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Abstract

The single reference coupled cluster based linear response theory (CCLRT) and valence-universal multi-reference coupled cluster (VU-MRCC)

theory for direct difference energy calculations have been presented. The similarities and differences in the structure of these two formalisms have

also been addressed. The core-extensive CCLRT is applied to compute the ionization potentials (IPs) of HCl and excitation energies of CuH using

Hartree–Fock (HF) orbitals. We further report the relativistic applications of the VU-MRCC theory through the computation of the ground and

excited/ionized state energies and related properties of Ag and Hg atoms using Dirac–Hartree–Fock (DHF) orbitals. The IPs, excitation energies,

and the spectroscopic constants reported here are in favorable agreement with experiment and with other correlated calculations.

q 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The strong interplay of dynamical and non-dynamical

correlation effects intertwined with the effect of orbital relax-

ation shapes the accuracy of the theoretical studies on the

ground and excited state properties of atomic and molecular

systems. A balanced treatment of the twin effects leads to an

accurate prediction of the transition energies, potential energy

surfaces/curves, and related properties. The single reference

coupled cluster (SRCC) [1] method, developed by the cluster

expansion of a single determinant reference function, is one of

the most sophisticated, elegant and well established methods

among the vast plethora of correlated many-body theories for

treating dynamical correlation effects in a size-extensive

manner in situations where the non-dynamical correlation

effects can be sidelined, for example, the closed-shell

states around the equilibrium internuclear configurations. The

incorporation of the singly and doubly excited cluster

operators (SD) only within the SRCC framework provides an

accurate and reliable description of the electron correlation for
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non-degenerate states, and is one of the most extensively used

class of SRCC approaches.

Motivated by the initial success of the SRCC method,

several endeavors have come to force during the past couple

of decades to generalize the SRCC method and make it suitable

to encompass open-shell and/or quasi-degenerate states. The

non-uniqueness of the exponential nature of the wave operator

diversifies the methods to a host of MRCC strategies. The

traditional MRCC methods hinge on the effective Hamiltonian

approach and work within the complete model space (CMS),

though they are rather more varied in their scope of appli-

cations [2]. The effective Hamiltonian based MRCC strategies

fall within two broad classes: (i) state-universal (SU), a

Hilbert-space approach [3] and (ii) valence-universal (VU), a

Fock-space approach [4–7,10,11]. The SU-MRCC method

highlights on only one valence sector at a time, with the

cluster operators being defined with respect to each reference

function. The VU-MRCC approach, on the contrary, uses a

single wave operator that not only correlates the reference

functions of interest, but also all the lower valence (or the so

called subdued) sectors, obtained by deleting the occupancies

systematically. At this juncture, we recall that the cluster

amplitudes in Fock-space VU-MRCC are generated hierarchi-

cally through the subsystem embedding condition (SEC) [5,8],

which is equivalent to the valence universality condition used

by Lindgren [7] in his formulation.
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The linear response theory (LRT) or equation of motion

(EOM) method [12–16] is another possible alternative which is

used to compute the spectroscopic energies. The EOM–CC and

SR–CCLRT methods are identical for the ionized/excited

states energies, but the approximations used in these two

methods differ for transition properties. The underlying

physics is the same, in particular, state properties defined as

energy derivatives are clearly identical since the state energies

themselves are identical. Several models, iterative and non-

iterative, have also been developed which partially include the

effects of triple excitations [17]. Recently, Nooijen and Bartlett

have developed a new method for calculating excited state

energies and properties, the similarity transformed EOM–CC

(STEOM–CC) method [18]. For singly excited states, the

STEOM–CC is closely related to the Fock space CC method

[18], but conceptually they are very different. In STEOM–CC,

the ground state CC calculation describes the ground state

dynamic correlation very well, whereas the differential corre-

lation is handled through the second similarity transformation,

which is built from an active space of ionized and electron-

attached states.

The main advantage of the VU-MRCC theory is that its

working equation is fully connected and hence size-extensive

in nature in contrast to the LRT or EOM method which is core

extensive and not core-valence extensive due to the presence of

the disconnected diagrams while considering the charge-

transfer excitations. Although, the LRT or EOM method is

not fully extensive in nature, the method is intruder free [19] in

contrast to the traditional VU-MRCC theory due to the CI-like

structure of the working equation of the former. It should be

noted that for the same truncation scheme of the operator

manifold, VU-MRCC is equivalent to the LR-based CC

methods [12,16] for one-valence problem.

In spite of formal rigor, the VU-MRCC equations are often

plagued by the intruder state problem. This was circumvented

in an elegant way by Mukherjee et al. [20] via ‘eigenvalue

independent partitioning technique’ (EIP). The EIP technique

converts the non-linear VU-MRCC equations for any model

space into a set of non-hermitian eigenvalue equations

(CCLRT like structure). Later, Mukherjee and co-workers

[21] studied the IP and DIP related to the Auger electron

spectroscopy of some interesting systems using the EIP

method.

In this article, we employ the CCLRT and VU-MRCC to

compute the ground and excited/ionized state energies and

relevant properties of HCl, CuH, Ag and Hg. The ground and

excited/ionized state properties of HCl and CuH are computed

using CCLRT while the VU-MRCC theory is employed for Ag

and Hg atom. Because of low Z value, we employ the Hartree–

Fock orbitals in the computation of the ground and excited/io-

nized state properties for HCl and CuH. On the other hand,

four-component Dirac–Fock orbitals are used for Ag and Hg

atom.

The paper is organized as follows. We briefly outline the

CCLRT and VU-MRCC methods in Section 2. The compu-

tational details and results are discussed in the subsequent

sections.
2. Methodology

2.1. Valence universal multi-reference coupled cluster theory:

a core-valence extensive theory

Since the basic formalism of VU-MRCC theory for the

energy difference is available elsewhere [4,6], we provide a

brief overview of this method for general model space. We

choose the Hartree–Fock (HF) (Dirac–HF in relativistic

regime) solution for the closed-shell N-electron ground state

FHF as the vacuum to define holes and particles with the

respect to FHF. The holes and particles are further subdivided

to introduce multi-reference aspect. We define a model space

(P) which has all possible electron occupancies in the active

orbitals to be complete, while others are said to be incomplete.

In general, any second-quantized operator has k-hole and

l-particle destruction operators for the active holes and

particles and m-particle and n-hole excitation operators invol-

ving both active and inactive holes and particles. We define an

operator A of valence rank (k,l) by A(k,l) where A contains

exactly k-hole and l-particle destruction operators.

Using the ‘valence-universal’[4,6–11] ansatz for the wave

operator U, the Fock-space Bloch equation for the CC-theory

may be written as

HUPðk;lÞ ZUPðk;lÞHeffP
ðk;lÞ c ðk;lÞ (1)

where H is the N-electron Hamiltonian and:

Heff ZPðk;lÞHUPðk;lÞ: (2)

Here, the equation is taken to be valid for all (k,l), starting

from kZlZ0, the core problem to some desired parent model

space, with kZm, lZn, say. We express U in normal order as

UZ fexpð ~SÞg (3)

with ~S containing only external operators (operators that

connect the model space with the complementary space Q)

of various valence ranks:

~SZ
Xm;n

k;lZ0;0

Sðk;lÞ: (4)

In second quantized notation, operator S for (0,0), (0,1) and

(1,0) valence rank can be written as

Sð0;0Þ Z
Xunocc

p

Xocc

a

hpjsð0;0Þ1 jai a†
paa

� �
C

1

4

!
Xuocc

p;q

Xocc

a;b

hpqjsð0;0Þ2 jabi a†
pa

†
qabaa

� �
C/; (5)

Sð0;1Þ Z
1

2

Xuocc

p;q;r

Xocc

a

hprjsð0;1Þ2 jqai a†
pa

†
r aaaq

� �
C/

ðfor all active particlesÞ;

(6)

and
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Sð1;0Þ Z
1

2

Xuocc

p

Xocc

b;g;a

hpajsð1;0Þ2 jgbi a†
pa

†
aabag

� �
C/;

ðfor all active holesÞ;

(7)

respectively. At this juncture, it is convenient to single out the

core-cluster amplitudes S(0,0) and call them T. The rest of the

cluster amplitudes will henceforth be called S. Since U is in

normal order, we can rewrite Eq. (3) as:

UZ expðTÞfexpðSÞg (8)

Premultiplying Eq. (1) by exp(KT) and using Eq. (8), we

get [22]

�HUvP
ðk;lÞ ZUvP

ðk;lÞ �HeffP
ðk;lÞ c ðk;lÞsð0;0Þ (9)

where

�H Z expðKTÞH expðTÞ (10)

and:

Uv Z fexpðSÞg (11)

Here, the core-cluster amplitudes T are assumed as solved at

the lowest level of hierarchy of (k,l)h(0,0). Expressing the

Hamiltonian H in normal order (HZHNCEHF), we rewrite Eq.

(10) as:

�H Z expðKTÞHNexpðTÞCEHF Z ~HCEHF: (12)

Since, ~H can be split into an operator part ~H and the ground

state energy Egr, we likewise define ~Heff , generating the energy

differences, and write

�Heff Z ~Heff CEgr (13)

and thus get the Fock-space Bloch equation for energy

differences as:

~HUvP
ðk;lÞ ZUvP

ðk;lÞ ~HeffP
ðk;lÞ c ðk;lÞsð0;0Þ (14)

Proceeding hierarchically from the lowest nontrivial

valence ranks (1,0) and (0,1), we get

~HUvP
ð1;0Þ ZUvP

ð1;0Þ ~HeffP
ð1;0Þ (15)

and

~HUvP
ð0;1Þ ZUvP

ð0;1Þ ~HeffP
ð0;1Þ (16)

for the one-hole and one-particle model space, which corre-

spond to the IP and EA problems.

The scheme of generating the elementary excitations (IP,

EA, EE, etc.) proceed hierarchically. We first solve the ground

state problem to determine the T amplitudes. The S(1,0) and

S(0,1) are solved in the next level of hierarchy which are

decoupled from each other. The S(1,1) are solved next in

which all the cluster amplitudes of lower valence ranks, i.e.

T, S(1,0), and S(0,1) rigorously remain frozen. At this juncture,

we emphasize that it is possible to choose an ‘incomplete’

model space for (2,0)/(0,2) valence sector (related to double

IP/EA) and yet continue to use the CC-equations for ‘complete’

model space.
2.2. Single-reference coupled cluster based linear response

theory: a core extensive theory

In CC based LRT methods, the ground state CC operator is

used to perform a similarity transformation of the Hamiltonian,

which is then diagonalized within the space of excited

determinants. SR–CCLRT is nowadays routinely used for the

investigation of excited states of closed-shell molecules. A

major theoretical advantage of the response based method lies

in the representation of the excited state in terms of the ground

state. This description thus automatically includes the corre-

lation contribution from the ground state that remains more or

less unchanged and which largely dominates in the low-lying

excited state correlation. The additional differential corre-

lations accompanying excitation can then be incorporated in

a systematic manner in the dynamic linear response function.

As a consequence, the response approach offers the flexibility

of including the differential correlation and the additional

correlation effects on top of the ground state correlation

components. The common correlation terms then drop out in

the energy differences, and the excitation energies obtained are

thus described in a more balanced manner. It is thus not

surprising that the pre-eminent success of the SRCC theory

for the ground state has produced in turn a very successful

linear response theory based on the SRCC wavefunction, and is

widely accepted as a major method of choice for the excited

states whose ground state is predominantly SR in character.

The CCLRT method for energy difference was first put

forward by Mukherjee et al. [13]. In their formulation, the

atom/molecule in its ground state is subjected to a photon field

and the linear response of the ground state function described

by the CC-ansatz is computed where the poles of the response

functions are the elementary excitations. Depending on the

nature of perturbation, one may obtain IP, EA, EE, DIP, etc. of

the ground state. Mukherjee and co-workers [23] have also

shown an equivalent but simpler derivation of this scheme.

In CCLRT approach, the wave operator U in Eq. (8) is

expressed as

UZ expðTÞW†
k (17)

where the cluster operators W†
k are expressed as

W†
k Z

Xocc

a

xafaagC
Xocc

a;b

Xunocc

pZ1

x
p
ab a†

pabaai
� �

C/

ðfor IPÞ;

(18)

W†
k Z

Xunocc

p

xp a†
p

� �
C

Xuocc

p;q

Xocc

a

xpqa a†
pa

†
qaa

� �
C/

ðfor EAÞ;

(19)

and

W†
k Z

Xunocc

p

Xocc

a

xpa a†
paa

� �
C

1

2

Xuocc

p;q

Xocc

a;b

x
pq
ab a†

pa
†
qabaa

� �
C/ ðfor EEÞ:

(20)
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The ionized/excited state Jk are generated from the ground

state by the action of ionization/excitation operator W†
k , and the

corresponding energy uk are obtained from an equation of the

form [13,23–27]:

½H;W†
k �jJ0iZEkW

†
k jJ0i (21)

Since T and W†
k commute, premultiplying Eq. (21) by

exp(KT) we get the following equation of motion

½ ~H;W†
k �jf0iZ ðEkKEgrÞW

†
k jf0ihukW

†
k jf0i (22)

where �HZ ~HCEgr. Projecting Eq. (22) on to the bi-orthogonal

space, we get an eigenvalue equation of the form:

AXk ZLXk: (23)

It is evident from above that CCLRT has altogether a much

simpler structure compared to core-valence extensive

VU-MRCC theory. There is no hierarchical generation of the

cluster amplitudes except for the ground state (which is

common to both), neither there is any special consideration

for the appropriate choice of normalization. From the very

mode of derivation it is quite clear that the energies computed

via CCLRT method are core-extensive in nature. For the

valence component, CCLRT behaves like a truncated CI

which destroys its extensive nature. As a result of this, the

method is not core-valence extensive.
Table 1

Comparison of valence and shake-up ionization potentials (eV) of HCl obtained

via CCLRT with experiment and other correlated calculations

State ADC(4) [33] SAC-CI-R [46] This method Expt. [32]

2S 16.45 16.46 16.61 16.6

25.88 26.38 25.60 25.85

27.94 28.78 28.64 28.5

31.91 32.43 32.21 32

34.90 34.65 34.60 34.65

36.61 36.44 35.5–41
2P 12.43 12.41 12.54 12.8

All theoretical calculations are performed at RHCLZ1.2746 Å.
3. Results and discussions

3.1. HCl system

The valence and satellite lines of HCl [28–32] have been

studied experimentally by Adam [30,31] and by Svensson et al.

[32] who have recorded the HCl valence ionization spectrum

up to 52 eV using XPS and SRPS [32]. So far, 11 satellite lines

have been observed of which seven peaks are found to lie

below the continuum for doubly ionized states. The HCl

satellite peaks [33] have been studied theoretically by the

Green’s function (GF) method, ADC(3) (algebraic diagram-

matic construction accurate to 3rd order), approximate ADC(4)

(algebraic diagrammatic construction accurate to 4th order)

[34,35], symmetry-adapted-cluster configuration interaction

general-R (SAC-CI-general-R) [36–40], and the SAC-

CI-SD-R (single double-R) methods. While the previous

theoretical studies are quite successful in assigning some

satellite peaks, the computed first valence ionization potentials

for the 2P state deviates significantly (by 0.3–0.4 eV) from the

experiment.

Compared to the singly ionized photo-electron spectrum,

the doubly ionized photo-electron spectrum of HCl is not so

well probed. The Auger spectrum of HCl has been measured by

Svensson et al. [41] and Aksela et al. [42]. Subsequent

independent theoretical interpretations of the high kinetic

energy region of HCl by Aksela [42] and Kvalheim [43] use

direct CI and semi-internal CI. However, the CI (both direct

and semi-internal) estimate is not so accurate for the Auger

energies relative to the lowest lying doubly ionized
(2p)K2 3SK state. Except for the first excited doubly ionized

state (2p)K2 3SK, the computed CI Auger energies deviate

substantially (by 0.3 eV or more) from the experiment.

An aug-CC-PVTZ basis comprising 84 GTOs is employed

for the computations of IPs and DIPs of HCl. The Cl basis is

constructed from the (15s9p2d1f)/[5s4p2d1f] GTOs of Woon

and Dunning [44] augmented with one sðzsZ0:0591Þ, one

pðzpZ0:0419Þ, one dðzdZ0:135Þ, and one f ðzfZ0:312Þ

diffuse function. For the H atom, the (5s2p1d)/[3s2p1d] GTO

basis of Dunning [45] is augmented by one sðzsZ0:02526Þ,

one pðzpZ0:102Þ, and one dðzdZ0:247Þ diffuse function. The

ADC [33] and SAC-CI calculations [46] employ a smaller

basis of 67 GTOs constructed from a (14s11p4d/5s2p)/

[10s8p4d/3s2p] set.

The vertical ionization potentials (valence as well as

satellite) of HCl obtained from CCLRT compared with experi-

ment [32] and with other correlated calculations [33,46] have

been presented in Table 1. The two 2P and 2S main peaks at

12.8 and 16.6 eV, respectively, in the experimental ionization

spectrum are more accurately reproduced in our calculation

than the other theoretical approaches. The CCLRT estimates

the (2p)K1 and (5s)K1 states to be at 12.54 and 16.61 eV while

they are predicted to lie at 12.50 and 16.56 eV by the SAC-

CI-SD-R method. The shake-up states are mainly described as

two-electron processes (often called 2h–1p process). Theoreti-

cal investigations suggest that the 4s orbital plays a significant

role in characterizing the shake-up states. On the other hand,

the contribution of the 4s orbital to 2P valence ionization

potentials (VIP) is not so important.

The Auger energies of HCl relative to its lowest lying

doubly ionized state (2p)K2 3SK state are shown in Table 2.

The CC Auger energies are computed using VU-MRCC

method via eigenvalue independent partitioning technique

[20]. The CCLRT for IP problem is first solved followed by

the generation of S(1,0) cluster amplitudes from CCLRT-IP

eigenvectors via EIP procedure. The effective Hamiltonian Heff

for (2,0) valence sector is then constructed (using the S(1,0)

cluster amplitudes) and diagonalized to get the desired roots.

The CC calculations for the (5s)K2 1SC transition energy

(with respect to the lowest lying (2p)K2 3SK state) is,

however, not as accurate as the rest of the states, but this

deficiency is also present for semi-internal CI calculations.



Table 2

Comparison of relative Auger energies (with respect to the lowest lying doubly

ionized (2p)K2 3SK state, eV) of HCl obtained via CC calculations with

experiment and other correlated calculations

Assignment SDCI [43] This method Expt. [41,42]

(2p)K2(3SK) 0.0 0.0 0.0

(2p)K2(1D) 1.6 1.54 1.48

(2p)K2(1SC) 3.0 2.53 2.75

(2p5s)K1(3P) 3.9 3.67 3.29

(2p5s)K1(1P) 5.5 5.34

(5s)K2(1SC) 10.6 10.25 9.7

Table 3

Comparison of the equilibrium bond length re (Å), harmonic vibrational

frequency u (cmK1) and dissociation energy De (eV) of CuH

re u De

Experiment [52] 1.463 1941 2.75

SCF [49] 1.569 1642 1.42

DHF by Collins et al. [49] 1.541 1699 1.48

DHF by Nakajima et al. [53] 1.540 1715 1.45

DKS by Nakajima et al. [53] 1.460 1928 2.86

HF-CCSD [47] 1.501 1814 2.48

This work 1.492 1818 2.64
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3.2. CuH system

The ground state properties of CuH have been studied

extensively by several research groups. For instance, Hrusak

et al. [47] have studied the ground state potential energy

surface of CuH using various CC schemes with Hartree–Fock

orbitals. Marian [48] and Collins [49], on the other hand,

employed spin-free Douglas–Kroll transformed Dirac Hamil-

tonian [50] and its variants in their calculations. Here, we

investigate the ground state properties of CuH using CC

method with Hartree–Fock orbitals. We also report the

excited state energies computed with Hartree–Fock orbitals

using CCLRT-EE method at the singles-doubles level. The

basis set employed in this calculation is constructed from

Roos’s [51] (7s3p)/[3s2p] (for H) and (17s12p9d4f)/

[7s7p4d2f] (for Cu) contraction scheme.

Fig. 1 depicts the ground and excited state potential curves

of CuH as computed using CC method. We emphasize that the

potential energy estimated from CC with perturbative triples

CCSD(T) fails badly upon dissociation (not shown here).

However, this type of behavior of the CCSD(T) potential
Fig. 1. Potential energy curves for the ground and excited states of CuH.
energy curves near the bond breaking region is commonly

observed and appears even in the bond fragmentation of simple

diatomic molecules. The spectroscopic constants for the

ground state of CuH computed using the CC method are

compared with experiment [52] and with other calculations

[49,53] in Table 3 which shows that the spectroscopic constants

estimated through Douglas–Kohn–Sham approximation

[54,55] match well with experiment. The present calculation

produces quite accurate ground state dissociation energy but

the equilibrium bond length and harmonic vibrational

frequency deviates from the experiment by 0.03 Å and

123 cmK1, respectively (see Table 3).

Though the CC calculations of the equilibrium bond length

and the vibrational frequency are slightly deviated from the

corresponding experimental values, they offer quite good

estimates of excited state energies (see Table 4). The vertical

excitation energies of CuH are computed at the experimental

geometry using CCLRT-EE with HF orbitals. As can be seen in

Table 4, CCLRT-EE provides a reasonably accurate estimate

of low lying transition energies. The excitation energies

computed using CCLRT-EE are off by 0.007 eV for 1S,

0.042 eV for 3P state. The experimental transition energy for

X1S/D is K3.53 eV. According to present calculation, the

observed D state lying 3.53 eV above the ground state is a

singlet D state.
3.3. Ag atom

We use a 36s30p28d15f GTOs to compute the ionization

potential and excited state energies of Ag using CC. The

ground state configuration of Ag is [Kr]4d105s1 (2S1/2).

Because of its high Z value, Ag must be treated relativistically.

Here, we employ the straight forward extension of non-

relativistic Fock-space coupled cluster theory to the relativistic

regime by adopting the no-virtual-pair approximation (NVPA)
Table 4

Vertical excitation energies (eV) of CuH

State This method Expt. [52]

13S 2.338

11S 2.899 2.905

13P 3.207 3.275

13D 3.315

11D 3.529 3.530

11P 3.540

23S 4.981



Table 5

Ionization potential (IP) and excitation energies (EE) of Ag from relativistic

CC calculations in per centimeter

State This

method

MBPT(3)

[57]

CCSD(T)

[58]

Expt. [59]

IP 5s1/2(2S1/2) 60,823 58,369 60,423 61,106

EE 6s1/2(2S1/2) 42,329 42,556

6p1/2(2P1/2) 29,757 28,073 29,552

(0.2467) (0.2497)

6p3/2(2P3/2) 30,639 28,946 30,472

(0.5024) (0.5134)

Interval 882 873 920

5d3/2(2D3/2) 48,512 46,082 48,744

5d5/2(2D5/2) 48,533 46,104 48,764

Interval 21 22 20

Entries within parentheses are oscillator strengths.
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along with appropriate modification of orbital form and

potential terms [56]. The four-component relativistic spinors

are generated by solving the Dirac–Fock Hamiltonian. The

large and small component relativistic radial wave functions

are first expressed as linear combinations of basis functions

PnkðrÞZ
XN

pZ1

CL
kpg

L
kpðrÞ; QnkðrÞZ

XN

pZ1

CS
kpg

S
kpðrÞ; (24)

where the summation index p runs over the number of basis

functions N and gLkp ðg
S
kpÞ and CL

kp ðC
S
kpÞ are the basis functions

and expansion coefficients for the large (small) components,

respectively. The basis functions employed in these calcu-

lations are GTOs of the form

gLkpðrÞZNL
p r

nkeKapr
2

; (25)

with

ap Za0b
pK1; (26)

where a0, b are user defined constants, nk specifies the orbital

symmetries (1 for s, 2 for p, etc.) and NL
p is the normalization

factor for the large component. The small component normal-

ization factor is obtained by imposing the kinetic balance

condition.

As the ground state of Ag is open-shell doublet, we begin

with AgC which defines the (0h,0p) valence sector. The ground

and excited state energies of Ag are computed through (0h,1p)

VU-MRCC strategy:
Table 6

Ionization potential (IP) of 199Hg and excitation energies (EE) of its positive ion

Config. State This work

Basis I

IP 5d106s 2S1/2 83,895

EE 5d106s 2S1/2 0

5d96s2 2D5/2 33,506
2D3/2 48,622

Interval 15,116

5d106p 2P1/2 52,792
2P3/2 61,607

Interval 8814

All entries are in per centimeter.
AgCCe/Ag

The ionization potential (IP) and excitation energies (EE) of

Ag are compared with other correlated calculations [57,58] and

with recommended data from National Institute of Standards

and Technology (NIST) database [59] in Table 5. The IP of Ag

was computed by Neogrady et al. [58] using the spin-free

Douglas–Kroll [50] (DK) orbitals whereas Safronova et al. [57]

employed relativistic spinors in their IP and EE calculations.

As can be seen in Table 5, the ionization potential computed

using the CCSD(T) method with DK orbitals is more accurate

(off by 683 cmK1) than that obtained from third order MBPT

calculations with relativistic spinors (off by 2737 cmK1). This

effectively indicates that the higher order correlation contri-

bution is quite significant in IP calculations for this system.

That the relativistic effect is non-negligible for Ag is also

evident from Table 5. The IP computed with the Dirac–Fock

orbitals is off by only 283 cmK1 (or 0.4%) and is in much better

agreement with the experiment than the other two calculations

mentioned above. The present calculations also provide

reasonably accurate estimate of EEs for Ag and fine-structure

splittings than the MBPT(3) estimates.

The errors in our estimated excitation energies are 227 cmK1

(or 0.5%) for the 2S1/2 state, 205 cmK1 (or 0.7%) for the 2P1/2

state, 167 cmK1 (or 0.5%) for the 2P3/2 state, 232 cmK1 for the
2D3/2 state, and 231 cmK1 (or 0.5%) for the 2D5/2 state. The

oscillator strengths (f) for 5s/5p transitions are also displayed

in Table 5. Since, our estimated transitions energies are quite

accurate, we believe that our predicted oscillator strengths will

be in good agreement with the experiment.

3.4. Hg atom

In this section, we compute the ground and excited state

properties of Hg using VU-MRCC method with four component

Dirac–Fock orbitals. The accurate estimation of electric quad-

rupole moment (Q) of HgC is important as it can be used as

possible frequency standards to test the stability of fundamental

constants. In fact, the frequency nHg of 199HgC 5d106s(2S1/2,

FZ0, mFZ0)45d96s2(2D5/2, FZ2, mFZ0) electric quadru-

pole transitions at 282 nm is now being compared [60] to the

frequency nCs of the ground state hyperfine transition

[Xe]6s(2S1/2, FZ3, mFZ0)4[Xe]6s(2S1/2, FZ4, mFZ0) in

neutral Cs to test the stability of the product of fundamental
Eliav et al. [66] Expt. [68]

Basis II

83,894 84,237 84,184

0 0

33,506 35,437 35,514

48,622 50,785 50,552

15,116 15,348 15,038

52,780 52,030 51,485

61,594 61,269 60,608

8814 9239 9123



Table 7

The 5d96s2(2D5/2) state electric quadrupole moment ðea2
0Þ and magnetic

hyperfine matrix elements A (MHz) of 199HgC

This method HF [61] MCHF [62] Experiment

Basis I Basis II

Q K0.527 K0.527 K0.664 K0.544 K0.510 [62]

As
1=2 40,440 40,464 40,507 [60]

Ad
3=2

2713 2720

Ad
5=2

972 972 963.5 986.19 [61]

M.K. Nayak et al. / Journal of Molecular Structure: THEOCHEM 768 (2006) 133–140 139
constants gCs(me/mp)a, where g is the nuclear g-factor (me/mp),

the electron-to-proton mass ratio and a is the fine-structure

constant.

Here, we employ (1h–0p) VU-MRCC to compute the

quadrupole moment of HgC. Since, the quadrupole shift is

zero in 5d106s(2S1/2) level, the quadrupole shift of the

5d96s2(2D5/2) state of HgC alone determines the shift of the

HgC optical clock transition. To our knowledge, only two

theoretical calculations on quadrupole moment of HgC are

available in the literature. The first one is the single reference

Hartree–Fock (HF) calculation of Itano [61] and the other is

multi-configuration Dirac–Hartree–Fock (MCDHF) calcu-

lation of Oskay et al. [62]. The HF calculation [61] estimates

the quadrupole moment to beK0:664ea2
0, whereas the MCDHF

calculations predict QðD; 5=2ÞZK0:5440ea2
0 (a0 is the Bohr

radius). Though MCDHF estimates Q better than HF, it is still

w7% larger than the experimental value a2
0[62]. The accurate

estimation of hyperfine matrix element (A) for 5d96s2(2D5/2)

state of HgC is also a non-trivial problem. For instance, using

MCDHF with limited configuration state functions, Brage et al.

[63] obtained A to be 1315 MHz for this state. On the other

hand, employing larger configuration space, Oskay et al. [62]

obtained a value for A to be 963.5 MHz which is 22.5 MHz

lower than the experimental value [61].

The ground and excited state properties of Hg and its

positive ion are computed with two sets of basis functions to

investigate the convergence of the computed properties. The

first basis (Basis I) is constructed from 34s32p30d20f15g

GTOs. To this set 10h GTOs are added to construct the

second basis set (Basis II). Since the contribution from high

lying unoccupied orbitals are not significant [64,65], these

orbitals are kept frozen in CC calculations.

The IPs of Hg computed from VU-MRCC using Dirac–

Coulomb–Hamiltonian are compared with the experiment

values in Table 6. It is worth mentioning that the Breit

interaction is not included in the present calculations. We

have also quoted the results of Eliav et al. [66]. Eliav et al.

have used the same method with Dirac–Coulomb–Breit

Hamiltonian. As can be seen in Table 6, the IPs computed

for 5d106s and 5d96s2 states by Eliav et al. [66] are closer to

experimental values than those obtained by us. Since the basic

formalism and working equations of Eliav et al. [66] and ours

are same, we feel that the difference in the estimated IPs may

arise due to the absence of Breit interaction in our calculations.

Although the 2P fine structure splitting is better reproduced in

their [66] calculations, our calculation presents a more accurate

estimate of 2D fine structure splitting.

We now discuss the quadrupole moment results for 2D5/2

state (displayed in Table 7). The large deviation in Itano’s

predicted Q value for HgC primarily arises due to the neglect

of electron correlation in the calculation. The importance of

electron correlation is also evident from Oskay et al. [62]

MCDHF calculations which show that the electron correlation

contribution to Q is w25%. It is well known that the

incorporation of correlation effect in a compact manner is,

however, difficult via MCDHF scheme or even through finite

order many-body perturbation theory(MBPT) [67]. In fact, CC
is the most suitable scheme for such a problem. Being an all-

order approach, it can incorporate higher order electron

correlation and relaxation effects more efficiently than the

finite order MBPT method. Our calculation estimates the

quadrupole moment for 2D5/2 state of HgC to be K0:527ea2
0,

which to our knowledge, is the most accurate estimate of

Q(D,5/2) for HgC. The magnetic hyperfine matrix elements

(A) reported for HgC are also in accordance with the experi-

ment. The present calculations further show that contribution

of h orbitals to IP, A and Q for Hg is negligible.
4. Conclusion

In this paper, we have presented the non-relativistic appli-

cation of the CCLRT theory to the systems HCl and CuH, using

Hartree–Fock orbitals. We also report here the relativistic

calculation on Ag and Hg atoms using Dirac–Hartree–Fock

orbitals via the VU-MRCC method. The results obtained via

CCLRT and VU-MRCC methods have been compared to other

available theoretical and experimental results from which it is

clear that our results are quite encouraging and satisfactory for

all the systems considered here. However, it is important to

mention that we aim to investigate more complex systems in

order to establish the generality of the methods mentioned here

in the near future.
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Phys., 17 (1960) 477; J. Čižek, J. Chem. Phys., 45 (1966) 4256; J. Čižek,
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[58] P. Neogrady, V. Kellö, M. Urban, A.J. Sadlej, Int. J. Quantum Chem. 63

(1997) 557.

[59] C.E. Moore, in: Atomic Energy Level (NBS Data Series), US Govern-

ment Printing Office, Washington, DC, 1971.

[60] S. Bize, S.A. Diddams, U. Tanaka, C.E. Tanner, W.H. Oskay,

R.E. Drullinger, T.E. Parkar, T.P. Heavner, S.R. Jefferts, L. Hollberg,

W.M. Itano, J.C. Bergquist, Phys. Rev. Lett. 90 (2003) 150802.

[61] W.M. Itano, J. Res. Natl Inst. Stand. Technol. 105 (2000) 829.

[62] W.H. Oskay, W.M. Itano, J.C. Bergquist (preprint).

[63] T. Brage, C. Proffitt, D.S. Leckrone, Astrophys. J. 513 (1999) 524.

[64] R.K. Chaudhuri, B.K. Sahoo, B.P. Das, H. Merlitz, U.S. Mahapatra,

D. Mukherjee, J. Chem. Phys. 119 (2003) 10633.

[65] U. Kaldor, J. Chem. Phys. 87 (1987) 467; U. Kaldor, J. Chem. Phys. 87

(1987) 4693.

[66] E. Eliav, U. Kaldor, Phys. Rev. A 52 (1995) 2765.

[67] R.K. Chaudhuri, K.F. Freed, J. Chem. Phys. 122 (2005) 204111.

[68] W.C. Martin, R. Zalubas, L. Hagan, in: Atomic Energy Levels—The

Rare-Earth Elements, Natl. Bur. Standards, Washington, DC, 1978.


	Applications of core-valence extensive multi-reference coupled cluster theory and core-extensive coupled cluster-based linear response theory
	Introduction
	Methodology
	Valence universal multi-reference coupled cluster theory: a core-valence extensive theory
	Single-reference coupled cluster based linear response theory: a core extensive theory

	Results and discussions
	HCl system
	CuH system
	Ag atom
	Hg atom

	Conclusion
	Acknowledgements
	References


