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ABSTRACT
We have investigated in detail the geometry of the open magnetic Ðeld line structure of an oblique

dipole rotator, with a view to attaining a better understanding of the geometry of pulsar beams in the
polar cap model of pulsar emission. We Ðnd that the open Ðeld lines divide into two branches, both of
which are required to describe the full polar cap. We have also investigated the possible changes in
pulsar beams due to the spacetime curvature caused by the neutron star and the special relativistic aber-
ration. Barring the light bending, which is treated numerically, we incorporate all other e†ects analyti-
cally. The formalism can be used for an arbitrary emission altitude and for all inclination angles between
the magnetic and rotation axes. The combination of all these e†ects surprisingly leaves the Goldreich-
Julian type beam essentially unaltered, owing to the mutually opposing nature of these e†ects. The
general relativistic e†ects at most give a 4% beam squeeze. At a Ðner level, the possibility of seeing the
resultant small e†ects in pulsar observations is indicated and brieÑy discussed.
Subject headings : pulsars : general È relativity

1. INTRODUCTION

The pulsar radio emission is currently believed to be described by the polar cap model & Cooke(Radhakrishnan 1969 ;
& Taylor Basic ingredients in this model are charges streaming along the open magnetic Ðeld lines and theManchester 1977).

curvature radiation from these leading to pair production cascades & Julian These ingre-(Goldreich 1969 ; Sturrock 1971).
dients make use of the geometry of the stellar dipole magnetic Ðeld in an essential way. In spite of numerous attempts, a
satisfactory theory of the pulsar magnetosphere which could justify the use of dipole geometry still eludes us (Michel 1992).
Similarly, there is no successful model of the pulsar emission given the dipole geometry Still, the polar cap(Melrose 1992).
model provides the only intelligible framework for the pulsar radio emission phenomenology and therefore a plausible basis
for further theoretical developments. The fairly varied geometrical possibilities provided by a magnetic dipole inclined to the
pulsar rotation axis have been, surprisingly enough, not investigated in full detail. Since the arena in which the radiation
mechanism must operate is the open Ðeld line region, its study may be appropriately termed the kinematics of pulsar emission.
It should naturally also include other e†ects that are similarly kinematical in nature. These are the special relativistic
aberration and the general relativistic e†ects due to the gravitational Ðeld of the star on the dipole geometry of the magnetic
Ðeld and on propagation of light. The aberration will be important for large emission altitudes, while the gravitational e†ects
will be felt close to the star.

The special and general relativistic e†ects have been previously considered only sporadically Cordes, &(Blaskiewicz,
Wasserman & Ruderman & Harding First, we wish to explore here the1991 ; Chen 1993 ; Kapoor 1991a ; Gonthier 1994).
extent to which they can be considered signiÐcant. Second, we have properly combined them in a comprehensive manner. In
the following we develop a formalism applicable to an oblique dipole rotator that can include all these e†ects, and report the
results of our investigations. Our intention here is not to address the dynamics of pulsar emission but to see what constraints
the kinematics places on it. In we describe the detailed geometry of magnetic Ðeld lines of an oblique dipole. We show that° 2
the geometry is more intricate than considered so far & Sturrock We Ðnd that the open Ðeld lines(Roberts 1972 ; Biggs 1990).
actually divide into two branches, a fact that seems to have escaped notice so far. In we discuss the possible modiÐcations° 3
due to the presence of nondipolar magnetic Ðeld components. deals with the special relativistic aberration. In °°Section 4 5È8,
the e†ects of the modiÐcation in the dipole magnetic Ðeld due to the stellar gravitation and the gravitational light bending on
the appearance of the emission cone are considered. In we treat aberration in the presence of spacetime curvature. Finally,° 9

contains a discussion and summary of our conclusions and the implications of our results for pulsar phenomenology, e.g.,° 10
the core and conal distinctions etc. (Rankin 1990, 1993).

2. THE MAGNETIC FIELD LINE GEOMETRY OF AN OBLIQUE ROTATOR

The basic assumption in the polar cap model is that the plasma surrounding the star corotates with it because of the
presence of a strong dipolar magnetic Ðeld except along those Ðeld lines that pierce the velocity of the light cylinder, a cylinder
whose axis is the rotation axis and has radius where P is the pulsar period and c the velocity of light. The chargesrLC \ cP/2n,
streaming along these ““ open ÏÏ Ðeld lines are lost, and are responsible for producing the observed pulsar emission. The polar
cap is thus deÐned to be the region on the stellar surface whose boundary is the locus of the foot of the last open Ðeld line. For
a magnetic dipole aligned with the rotation axis the polar cap is circular and has the well-known half-angular size equal to
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where & Julian(3/2)hGJ@ , (Goldreich 1969)

hGJ@ \ sin~1
AR

*
rLC

B1@2
(1)

and is the neutron star radius. We assume the magnetic Ðeld line structure of a radio pulsar to be purely dipolar in natureR
*and discuss the e†ect of possible nondipolar components in the next section. Let the oblique rotator be at an inclination angle

a to the rotation axis. We deÐne the rotational coordinate system as the one in which the rotation axis is the z-axis, and the
magnetic coordinate system as the one with the magnetic axis as the z@-axis. The magnetic and rotation axes are taken to lie in
the (y@, z@)-plane, which is the same as the (y, z)-plane. In terms of magnetic coordinates (r, h@, r@), the relevant magnetic Ðeld
components are

B
r
\ 2k0

r3 cos h@ , Bh@ \
k0
r3 sin h@ , Br@ \ 0 . (2)

Here is the stellar dipole moment. In the rotational coordinates, the Ðeld components arek0

B
r
\ 2k0

r3 (cos a cos h ] sin a sin h sin r) , (3)

Bh\
k0
r3 (cos a sin h [ sin a cos h sin r) , (4)

Br\ [ k0
r3 sin a cos r . (5)

shows the dipole Ðeld line geometry, drawn here in the plane r\ n/2. Field lines tangent to the light cylinderFigure 1
(radius at points B and B@ are the last open Ðeld lines for a particular inclination. For any given longitude the ÐeldrLC) r

c
,

FIG. 1.ÈPlot of magnetic Ðeld lines of an oblique dipole, in the plane containing the rotation and magnetic axes. The lines contained between N and A
pertain to the root, while those between B and B@ pertain to the root (see text).h

c
` h

c
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component normal to the light cylinder is zero for tangent Ðeld lines, i.e.,

Bo\ B
r
sin h ] Bh cos h \ 0 . (6)

Consequently the following relation results, giving the polar angle of the tangent point on the Ðeld line in terms of a andh
c

r
c
:

2W
c
tan2 h

c
] 3 tan h

c
[ W

c
\ 0 , (7)

where This quadratic equation has two roots, describing two branches of the last open Ðeld lines :W
c
\ tan a sin r

c
.

tan h
c
B\ [ 3

4W
c

C
1 <

A
1 ] 8W

c
2

9
B1@2D

. (8)

In (i.e., for the root pertains to open Ðeld lines contained between the points N and A. The rootFigure 1 r
c
\n/2) h

c
` h

c
~

pertains to open Ðeld lines between the points B and B@. Since we are concerned with only one of the magnetic poles, the roots
have ranges so adjusted that

0 ¹ h
c
` ¹ h0 , (9)

n/2 ¹ h
c
~ ¹ n [ h0 , (10)

where It should be noted that for we have while for covers the entire 2n range. It ish0\ tan~1 (2~1@2). h
c
` 0 ¹r

c
¹ n, h

c
~, r

cclear from the geometry in that the tangent point is located atFigure 1

r
c
B \ rLC
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, (11)

so that the equatorial radius of the last open Ðeld line isr
l

r
l
B \ r

c
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c
@
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From we can derive the magnetic coordinate values These are then traced backward along the(r
c
B, h

c
B, r

c
), (r

c
B, h

c
@B, r

c
@B).

magnetic Ðeld lines using the equation

sin2 h@
r

\ 1
r
l
. (13)

An extrapolation using this relation leads us to points that deÐne the boundary of the emission zone. Thus is(r
e
, h

e
@ , r

e
@ ) h

e
@

the opening angle of the emission zone. Since the radiation is supposed to emanate tangential to open magnetic Ðeld lines, the
radiation cone is wider. We refer to this as the emission cone. When this is usually referred to as the polar cap. It isr

e
\ R

*
,

deÐned by directions where(h
r
@ , r

r
@),
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e
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The quantity in is the angle between the radial direction and the tangent to the Ðeld line. We shall refer tok
e
@ equation (14) k

e
@

as the tangent angle. It is given by the usual relation

tan k
e
@ \ 12 tan h

e
@ . (16)

For radiation originating near the star provides an excellent approximation.h
r
@ \ 32h

e
@

From what is not obvious is how the Ðeld lines deÐning the boundary of the region will look for other values ofFigure 1, h
c
`

However, in for a \ 75¡ and a typical pulsar period P\ 2~1@2 s, we depict the locus of the feet of the Ðeld linesr
c
. Figure 2,

that deÐne the boundaries of and regions of the polar cap for both the poles. For the north pole both andh
c
` h

c
~ h

c
` h

c
~

branches are shown as polar plots in for various inclination angles a and the same pulsar period and The radialFigure 3 r
e
.

and azimuthal coordinates in Figures and are and respectively. For a di†erent value of P similar diagrams can be2 3 h
r
@ r

r
@ ,

obtained simply by rescaling the axes. Similarly, if the emission is assumed to originate not at the surface but at the radial
height then again the diagram can be rescaled by a factor provided that The discussion of pulsarr

e
, (r

e
/R

*
)1@2 r

e
/R

*
[ 1000.

polar caps hitherto had not distinguished between the two branches of open Ðeld lines (e.g., It should be notedBiggs 1990).
that in the region, the Ðeld lines that are tangent to the light cylinder nevertheless pierce it at some other location, unlikeh

c
`

the case. The region of the polar cap deÐned by the solution grows in size with increasing a but still stays within theh
c
~ h

c
`

boundary deÐned by the solution provided that (see later). Thus, although the total extent of the polar cap ish
c
~ a D n/2

una†ected by the presence of the region, it selects out a part of it. As will be seen, this part has several notable features. Ith
c
`

has a peculiar triangular shape whose lowest vertex is on the magnetic axis for all values of a. We wish to emphasize that a
complete description of the polar cap necessarily requires both the solutions. Although for a \ n/2, the region is alwaysh

c
`

contained within the region, at a \ n/2 a striking feature is noticed. While the region assumes a shape like the symbolh
c
~ h

c
~

for ““ inÐnity ÏÏ (i.e., O), the region becomes two-sided and smoothly Ðlls up the notches (see Thus, in the orthogonalh
c
` Fig. 4).
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FIG. 2.ÈPolar plots for a \ 75¡, P\ 2~1@2 s, and showing the polar caps for the north and the south poles. The points identiÐed by lowercase a,r
e
\R

*b, b@, n and s are counterparts of points labeled similarly by uppercase letters in Fig. 1.

case, the polar cap boundary cannot be correctly delineated unless both solutions are considered and not just the solution.h
c
~

The emission cone shapes in the orthogonal case which have been considered so far include both the and the regionsh
c
` h

c
~

without identifying them as distinct.
One of the characteristics of the polar diagram in is that the emission cone shows a latitudinal compression as aFigure 3

increases. This has been known for some time & Sturrock This compression is described by the(Roberts 1972 ; Biggs 1990).

FIG. 3.ÈPolar caps for P\ 2~1@2 s, km, and a \ 30¡, 60¡, and 90¡R
*
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e
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,

FIG. 4.ÈPolar cap regions for a \ 90¡, P\ 2~1@2 s, km, showing the region, the region, and the full polar capR
*
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ratio of the maximum latitudinal extent of the emission cone to its maximum longitudinal one. It is given byR
c

R
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\ [h

m
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The angles are deÐned asa
B

a
B

\ 12[a ^ sin~1 (13 sin a)] . (19)

It should be noted that for pertains to the region. For a \ n/2, it is contributed solely by the region becausea Dn/2, R
c

h
c
~ h

c
`

the corresponding value for the region is zero. The formula for in reduces to the one given by & Gilh
c
~ R

c
equation (17) Kijak

in the limit of small a. The latitudinal compression is maximum at a \ n/2. At the stellar surface it amounts to(1997)
for a \ n/2 and to for a \ n/3. For a \ 0 there is no compression at all In contrast to theR

c
\ 0.62 R

c
\ 0.82 (R

c
\ 1).

compression of the emission cone, the region shows another notable feature, a latitudinal elongation as a increases. Thish
c
`

elongation can be described by the ratio of the maximum latitudinal extent of the region to the maximum longitudinalR
c
` h
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`

extent of the emission cone. It is given by
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`
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In the aligned case the region reduces to a point. For intermediate inclinations it does not play a role in determining theh
c
`

emission cone boundary. However, in the orthogonal case it becomes indispensable as noted above. Thus yet another notable
feature of the region is its sensitive dependence on a. In the following the region is always featured in the Ðgures alongh

c
` h

c
`

with the region. This is to emphasize the fact that even though usually it occurs inside the region, it is a distinguishableh
c
~ h

c
~

part within the emission cone. As described later, the emission cone changes due to the inclusion of various physical e†ects.
These changes are not conÐned to the boundary of the emission cone, and the depiction of the region demonstrates howh

c
`

they occur in the inner region. Last, it should be noted that for the region covers a solid angle of 2n, which isr
e
\ 23rLC, h

c
~

certainly not meaningful in the context of the polar cap model. Therefore, unless some additional e†ects are invoked, emission
altitudes associated with the region should be less than This restriction does not apply to the region. Theh

c
~ 23rLC. h

c
` h

c
`

region is qualitatively similar to the emission region as indicated by the ““ favorably ÏÏ curved magnetic Ðeld lines
Arons, & Fawley Although of great interest, further exploration of this connection is(Scharlemann, 1978 ; Arons 1979).

beyond the scope of the present work, which is restricted to the kinematics. We have considered it partially in &Kapoor
Shukre hereafter(1998, KS III).

3. THE EFFECT OF NONDIPOLAR MAGNETIC FIELDS

At this juncture it is appropriate to examine how the nondipolar magnetic Ðeld components may a†ect the beam shapes
that we have described so far. One possible nondipolar Ðeld geometry which can be invoked is that of an o†-center dipole

This we do not consider, for reasons of simplicity. Our results for the pure dipolar case will, however, be(Arons 1996).
indicative of those in the o†-center one. Apart from this there are two possible components that can be considered. First, the
stellar magnetic Ðeld may have higher multipoles. Second, the magnetospheric currents are expected to give rise to toroidal
magnetic Ðelds. Before we turn to their discussion, we recapitulate here the procedure of the last section for deriving the
emission cone. We Ðrst deÐne a region using which essentially is the image on the light cylinder of the emissionequation (8),
zone at an altitude The second step involves a tracing back of this region using the magnetic Ðeld geometry as inr

e
. equation

This leads us to the emission zone deÐned by values of Last, we modify for tangential emission along the(13). (h
e
@ , r

e
@ ).

magnetic Ðeld line using to obtainequation (14) (h
r
@ , r

r
@).

We Ðrst consider nondipolar stellar magnetic Ðeld components. The issue of such components has been discussed in detail
by where it is concluded that ““ there is no clear evidence either theoretical or observational for large scaleArons (1993),
nondipolar Ðeld in any pulsar.ÏÏ Even so, since at large distances multipolar components die out faster than the dipole ones,
small multipole admixtures will modify not but only equations and and that too near the stellar surface.equation (8) (13) (14),
Any quantitative assessment will require the details of the magnetic Ðeld. But still, if the pulsar emission originates at altitudes
of a few or more (see then we would expect our description to be adequate. Let us now consider the toroidalR

*
Rankin 1993),

Ðeld components. The only estimate available for these comes from pulsar spin-down rates and indicates that the dipole and
toroidal Ðelds (say, and respectively) are comparable at the light cylinder see also We canB

d
B

t
, (Sturrock 1971 ; Shitov 1985).

therefore write in an approximate fashion

B
t
\ B0

AR
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B3A r
rLC

Bn
(22)

and

B
d
\ B0

AR
*
r
B3

, (23)

where is the surface magnetic Ðeld strength and all we require is that n [ 0. Now as far as is concerned, theB0 equation (8)
presence of leaves it unchanged because tangentiality involves only the component Therefore the emission-zone imageB

t
Bo.
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on the light cylinder is una†ected. Equations and may no longer seem appropriate to trace back and derive the(13) (14)
emission cone. But as we have noted above, observations constrain the emission altitudes for the region toh

c
~ >23rLC.

Consequently, from equations and above, we see that for the maximum value of is (for n \ 1). Thus(22) (23) r \ 23rLC B
t

0.2B
dwe expect for and we still would not expect much change compared to the pure dipolar case. TheB

t
> 0.2B

d
r > 23rLC, h

c
`

region is normally very small, and if a higher emission altitude is associated with it, the e†ect of on it will be uniform andB
tonly shift it in azimuth r as a whole in a sense opposite to that of stellar rotation. Note that aberration, which we consider

later, will introduce an opposite shift.

4. THE EFFECT OF ABERRATION ON THE PULSAR BEAM

Although the initial proposal of the polar cap model had higher altitudes have been suggested (e.g.,r
e
\ R

*
, Phillips 1992 ;

In such a case aberration should be included. To incorporate e†ects of aberration on the pulsar beam, let usRankin 1993).
consider an arbitrary point within the emission cone. Its corotational velocity in the rotational coordinates (r, h, r) is

v\ r
e
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\ r

e
rLC
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e

. (24)

To be precise, the velocity here needs to be scaled by the gravitational redshift factor, In subsequent sections(1 [ 2m/r
e
)~1@2.

dealing with spacetime curvature e†ects, this scaling is incorporated in an automatic manner, though it is not signiÐcant. The
rotational frame Cartesian coordinates (x, y, z) are related to in the magnetic ones through
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One can construct similar quantities, such as
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The direction cosines in the rotational frame at the emission point are
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We denote the changed form of any quantity (e.g., after aberration by adding a caret on top of it (e.g., Thus the directionl
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where c is the usual Lorentz factor for the corotating emission point, c\ (1 [ v2)~1@2. Thus the aberrated values of the(hü
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FIG. 5.ÈPolar cap for a \ 60¡, P\ 2~1@2 s, with (solid line) and without (dots) aberration

where the Doppler redshift factor is

1 ] z\ l
e
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\ c(1] vnü
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One can transform the and values to the magnetic coordinates throughhü
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A polar plot of the aberrated pulsar beam as seen by an inertial observer can be obtained from and for any inclinationhü
r
@ rü

r
@

angle a. In we show the emission cone for with and without aberration. It is clear that at the stellar surfaceFigure 5 r
e
\R

*the e†ect of aberration is just to shift the whole emission cone by a small angle v in azimuth r. We show in the polarFigure 6
plots for various emission heights. The emission cone, in addition to the shift, undergoes a twist around the magnetic axis
which is noticeable at higher emission altitudes. This is due to the variation in corotation velocity over the emission cone. It
should, however, be kept in mind that when not scaled by the emission cone in for has(R

*
/r

e
)1@2, Figure 6 r

e
+ 2250R

*
\ 23rLC

FIG. 6.ÈEmission cones for a \ 60¡, P\ 2~1@2 s, km, after aberration at altitudes of 1, 300, and Angular extents are multiplied byR
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the factor (R
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an extent of 180¡. Note that our Ðgure in such cases is not truly representative of the emission cone. In our literal interpreta-
tion of the polar cap model, the emission cone at altitudes larger than has a vast angular size over which the corotation23rLCvelocity also varies over a large range. Consequently the aberrated pulsar beam does not display substantial shrinking.
Therefore, emission altitudes larger than are still not meaningful. On the other hand, if a small portion of the full cone,23rLCe.g., the region, is considered, emission altitudes larger than can still be relevant, and signiÐcant aberration e†ectsh

c
` 23rLCwould be seen.

5. THE GRAVITATIONAL EFFECTS

The emission region is usually thought to be located near the neutron star precisely where the gravitational e†ects of a
curved spacetime would be maximum. In our kinematical considerations two e†ects are relevant. First, because of the
curvature of spacetime, the geometry of the magnetic Ðeld is modiÐed, the e†ect amounting to what can be called a
““ squeezing ÏÏ of the Ðeld. Second, light rays are not straight but bent, an efffect henceforth referred to as ““ bending.ÏÏ It can
perhaps be argued that for a rotating neutron star it would be most appropriate to use the Kerr metric (Chandrasekhar 1983)
to calculate these general relativistic e†ects. However, the amount of rotation is generally small, and the deviations from the
nonrotating Schwarzschild case are expected to be small. For the e†ect of gravitation on the stellar magnetic Ðeld the
solutions are known in the Schwarzschild (see later) or the aligned Kerr case & Vishweshvara(Chitre 1975 ; Petterson 1975).
We consider only the Schwarzschild case. To include the bending of light, we consider the Schwarzschild case Ðrst and
comment later on corrections that would arise if the Kerr metric were used. The discussion of gravitational e†ects is usually
presented in terms of the so-called Schwarzschild coordinates In terms of these, the Schwarzschild line element(t

g
, r
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, h
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is
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where m\ GM/c2 and M is the mass of the star. We identify and with our t and r. The angles are identiÐed witht
g

r
g

(h
g
, r

g
)

our magnetic coordinates (h@, r@) in di†erent ways for ““ squeezing ÏÏ and ““ bending ÏÏ according to convenience as described
below.

6. MAGNETIC FIELD GEOMETRY IN THE SCHWARZSCHILD BACKGROUND

To consider the e†ect of spacetime curvature on the dipole magnetic Ðeld, we use the general relativistic solution for a
magnetic dipole Ðeld in an external Schwarzschild background & Shapiro(Ginzburg 1964 ; Petterson 1974 ; Wasserman

which gives the components of the magnetic Ðeld as measured by the observer relevant here and locally at rest. For1983),
discussing the changed Ðeld line geometry we identify and with r@ and h@ respectively. Because of the axisymmetry allr
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h
gquantities are independent of r@. Thus the nonzero (tetrad) Ðeld components are
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where is identiÐed as the stellar magnetic dipole moment. If one deÐnes a line of force as the tangent to the direction of thek0magnetic Ðeld, then its equation is
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where
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The function f (r) measures the departure from a dipole magnetic Ðeld in a Ñat spacetime such that the Ðeld lines now crowd
closer near the poles. Hence we use the nomenclature ““ squeezing.ÏÏ Now the Ðeld lines are described by

r
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Equations can be integrated, and we Ðnd the equation for the Ðeld line to be(48)
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where is the equatorial radius of the Ðeld line (i.e., the value of r for which h@\ n/2). Note that uppercase subscripts are usedr
Lto denote the curved spacetime quantities to distinguish them from their Ñat spacetime counterparts, which carry lowercase

subscripts. The equations in the Ñat spacetime are recovered by putting f (r) \ 0.5 or However, it should be kept inb
r
(r) \ [13.

mind that the Ðeld line with a given value of does not go over in the Ñat spacetime case to a Ðeld line with the same value ofr
LIn this case, therefore, we have to solve also for Except for the aligned case (considered by &r
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FIG. 7.ÈThe outer curve (dots) is the Ñat spacetime polar cap. The inner curve (solid line) shows the polar cap squeezed by the general relativistic magnetic
Ðeld ““ squeezing.ÏÏ The stellar mass and radius are 1.4 and 10 km, respectively.M

_

Harding this is an involved procedure. As before, Ðeld lines that are of interest are the ones which are tangent to the1994),
light cylinder. In this case we can redo the calculation of to Ðnd the tangent points. We get the following equation (which° 2
replaces eq. [7]) :
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and, as before,
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It is clear that, in contrast to the Ñat spacetime case, and are to be simultaneously solved for, using equations andh
C
B r

C
B (51)

A simpliÐcation occurs, however, because The smallest value of we encounter is 74 km for the millisecond(52). r
C
Bº rLC. rLCpulsar. For M \ 1.4 and values of r larger than 74 km, f (r) di†ers from its Ñat spacetime value of 0.5 at most by 0.008. ItM
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This is furthermore true for all values of a. Therefore, as far as determination of and is concerned, we can simply takeh
C

r
Cover the Ñat spacetime values of and from It is now required to extrapolate these values along Ðeld lines given byh
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We can get a rough idea of how much will change due to squeezing as follows. From and because weh
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or Values of after the full computation using are found to be very close to this estimate. Theh
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angle made by the tangent to a magnetic line of force with the radius vector at the emission point now is given byk
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The opening angle of the pulsar beam is now smaller than that given by equation (14) :
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Also, as before,
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In the asymptotic limit (i.e., r ] O), one is led to the familiar relations for Ñat spacetime,
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It should be noted that this e†ect depends only on the ratio and not on P, a, or For M \ 1.4 (m\ 2.1 km), andm/r
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is reduced by 4%, leading to a net reduction in the emission cone angle of about 14% due to the Ðeld squeeze. This isk
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for values of ““ squeezing ÏÏ has negligible e†ect.r
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7. LIGHT PROPAGATION IN CURVED SPACETIME

Gravitational bending of light has been considered previously in the context of pulsar emission by many authors (Kapoor
and references therein ; & Ruderman & Harding & Shukre Our treatment of1991a Chen 1993 ; Gonthier 1994 ; Kapoor 1995).

this e†ect displays how the shape and size of the pulsar beam is modiÐed. As expected, it will be noticeable only near the
stellar surface. For simplicity in this section we consider only ““ bending ÏÏ without incorporating ““ squeezing.ÏÏ For light
bending we need to consider the null geodesics. We consider equations of motion for a photon propagating in both the
Schwarzschild and Kerr background metrics. First let us discuss the Schwarzschild case. Because of the spherical symmetry of
the Schwarzschild metric, there is no loss of generality if the geodesic is assumed to lie in the equatorial plane. In that case the
polar terms in the metric can be dropped. This amounts to identifying with r@ and setting The angle thenh

g
h
g
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gcorresponds to the magnetic h@. Photons emanating from a point near the neutron star at an angle with respect to ther
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radius vector su†er gravitational bending away from the radial direction, which results in the beam divergence. The angle of
emergence of the photon reaching a remote observer with respect to his radius vector is
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where ! is an affine parameter. In the Schwarzschild background, the geodesic equations can be solved (see, e.g.,
to give the photon 4-velocity components and dr/d!, so thatChandrasekhar 1983) dr
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where q is the so-called impact parameter of the photon. For a photon emitted from at an angle with respect to the radialr
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Thus it is seen that the e†ect of ““ bending ÏÏ is to replace the tangent angle by resulting in a divergence of the beam.k
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where we use the subscript b to denote bending. Like ““ squeezing,ÏÏ ““ bending ÏÏ also depends only on and not on P, a, orm/r
eFor M \ 1.4 and km, as is easy to estimate, the inclusion of light bending widens the pulsar beam by aboutB0. M
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emission altitudes larger than it is ¹1.5%.5R
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,

In order to determine the e†ect of spacetime curvature on the beamwidth in the presence of rotation, we have also
considered the Kerr metric. This makes the bending calculation prohibitively complicated, as the light propagation is no
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FIG. 8.ÈThe inner curve (dots) is the Ñat spacetime polar cap. The outer curve (solid line) shows the polar cap widened due to the gravitational light
bending. The stellar mass and radius are 1.4 and 10 km, respectively.M

_

longer planar. However, for values of the rotational parameter a, relevant for fast pulsars, it suffices to use the Kerr metric in
its weak form. This means neglecting a2 terms in the Kerr metric, compared to terms linear in a. For the sake of completeness
we have evaluated bending using the weak Kerr metric under the assumption that geodesics are conÐned to the equatorial
plane. The integrand in the bending integral now isequation (62)
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where u is the angular velocity of dragging of inertial frames given by

u\ 2J
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and J is the speciÐc angular momentum of the neutron star. The plots similar to using the Kerr metric areFigure 8
indistinguishable from their Schwarzschild counterparts even at and more so at higher altitudes. Henceforth we e†ectr

e
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*light bending using only the Schwarzschild metric.

8. COMBINATION OF ““ SQUEEZING ÏÏ AND ““ BENDING ÏÏ

Both ““ squeezing ÏÏ and ““ bending ÏÏ need to be included to consistently incorporate the general relativistic e†ects. This can be
done easily by combining the procedures described in °° and In is now replaced by (see6 7. equation (64) k
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To summarize, in the absence of ““ squeezing ÏÏ and ““ bending ÏÏ the emission cone is described by equations When(14)È(16).
Ðeld squeezing is included, these relations change over to equations which are essentially equivalent to equations(57)È(59),

If only ““ bending ÏÏ is e†ected, then the corresponding quantities are described by equations Inclusion of(14)È(16). (63)È(66).
both the e†ects is described by equations and The opposing nature of ““ squeezing ÏÏ and ““ bending ÏÏ results in an(69) (70).
overall squeeze of the Ñat spacetime beam by 4% at the surface of a star with M \ 1.4 and km. For andM
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9. ABERRATION IN CURVED SPACETIME

Now we consider how all the kinematical e†ects can be combined. In order to include aberration in the curved spacetime
case, we evaluate and as in equations so that Ðeld squeezing is taken care of. One can then Ðnd andh
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FIG. 9.ÈEmission cones for a \ 60¡, P\ 2~1@2 s, km, M \ 1.4 with ““ squeezing,ÏÏ aberration, and ““ bending ÏÏ (solid line) and without anyR
*

\ 10.0 M
_

,
of these (dots) for various altitudes as labeled. Angular extents are multiplied by (R
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by transforming to rotational coordinates. Aberration is to be performed at this stage before bending is e†ected. Instead of
we useequation (24),
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as the corotation velocity. We then construct and Ðnally as in It may be remembered that in the absence ofhü
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The e†ect of light bending described in (eqs. and amounts to a simple operation of replacing by This° 8 [69] [70]) k
E
@ k

E
@ (O).

simplicity came about as a result of the exploitation of the spherical symmetry of the Schwarzschild spacetime, which allowed
the option of considering the geodesics to lie in the equatorial plane. This simpliÐcation can still be utilized, but some
modiÐcations are necessary. If we still take the geodesics to lie in the equatorial plane of the Schwarzschild coordinates, i.e.,

then in terms of the magnetic coordinates it is the plane containing the radial direction the unbent aberratedh
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Schwarzschild to the magnetic ones is carried out by the rotation matrix R given below. This rotation matrix transforms the
magnetic coordinates of a direction (h@, r@) to its Schwarzschild coordinates such that The Schwarzschild(h
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where the angle between the radial direction and the ““ squeezed,ÏÏ aberrated, but unbent ray, is given byk
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and the angle to which changes after ““ bending,ÏÏ isk
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where with as in the impact parameter to be used now isq0 equation (64),
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A remote observer receives the radiation in the direction. In magnetic coordinates this direction is(h
g
\ n/2, r
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described by and the magnetic coordinates can be obtained by applying the inverse rotation matrix R~1 to(hü
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The expressions for and are no more simple. Note that R~1\ RT and R is equal tohü
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where ( is given by
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The above method of e†ecting aberration in curved spacetime can be used also for the equatorial geodesics in the Kerr
geometry. For emission altitudes beyond the gravitational e†ects, namely, the Ðeld line squeezing and light bending,5R

*
,

become negligible, while it is only for high emission altitudes that aberration becomes e†ective. Therefore, for slow pulsars,
these e†ects can be treated separately as done in the previous sections. It is only for fast (millisecond) pulsars that the
formalism of this section becomes relevant. We intend to discuss the kinematics of beams of fast pulsars elsewhere. The
changes in the emission cone after inclusion of all e†ects (i.e., ““ squeezing,ÏÏ aberration, and ““ bending ÏÏ) are illustrated in

for a typical long-period pulsar for various values of In these Ðgures, light bending is done as for equatorialFigure 9 r
e
.

geodesics in the weak Kerr geometry, although they are indistinguishable from the corresponding Schwarzschild equivalents.

10. DISCUSSION

In this paper we have investigated the pulsar beam shapes obtainable in the polar cap model in a more complete manner
than has been done so far. The e†ects related to the inclination angle a between the magnetic dipole and rotation axes, the
e†ect of special relativistic aberration due to the corotation velocity of the sources, and the e†ect of stellar gravitation on the
dipole magnetic Ðeld geometry and light propagation have been described in the previous sections. We now discuss them in
the same order and assess their importance for pulsar phenomenology.

The dependence of the full emission cone shape on a has been discussed before, and as noted earlier the(Biggs 1990),
latitudinal extent of the emission cone is seen to decrease as a varies from 0 to n/2. This dependence on a is, however, not very
sensitive. The ratio of latitudinal to longitudinal extent, varies from 1(a \ 0) to 0.62 (a \ n/2). What we Ðnd interesting isR

c
,

that the open Ðeld line region is necessarily determined by two branches of open Ðeld lines. The branches are distinguished
only mathematically. However, the part of the polar cap seems naturally relevant as the zone from which the coreh

c
`

component of a pulsar pulse originates, while the conal component can be associated with the region & Shukreh
c
~ (Kapoor

hereafter If such an identiÐcation is made, then because of the sensitive dependence of the region on a, one1996, KS I). h
c
`

would expect a strong a dependence to be manifested in core emission. We have discussed this elsewhere (KS III).
Recently et al. dealt with the e†ect of aberration on the pulsar radio emission. They treated it as aBlaskiewicz (1991)

dynamical feature of the radiation, and to order v2. In contrast, we treat it as a kinematical e†ect, and exactly. As seen in our
and found by et al. the analysis of linear polarization position-angle swings through radio pulsesFigure 6, Blaskiewicz (1991),

will be a†ected by aberration. Until an analysis similar to that of Blaskiewicz et al. (1991) is performed using our formalism,
no further conclusions can be drawn.

We wish, however, to make the following comments concerning the role of aberration in pulsar pulse widths. In the
so-called ““ light cylinder ÏÏ model of pulsar emission (see & Taylor the narrowness of the pulsar beam is aManchester 1977)
consequence of an extreme amount of aberration occurring due to corotation velocities very close to the speed of light. In the
context of the polar cap model, radiation is usually considered to originate from near the star. However, if we take the polar
cap model literally, and follow a bunch of open Ðeld lines away from the star, the extent of the emission zone will increase
roughly as Because of the consequent increase in corotational velocity, one would naively have expected reduction in ther

e
1@2.

apparent size of the emission cone. This does not happen if the full extent of the emission cone is considered as noted at the
end of The upper limit of for the emission altitude is maintained in this case even after aberration is included.° 3. r

e
\ 23rLCThis restriction can be circumvented if only a very small portion of the emission cone, such as the region, is active. Ifh

c
`

di†erent components of the pulsar pulse originate at di†erent altitudes, the relative aberration can introduce a phase shift
between them within the pulse. In we have attributed the core emission to the region, which necessitates higherKS I h

c
`

emission altitudes for the core components compared to the conal ones. This will imply a phase di†erence between the centers
of the core and conal components, as is observationally often seen & Manchester Stinebring, & Weisberg(Lyne 1988 ; Rankin,

The net shift is a result of the opposing contributions from aberration and magnetic Ðeld line sweepback (MFS)1989). (Shitov
An investigation of these e†ects leads to new interrelations among pulsar parameters, such as the emission altitude and1985).

the inclination angle a (KS III).
The e†ect of the stellar gravitational Ðeld on the dipole magnetic Ðeld is to ““ squeeze ÏÏ it. This has been described in for a° 6

general inclination angle a. At this leads to a 14% shrinking of the emission cone. However, at it reduces tor
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, r
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*6.5% and to only 2.5% at Thus it is not signiÐcant for altitudes beyond It should be borne in mind that thisr
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e†ect as well as the light bending mentioned below depend only on the ratio and not on the period P, the surfaceM/r
emagnetic Ðeld strength or the inclination angle a. The e†ect of light bending is opposite to that of Ðeld ““ squeezing ÏÏ andB0,widens the beam. The e†ect of the stellar rotation as incorporated through the use of the weak Kerr metric is totally

insigniÐcant. We have thus e†ected light bending using the Schwarzschild metric and for all values of a. At the stellar surface
the beam is widened by 11%. However, at this Ðgure is reduced to 4.3%, and to 1.5% at Thus itr

e
\ R

*
, r

e
\ 2R

*
r
e
\ 5R

*
.

also is insigniÐcant for altitudes beyond The net e†ect after combining ““ squeezing ÏÏ and ““ bending ÏÏ results in a slight5R
*
.

squeeze of the emission cone which for any a and is at most 4% of its Ñat spacetime value. It is ¹2.4% beyondr
e

r
e
+ 2R

*
.

Because of the small size of the net e†ect, the expressions for the compression and elongation ratios and (see eqs.R
c

R
c
` [17]

and still remain valid. Also, this no longer allows us to conclude rigorously that the core emission cannot emanate from[20])
the stellar surface as was claimed in KS I.

We now present in a nutshell the assessment of the impact of the various e†ects considered here on changing the pulsar
beam shapes. The general relativistic e†ects due to ““ squeezing ÏÏ and ““ bending ÏÏ in combination are very small even at the
stellar surface, owing to their opposing nature. This will be true for all pulsars irrespective of their period and magnetic Ðeld.
The e†ect due to aberration could be noticeable at high emission altitude but will be countered by the opposing e†ect due to
MFS. Thus, surprisingly, the Goldreich-Julian type beam is essentially unaltered by these e†ects. That the emission altitudes
below alone are meaningful if the full emission cone is considered still remains true. It would be of interest to study the23rLCinterplay between aberration and MFS in some models. At a Ðner level these e†ects may be noticeable in observations, and we
will report on these investigations for long-period pulsars in However, the picture may be more complex forKS III.
short-period pulsars. Notice that for the 1.5 ms pulsar Therefore, even for individually none of therLC\ 7.5R

*
. r

e
[ 23rLC,above e†ects need be negligible. The mutual cancellations will, however, make the net e†ect small, although the interplay

between them and its consequent signature in pulses will vary from one to the other short-period pulsar. We expect this to
show up in proÐles of millisecond pulsars and to shed light on the elusive details of the pulsar emission. We shall deal with this
elsewhere.

C. S. S. would like to thank B. R. Iyer and J. Samuel for discussions on geodesics. R. C. K. thanks Baba Varghese and
J. Nathan for software help.
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