SIVARAM and KRISHAN¹ have suggested that the anomalously high flux of lowenergy antiprotons observed in cosmic is produced when free neutrons, ravs² which are possibly ejected in supernova explosions, undergo neutron-antineutron $(n-\bar{n})$ oscillations as expected in some grand and partially unified theories³. Such oscillations are strongly suppressed in an external magnetic field³⁻⁶ but by choosing the interstellar field strength, B, to be as low as 10^{-7} G and an oscillation time, $\tau_{n-\bar{n}} = 10^5$ s, these authors obtain¹, $\bar{n}/n \approx 10^{-4}$. Because \bar{n} and $n \beta$ -decay to \bar{p} and p respectively, this implies $\bar{p}/p \le 10^{-4}$, which compares with the observed value², $\bar{p}/p = (2.2 \pm 0.6) \times 10^{-4}$ at ~130-370 MeV/n. (Contrary to their¹ remark, the ratio \tilde{p}/p cannot exceed the ratio \tilde{n}/n , regardless of the number of neutrons ejected per proton in a supernova.)

However, before this suggestion, old limits on the stability of nuclear matter had been used to infer⁴⁻⁶ $\tau_{n-n} >$ 10^6 -5 × 10⁷ s. Also, direct observations of free neutron beams had yielded the limit⁷, $\tau_{n-n} > 1.2 \times 10^5$ s, and this has been recently improved to⁸ $\tau_{n-\bar{n}} > 10^6$ s. Furthermore, the interstellar magnetic field strength must be $>10^{-6}$ G to account for observations of pulsar signals⁹ and the galactic synchrotron background¹⁰). (We disagree that this value is ". . given by equipartition arguments . . (with) . . no physical basis . . "¹.) Thus, using these conservative limits, we obtain $\bar{n}/n \approx \bar{p}/p < 10^{-8} (\tau_{n-\bar{n}}/10^6 \text{ s})^{-2} (B/10^{-6} \text{ G})^{-2}$. Moreover, this obtains at ~1 MeV/n, corresponding to the typical ejection velocity of $\sim 10^4$ km s⁻¹ in a supernova. Thus observation that $\bar{p}/p \sim 10^{-4}$ the at ~200 MeV/n cannot be accounted for by this mechanism.

Note that even in the total absence of a magnetic field, neutrons would sooner β -decay than oscillate into antineutrons. This sets an absolute upper limit $\bar{n}/n <$ $10^{-6} (\tau_{n-n}/10^6 \text{ s})^{-2}$, thus making this process uninteresting in any conceivable astrophysical or cosmological context.

I thank Professor D. W. Sciama for discussions.

SUBIR SARKAR

Department of Astrophysics, University of Oxford, South Parks Road, Oxford OX1 3RQ, UK, and Tata Institute of Fundamental Research, Homi Bhabha Road. Bombay 400005, India

- Sivaram, C. & Krishan, V. Nature 299, 427-428 (1982).
 Buffington, A., Schindler, S. M. & Pennypacker, C. R. Astrophys. J. 248, 1179-1193 (1981).
- Mohapatra, R. N. & Marshak, R. E. Phys. Lett. B94, 183–186 (1980). (1980).
 Mohapatra, R. N. Proc. 10th int. HEP Conf., Madison, 478-482 (1980).
 Sanders, P. G. H. J. Phys. G6, L161-L164 (1980).

- Cowsik, R. & Nussinov, S. Phys. Lett. 101B, 237-240(1981).
 Fidecaro, G. Neutrino SI, Hawaii 1, 264-273 (1981).
 Puglierin, G. Int. HEP Conf., Brighton, 381-383 (Rutherford Appleton Laboratory, 1983).
 Heiles, C. A. Rev. Ast. Astrophys. 14, 1-22 (1976).
 Sarkar, S. Mon. Not. R. astr. Soc. 199, 97-108 (1982).

SIVARAM AND KRISHAN REPLY-We have not stated anywhere in our paper that all of the 10^{57} neutrons ejected by a single supernova are at an energy ~ 200 MeV, in which case there would indeed be an excess of energy involved. The only claim made is that here is a possible mechanism for directly producing p at low (MeV) energies without any need for deceleration from energies of several GeV (with its attendant difficulties) inevitable in most models.

Second we felt that there was no need for Sarkar to have written down all the formulae for n-fi transition probabilities. These are well known and are the same formulae that we used. In fact for a B = 10^{-7} G and τ_{n-n} of 10^{5} s, he also obtains $\bar{n}/n \sim 10^{-4}$. Regarding his chief point of contention that the strength of the interstellar magnetic field must be $\sim 10^{-6}$ G: we are surprised that Sarkar has overlooked the fact that in the latter half of our paper we have pointed out that if this field is assumed it would considerably lower \tilde{p}/p (<10⁻⁶). (For 10⁻⁶ G, $\Gamma_B \gg \Gamma_{n-\bar{n}}$, and for 10⁻⁷ G, they are just equal.) We went on to point out that to build up the observed low-energy background of 10⁵⁵ antiprotons in our Galaxy (as implied by the observed density of $10^{-4} \text{ eV cm}^{-3}$) we would require a few thousand explosions which would occur in periods $\sim 10^6$ yr which is the same order as the diffusion time for the produced particles to spread over the Galaxy and produce the observed background. More generally one can say that the number of antiprotons produced is

$$\bar{\mathbf{p}} = N \left(\frac{\Gamma_{\mathbf{n}-\bar{\mathbf{n}}}}{g u_{\mathrm{N}} B} \right)^2 f \mathbf{i}, \qquad \Gamma_{\mathbf{n}-\bar{\mathbf{n}}} = \hbar / \tau_{\mathbf{n}-\bar{\mathbf{n}}}$$

where N is the number of neutrons per supernova, f the frequency of explosions and t the diffusion time $\sim 10^5$ yr. Thus if all low-energy antiprotons ($\bar{p} = 10^{55}$) in the Galaxy were produced by supernovae, then with $N = 10^{57}$, f = 1/10 yr, we would have an astrophysical constraint on the oscillation time $\tau_{n-\bar{n}}$. If $\tau_{n-\bar{n}} > 10^7$ s (as indirect evidence suggests), of course, the p production would be too low. Measurements of \bar{p} should perhaps be made over a few MeV as this is the range where most supernova neutrons are produced.

C. SIVARAM V. KRISHAN Indian Institute of Astrophysics

Bangalore-560034, India

1. Sivaram, C. & Krishan, V. Nature 299, 427 (1982).