as a function of V for
different system sizes for ∆U = 1.05, ∆V = 1.25 and U = 9.
Gap remain finite for all the values of V and shows the PSMI-
PSCDW transition at VC ≃ 4.7.

In order to investigate the nature of this insulator
phase, we further obtain the density distributions 〈na

i 〉
and 〈nb

i〉 of both a and b species bosons using Eq. (3) and
they are plotted in Fig. 2 and Fig. 3 respectively. When
V is equal to zero or very small, the insulator phase as
shown in Fig.2 has a and b atoms spatially separated; i.e.
it is in the PSMI phase. For small V , the system behaves
like a two species Bose-Hubbard model. As V increases,
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FIG. 6: Scaling of gap LGL is plotted as a function of V for
different system sizes for ∆U = 1.05, ∆V = 1.25 and U = 6.
Coalescence of different plots between 3.4 < V < 3.9 shows a
gapless PSSF phase sandwiched between PSMI and PSCDW
phases.

further the species distribute themselves through the lat-
tice (see Fig.2) thereby destroying the phase separation.
Since there is a gap in the excitation spectrum, this cor-
responds to the MI phase. The critical value of V for this
PSMI to MI transition is 0.2 for ∆U = 1.05, ∆V = 0.5
and U = 9. Further increase of V drives the system to a
phase where the two like atoms cannot occupy the adja-
cent sites because of large V . The competition between
intra- and inter species interactions leads to an energet-
ically favored state where the atoms arrange themselves
as shown in Fig. 3. Both a and b type bosons exhibits
CDW oscillations, however, they share adjacent sites to
minimize the effect of on-site inter species interactions.
The oscillation in 〈na

i 〉 and 〈nb
i〉 increases and then stabi-

lizes at a higher V . This is a CDW phase and the density
oscillations of a and b species atoms are shifted by one
lattice site. The phase transition from MI to this inter-
mingled CDW phase has a critical value of VC ≈ 1.2,
which is obtained by plotting the CDW order parame-
ter Oa

CDW , for different values of V ranging from 0.6 to
3.8 in steps of 0.2, versus 1/L as shown in Fig. (4). We
notice that the Oa

CDW goes to zero for V < VC ≃ 1.2
where it is finite for higher values of V . It should be
noted that for the single species extended Bose Hubbard
model, the VC for MI to CDW transition was found to
be approximately equal to 4.7 [6]. Thus for ∆U = 1.05,
∆V = 0.5 and U = 9, the nearest neighbor interaction
between the species favors a CDW over a MI phase. The
similar behavior is also seen for U = 6. So we arrive
at the conclusion at this juncture that for ∆U > 1 and
∆V < 1, the PSMI phase is unstable in the presence of

a small inter species nearest neighbor interaction. The
phase diagram will then consist of PSMI, MI and CDW
phases. However, it is interesting to note that the CDW
phase is in fact two intermingled CDW, each for the two
different species.
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FIG. 7: Plots of 〈na〉 and 〈nb〉 versus L for U = 6 and two
different vales of V ; (a) V = 2 showing PSMI phase and (b)
V = 4.6 showing PSCDW phase.
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FIG. 8: Plot of Oa

CDW as a function of 1/L for values of V
ranging from 0.4 to 4.4 in steps of 0.4.

Now, we proceed to discuss the other situation when
∆V > 1. Considering ∆ = 1.25, we obtain the gap
GL, local density distributions (〈na

i 〉 and 〈nb
i〉) and the
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CDW order parameters for both U = 6 and 9. The most
important feature seen in this case is that the phase sep-
aration survives for all the considered values of V . a and
b species of atoms are present in the opposite sides of the
lattice. Since the inter-species (both on-site and nearest
neighbor) interactions are larger than the intra-species
interactions, the PS phase is always energetically favored
compared to the uniform case since the chances of a and
b atoms sharing the same site or the nearest neighboring
sites are minimized. In other words, the importance of
Uab and V ab in the present system is minimized by the
PS phase and only interactions left to compete with each
other are the on-site and nearest neighbor intra-species
interactions. That means both a and b atoms in the PS
phase behave like a single species EBH model. We es-
tablish these results below by analyzing the gap, local
densities and CDW order parameters.

In Fig. 5, we plot the scaling of gap LGL as a func-
tion of V for on-site interaction U = 9. The curves for
different lengths L do not coalesce anywhere in the fig-
ure which is the signature of the finite gap in the sin-
gle particle energy spectrum [6]. This implies that the
phase will be either a PSMI or a PSCDW. In contrast,
different LGL curves coalesce for 3.4 < V < 3.9 for
U = 6 as shown in Fig. 6 suggesting the existence of
SF phase [6] sandwiched between two gapped phases. To
understand the nature of these phases, we plot, in Fig.
7, 〈na

i 〉 and 〈nb
i〉 for two specific values of V , one each

representing PSMI and PSCDW phases. Phase separa-
tion can be clearly seen in these figures. Plots of these
kind yield a PSMI phase for V < 3.4. The phase sep-
arated phase has the average density ρa = ρb = 1 (see
Fig.7(a)). For 3.4 < V < 3.8, the gap vanishes but the
phase separation order parameter remains finite, giving
rise to a PSSF phase. And finally for larger value of
V , we have a clear PSCDW phase (See Fig.7(b)). The
CDW order parameters plotted in Fig.8 remain non-zero
for the PSCDW phase. It may be noted that in the PS
phase when calculating the CDW order parameter, say
Oa

CDW for a bosons, only the spatially separated regions;
i.e. right hand side of the lattice is considered since the
density of a bosons is zero in the left part of the lattice.
Therefore, for U = 6, we have a transition from PSMI to
PSSF as V increases. On further increase of V leads to

a transition from the PSSF to the PSCDW phase. How-
ever, the transition from PSMI to PSCDW is direct for
U = 9 as seen from Fig.5. So we conclude here that for
Uab > U and V ab > V , the system has a PS phase for all
values of V and it behaves like a single species BH model
in this PS region.

V. CONCLUSIONS

We have investigated the ground state properties of a
two species extended Bose-Hubbard model using the fi-
nite size density matrix renormalization group method.
We study the system for integer filling; i.e. ρ = ρa +ρb =
1 with ρa = ρb = 1/2. Starting with a phase separated
Mott insulator phase (i.e. keeping Uab > U) and vary-
ing the nearest neighbor interaction strengths, we pre-
dict a transition from phase separated Mott insulator to
Mott insulator and then to charge density wave phase
for V ab < V . The charge density wave phase in this case
is actually an intermingled charge density wave phase,
where both a and b species of atoms show density oscilla-
tions, but are shifted by one lattice site. For V ab < V the
phase separation breaks for a very small nearest neigh-
bor interaction strength. However when V ab > V , the
phase separation is robust. For large values of U , the
ground state evolves from phase separated Mott insula-
tor to phase separated charge density wave phase with a
direct transition between them. This is expected to be a
first order phase transition [6]. For smaller values of U , a
phase separated superfluid phase is sandwiched between
the phase separated Mott insulator and phase separated
charge density wave phases. This is similar to that of a
single species extended Bose-Hubbard model except that
the two species are phase separated. We hope the present
results will stimulate future experiments.
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