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ABSTRACT
Recently attempts have been made to link vacuum zero-point Ðelds (ZPF), with a nonzero cosmo-

logical constant ("), which is now treated as a cosmological free variable to be determined by obser-
vations. In another recent paper, " is related to a graviton mass. This is shown to be incorrect. Flat
space propagators for both massless and massive spin-2 particles can be written (independently of
gravity) in the context of Ñat space wave equations. However, they do not correspond to full general
relativity with a graviton mass.
Subject headings : cosmology : theory È relativity

1. INTRODUCTION

In recent work, e.g., Rueda, Haisch, & Cole (1995), it has
been suggested that the so-called vacuum zero-point Ðelds
(ZPF; also known as zero-point Ñuctuations) may have
something to do with cosmological formations such as
voids. Moreover, several authors have suggested a connec-
tion between the ZPF and the cosmological constant, ",
which in the Einstein Ðeld equations represents the vacuum
energy density, "gkl.In another recent paper, Michel (1996) has, however,
pointed out that the ZPF, not being Lorentz-invariant,
cannot represent the Lorentz-invariant energy momentum
tensor of the form "gkl associated with the cosmological
constant. Again, insofar as the Casimir e†ect is a manifesta-
tion of the ZPF, this would imply that " was di†erent
between the conducting plates (by a huge factor, since we
know " outside is almost zero), contradicting the funda-
mental geometrical identity of the Einstein tensor Gkl, i.e.

which must be shared by anything to which it is+k Gkl \ 0,
equated, such as this in turn implying the strict con-"gkl,stancy of " in space and time. Although this result appears
essentially correct, the other statement made in the paper of
Michel (1996), that the inverse length implied by a nonzero
" corresponds to the graviton mass squared is incorrect
and misleading. It may be of interest to note in this connec-
tion that the origin of this often-made error goes back to
EinsteinÏs initial paper (Einstein 1917), where he introduced
the cosmological constant. The fourth section of EinsteinÏs
paper ein an den Feldgleichungen der Gravitation““U� ber
anzubringende Zustzglied [About an Additional Term to
Be Fixed to the Field Equations of Gravitation] ÏÏ intro-
duced the cosmological constant ". Instead of his Ðeld
equation he now suggested the equa-Gkl\ k(Tkl[ 12gklT ),
tion The motivation forGkl[ "gkl \[k(Tkl[ 12gklT ).
this new constant was that this new extension was com-
pletely analogous to extension of the Poisson equation
+2/[ "/\ 4nko. This modiÐed Poisson equation is
nothing but the static Yukawa meson equation with the
spherically symmetric solution :
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being the graviton mass.m
gNeumann (1896) had indeed proposed just such a modi-

Ðed Poisson equation to introduce an exponential cuto† for

the gravitational potential, and Einstein (1917) was appar-
ently unaware of this. While it is true that the Poisson
equation modiÐed by a term ["/ leads to an exponential
cuto†, for the gravitational potential suggesting a graviton
mass, EinsteinÏs assertion that the "-term in his Ðeld equa-
tion had the same e†ect was completely wrong. The original
erroneous assertion of Einstein (which was probably his real
blunder, rather than just introducing the "-term in the Ðeld
equations !) has continued to lead to misleading statements
of the same kind. For instance, Pais (1982) in his Einstein
biography writes about the analogy between the "-term in
PoissonÏs and EinsteinÏs equations : ““ he [Einstein] performs
the very same transition in general relativity.ÏÏ Thus the
point is that the Newtonian weak-Ðeld limit of EinsteinÏs
equations with a "-term is not the modiÐed Poisson equa-
tion +2/] "/\ 4nKo but

+2/] "c2\ 4nKo . (2)

Thus equation (2) does not introduce any exponential
cuto† with a graviton mass, but a new repulsive force
("[ 0), proportional to mass, pulling away every particle
with an acceleration

a \ c2 "
3

x , (3)

a force derivable from a repulsive oscillator potential

/\ ["c2r2/6 . (4)

Equation (4) rather than equation (1) is the correct solution
to the Ðeld equations with a "-term.

Thus, in the paper of Michel (1996), equation (15), i.e.,

Khkl ] 2jhkl \ 0 , (5)

the linear Ðeld equations with a "-term cannot be correctly
interpreted as implying a graviton mass with its corre-
sponding solution as an exponentially decreasing Yukawa
potential. On the contrary, it implies that spatial scales
comparable to "~1@2 are not Ñat, and physically this gives
rise to an oscillator-type potential increasing with distance
as r2 as given by equation (4).

Thus it does not lead to an exponential decrease in poten-
tial suggesting a graviton mass ; rather it gives rise to a
conÐning potential of the simple harmonic type growing
with distance as Moreover, one cannot linear-/^ 16"r2c2.
ize around a Ñat spacetime in the presence of a(gkl \ gkl)"-term; the Minkowski spacetime is replaced by a de Sitter
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spacetime of constant curvature. One can thus no longer
deÐne mass in the wave equations as corresponding to a Lie
invariant associated with the algebra. So equationPoincare�
(5) is erroneous. The sign of " has nothing to do with a
quantity like the graviton mass ; it just signiÐes di†erent
geometries ; a positive " corresponds to a de Sitter space
corresponding to the SO (4, 1) group, while a negative " is
an antiÈde Sitter space related to the group SO (3, 2).

It has been argued that in the linearized gravitational
theory contrary to that of the electromagnetic case, we
cannot vary the graviton mass to get the massless limit.
(Van Dam & Veltman 1970). This is because, in the lowest
order in the gravitational coupling constant G, the e†ect of
the interaction between two particles A and B is given by

1, 1, in which andgkl\ ([1, 1)D GT
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klDkljoT
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are conserved energy-momentum tensors of A and B,
respectively, and the propagator is given by

Dkljo\ 1
2k2 (gkj glo] glo glj [ gkl gjo) , (6)

k being the graviton momentum. However, when the gravi-
ton has a Ðnite mass m, and is described by the Pauli-Fierz
Lagrangian, the propagator turns out to be (see, e.g.,
Mandelstam 1968 ; Van Dam & Veltman 1970)

Dkljo\ 1
2(k2] m2)

A
gkj glo] gko glj [ 2

3
gkl gjo

B
. (7)

Equations (6) and (7) are propagators for massless and
massive spin-2 particles in Ñat space, i.e., equations of the
form and To consistentlyK/kl \ 0 K/kl] m2/kl \ 0.
describe gravity with its equivalence principle of universal
coupling, one must self-couple the Ðeld nonlinearly ad inÐn-
itum. For this one has to add the energy momentum tensor

for these Ðelds on the right-hand side as source terms, which
in turn will modify the Ðeld to which in turn has a/kl@ ,
corresponding energy momentum tensor which again
should be added to the source term, and so on.

In the case of massless spin-2 gravitons, this procedure of
adding all self-interactions consistently is known to lead to
EinsteinÏs general relatively (GR) (see, e.g., Feynman 1963,
1971).

However, GR entails a massless graviton and therefore
an inÐnite-range gravitational interaction, this being a good
description of the force consistent with observations. The
only known correction to standard GR is a "-term, and, as
noted above, this deÐnitely does not introduce a graviton
mass. ModiÐcations of standard GR, which include for
instance higher derivative curvature terms as contained in
an action like the following one :

I\
P

J[g(aRklRkl[ bR2] cs~2R)d4x ,

where s2\ 16nG, a, b, c are dimensionless numbers, are
known to have static linearized solutions of the Ðeld equa-
tions which are combinations of Newtonians and Yukawa
potentials, m, as shown for instance by Stelle (1978).

The equivalent Poisson equation, would now be of the
type a+4/] b+2/\ smd3(r), which would in general give
a Ðnite-range solution given by /^ a/r [ (b/r) exp ([j/r),
corresponding to a graviton mass. But this would be a dif-
ferent theory from standard classical GR, which cannot
accommodate such a Ðnite graviton mass or a Ðnite-range
force.

Thus in conclusion, the "-term in EinsteinÏs equation
does not imply a Ðnite range for gravitation (there is no
Yukawa-type solution) with a corresponding graviton mass.
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