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Relativistic magnetic quadrupole transitions in Be-like ions

Sonjoy Majumder and B. P. Das
Indian Institute of Astrophysics, Bangalore-560034, India
~Received 23 May 2000; published 14 September 2000!

The multiconfiguration Dirac-Fock method, based on the extended optimal level approximation, is used to
calculate magnetic quadrupole transitions (M2) from 2s2p(3P2) to 2s2(1S0) states in berylliumlike ions. The
calculation of this transition forZ.6 uses the Dirac-Fock Hamiltonian which is necessary for highly ionized
atoms. The Breit interaction is treated as a first-order perturbation, and its non-negligible contributions to the
excitation energies for heavier ions are highlighted. Some of theM2 transition probabilities results presented
in this paper are calculated for the first time, to our knowledge.

PACS number~s!: 31.15.2p
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I. INTRODUCTION

The possibility that magnetic quadrupole radiation mig
have astrophysical significance for atomic transitions, wh
satisfy the selection ruleDS51, was first pointed out by
Mizushima@1#. Transitions from low-lying excited states t
the ground state of berylliumlike ions are of interest in a
trophysics because of their abundant identifications in
Sun, planetary nebulae~PN!, and quasistellar objects@2#.
They are useful in the spectral diagnostics of those as
nomical objects~for example, the ratio of C/O for most o
the PN can be safely approximated by CIII /O III @3#!. The
abundance of carbon and oxygen also determines the typ
chemistry in the PN precursor’s envelope, whether car
rich or oxygen rich. Because of the lack of data about
properties of the forbidden lines of highly ionized atom
insufficient attention was given to their applications to ast
nomical objects, like hot stars or nebulae, etc. A compreh
sive modeling of a star’s internal structure needs a pre
estimate of its radiative transitions. The evolution of the
ions on the stellar surface could have an influence on
evolution of the star. PN and low-density interstellar mediu
~ISM! exhibit many of the forbidden lines in emission, whic
infer the abundance of these ions@2#. In dense ISM, these
forbidden lines are seen for highly ionized atoms. In a w
these lines describe the abundance of these elements in
axies, which helps in the study of galactic chemical evo
tion. M2 transitions in highly ionized systems occur in u
traviolet and visible emission bands. Therefore, hig
resolution spectrographs of satellites can observe these l
and require that these data be as precise as possible.

Since the strengths of forbidden transitions are rat
weak, it is difficult to determine their rates accurately. T
accuracies of the computed excitation energies and trans
rates depend largely on a balanced treatment of the cor
tion effects, an adequate size of the orbital basis, and
quality of the valence orbitals. The multiconfiguration Dira
Fock ~MCDF! method is the relativistic counterpart of th
multiconfiguration Hartree-Fock~MCHF! theory. Our calcu-
lations of the magnetic quadrupole transition probabilities
the berylliumlike ions are calculated with the MCDF meth
based on the extended optimal level~EOL! approximation
described in the Sec. II. In those calculations, the correcti
of the energies of the atomic states due to the Breit intera
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are included using first-order perturbation theory.
Jönsson and Froese Fischer@4# performed calculations for

doubly ionized carbon with the MCDF-EOL method fo
lowed by the relativistic-configuration-interaction~RCI! cal-
culation. They used a different set of orbitals for the init
and final states. There were a few other calculations for th
transitions@5–8#; the majority of these used the intermedia
coupling approach. Garstang showed that in the nonrela
istic limit the magnetic quadrupole transition probabiliti
are approximately proportional to the square of the elec
dipole matrix element@5#. However, it was shown by Lin
et al. @9# that this approximation is not quite accurate. Th
calculated this line for a few ions of the Be isoelectron
sequence using a semiempirical model potential. T
Z-expansion method used by Laughlin@10# appears to be a
rough estimate, and its accuracy is uncertain. In the pre
work we used a fully relativistic one-electron Hamiltonia
and supplemented it with two-electron Coulomb and Br
terms. To ensure the convergence for each of the app
models and to estimate the error, the calculation is perform
stepwise. The strongZ dependence~approximately }Z8

@11#! of M2 transitions is known, and its relativistic natu
becomes important nearZ517 @5#. We have used the rela
tivistic expression for the magnetic quadrupole moment a
the general relativistic atomic structure package@12# for our
computations.

II. THEORY

The MCDF method uses the relativistic, no-pair Ham
tonian. The Hamiltonian for anN-electron atom is written in
atomic units as

H5(
i 51

N

Hi1 (
i , j ; i , j

N
1

r i j
, ~2.1!

wherer i j 5ur i2r j u, r i ’s are the positions of thei th particle.
Hi is the Dirac Hamiltonian of thei th particle, defined as

Hi5ca•pi1~b21!c21Vnuc~r i !, ~2.2!
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whereVnuc is the potential due to the nucleus. Express
~2.2! is also called theDirac-Coulomb Hamiltonian. The
atomic wave function for theN electron is obtained by solv
ing the equation

HC~P,J,M !5EC~P,J,M !, ~2.3!

whereP is the parity,J is the total angular momentum e
genvalue, andM is the eigenvalue of its projection on thez
axis.

In the MCDF method, the trial wave function is taken
be a linear combination of configuration state functio
~CSF’s!:

uC~P,J,M !&5(
r 51

n

crF r~P,J,M !&. ~2.4!

The CSF’s are eigenfunctions of the parity, total angu
momentumJ2, andJz . The CSF’s are expressed as a line
combination of Slater determinants of Dirac spinors,

F r~P,J,M !&5(
i 51

Ng

di uDi&, ~2.5!

where uDi& is a determinantal wave function built from
single-particle states, and its coefficientsdi are obtained by
requiring that the CSF’s are eigenstates ofJ2 and its projec-
tion Jz . The variational principle is used to determine t
radial wave functions and the mixing coefficientscr self-
consistently. The energy functional that is minimized
given by

Ea5E Ca
†HCadt5(

r ,s
cr* ~a!Hrscs~a!5ca

†Hca

~2.6!

in matrix notation, where the Hamiltonian matrix element
defined by

Hrs5^F r uHuFs&. ~2.7!

Keeping the orbitals fixed, the variation of the energy fun
tional Ea with respect to the mixing coefficients with th
normalization condition̂CauCa&51 yields

~H2EaI !ca50, ~2.8!

i.e., ca is an eigenvector of the Hamiltonian with eigenval
Ea .

Self-consistent field~SCF! equations are obtained by re
quiring that the energy functional should be stationary wh
subject to variations in the radial functions (Pa ,Qa), such
that the orbitals form an orthonormal set. Consider the
ergy functional

E5Eopt1(
a

q̄aeaN~aa!1 (
a,b;aÞb

eabN~ab!, ~2.9!

with
04250
n

s

r
r
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Eopt5(
r

dr
2Hrr 1 (

r ,s;rÞs
drsHrs , ~2.10!

whereq̄a5( rdr
2qa(r ) is the generalized occupation numb

for orbital a, anddr (r 51, . . . ,n), the real coefficients, de
pend on the configuration mixing coefficients and are cho
so that( rdr

251. The Lagrange multipliersea andeab ensure
the normalization and orthogonality conditions, respective

The EOL approximation of the MCDF approach is a
extension of the well known optimal level version@13#. For
the latter case,Eopt5Ea yields dr5cr(a) and drs
5cr(a)cs(a), so that the wave function and mixing coeffi
cients are optimum for the statea. In the EOL approach,
optimization is done on a sum of energies( iE(a i), i
51, . . . ,nL , wherenL,n, and for that case

Eopt5
1

nL
(
i 51

nL

Ea i , ~2.11!

so that

dr5F 1

nL
(
i 51

nL

cr
2~a i !G1/2

~2.12!

drs5
1

nL
(
i 51

nL

cr~a i !cs~a i !. ~2.13!

The relativistic two-electron operator cannot be writt
down in closed form. In QED, the interaction between tw
electrons can be expressed as a series expansion. The
term is the Coulomb interaction, and the leading correct
to it is known as the Breit interaction@14–16#. It is linear in
the fine-structure constant. In the present work, we cons
the Breit interaction as a first-order perturbation. We ha
used the expressions given by Grant and McKenzie to ev
ate the Breit contributions@17#. The Hamiltonian matrix is
constructed and diagonalized to obtain estimates of the m
ing coefficients for the required atomic states@Eq. ~2.8!#.
Starting with these values of the mixing coefficients, the S
equations are solved to obtain new estimates for the orbi
This process is repeated until self-consistency is achiev
The eigenvalues and orbitals obtained in this way are use
calculate different atomic properties. The magnetic quad
pole emission coefficient is given by the expression@18#

Af i5
1

@Jf #
(

Mi ,M f

2pu^C f uM2uC i&u2 ~2.14!

where @ j #52 j 11. The matrix element of the magnet
quadrupole operator,M2, with respect to initial (uC i&) and
final (uC f&) wave functions, can be written in terms of th
CSF as

^C f uM2uC i&5(
rs

cr f csi^F r uM2uFs&, ~2.15!

where
8-2
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RELATIVISTIC MAGNETIC QUADRUPOLE . . . PHYSICAL REVIEW A 62 042508
^F r uuM2uuFs&5(
ab

drs
k ~ab!^fbuuM2uufa&. ~2.16!

The expressions for this single matrix element are

^fbuM2ufa&5S v

pcD 1/2

@ j b#1/2~21!(2 j a1Jb21/2)uM̄abu

3S j b L j a

1

2
0 2

1

2
D ~2.17!

and

M̄ab5
5

A6
~ka1kb!I L~v! ~2.18!

and

I L~v!5E
0

`

~PaQb1QaPb!JLS vr

c Ddr. ~2.19!

P and Q are the large and small components of the wa
function, respectively, andJL is the spherical Bessel functio
of orderL.

III. RESULTS AND DISCUSSION

We have employed the MCDF approach in the EOL a
proximation to calculate excitation energies and the magn
quadrupole transition rates for selected ions of the berryl
sequence. The advantage of this approach is that it is cap
of taking into account a large class of electron correlat
effects with a relatively small number of virtual orbitals. Th
intermediate coupling method was used to calculate m
netic quadrupole transition probabilities for a few Be-li
ions @6–8#. In this method, different basis sets are used
the diagonalization of the different parts of the Hamiltonia
The Coulomb part is diagonalized with respect to theLS-
coupled basis, and the spin-orbital part with respect to
JJ-coupled basis. ForZ<12 Tachiev and Froese Fischer@19#
used this approach in the framework of the multiconfigu
tion Hartree-Fock method supplemented by the the Br
Pauli corrections~the MCHF1BP approach!. There is a
small difference between those results and ours, mainly
cause of the choice of the orbital basis and the incomp

TABLE I. Comparison of the percentages of differences of c
culated excitation energies from experimental values between
MCHF1BP and MCDF1Breit ~first-order correction! methods.

Z MCHF1BP MCDF1Breit

6 0.287 0.119
7 0.231 0.075
8 0.187 0.057
9 0.219 0.057

10 0.284 0.029
04250
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treatment of the relativistic effects in their approaches. O
calculated excitation energies are in better agreement
the experimental values~wherever available! than the other
calculations. The superiority of the MCDF-EOL metho
~with the Breit interaction! over the MCHF1BP method is
obvious from Table I~MCHF1BP excitation energies dat
are taken from Froese Fischer’s web page : htt
www.vuse.vanderbilt.edu/ cff/cff.html!. This table shows the
percentage of the differences of the calculated excitation
ergies from the experimental values. The accuracy is m
better in the case of the MCDF-EOL method, and it stead
improves for higherZ values.

Our computations consist of several steps. We start w
the Dirac-Fock calculation, and then optimize the tw
2s2(1S0) and 2s2p(3P2) states~levels! with respect to sta-
tionary criteria@see Eq.~2.9!#. In each of the following steps
one new orbital~to avoid the problem of computational con
vergence! is added to the old set and optimization is done
the required sum of the state energies using that basis. In
EOL calculations we have optimized the lowest five ene
states@i.e., nL55 in Eq. ~2.11!#.

Since we are interested in optimizing the 2s2(1S0) and
2s2p(3P2) states, we have chosen CSF’s which contrib
to these two states. As the states are of opposite parities,
those CSF’s will contribute which have the same parity a
total angular momentum as either one of the above
states. Our orbital basis is constructed from 1s, 2s, 3s, 4s,
2p, 3p, 4p,3d, 4d, and 4f orbitals. The CSF’s are con
structed by taking all the possible excitations from thes

-
he

TABLE II. Contributions of the Breit interaction to the excita
tion energies~in cm21).

Z Contributions toDE

6 19.84
7 35.93
8 59.11
9 91.28

10 131.67
11 185.67
12 253.70
13 340.02
14 443.40
15 570.07
17 895.77
18 1090.02
19 1322.64
20 1593.19
22 2247.92
26 4117.06
28 5363.68
30 6903.70
35 12047.52
40 19560.90
45 30095.86
50 44362.98
55 63024.75
8-3
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SONJOY MAJUMDER AND B. P. DAS PHYSICAL REVIEW A62 042508
and 2s orbitals to the other virtual orbitals apart from qua
rupole excitations to the 4d and 4f orbitals.

The convergence of the MCDF orbitals is significan
improved as the value ofZ increases. In Table II, we give th
contributions of the Breit interaction to the excitation en
gies. As expected, they increase withZ. This leads to a sig-
nificant change in theM2 transition rates as they are propo
tional to the fifth power of the excitation energies. The effe
of Breit interaction on the excitation energies is plotted
various ionized atoms in Fig. 1. This figure shows that
calculation gives very good agreement with the NIST ta
lated values for the excitation energies when the Breit in
action is taken into consideration.

In Table III, we present the excitation energies of t
2s2p 3P2 state from the ground states for differentZ values.
The standard values are taken from NIST online datab
and, in a few cases, where there are some differences
tween our calculated excitation energies and the stan
values, we compare our results with the unpublished dat
Kelly ~indicated as ‡). ForZ values of 35, 40, 45, 50, and 5
there are no data available in the literature. Table III sho
excellent agreement between our calculations and the N
data. For low-Z ions, the difference between the standa
values and our calculated values is on average,50 cm21,
which is well within the limit of the former. We can improv
these calculations if we consider some more orbitals in
active space, but that is computationally expensive
can create convergence problems. In our calculation th
is a change in the ordering of 1s22p1/2

2 (1S0) and
1s22s1/22p3/2(

3P2) states for highly ionized Be-like atom
(Z545, 50, and 55!. This is because of the rather large co
traction of the 2p1/2 orbital for ions with largeZ.

Unlike the allowed electric dipole transition betwee
1s22s2(1S0) and 1s22s2p(1P1) states, the most importan
contributions to theM2 transition between 1s22s2(1S0) and
1s22s2p(3P2) do not come from the Hartree-Fock config
rations. In the latter case one of the dominant contributi
come from the matrix elemen
^1s2s3s3p1/2(

3P2)uM2u1s2s3p1/23p3/2(
1S0)& for all the

ions. Table IV shows how this contribution changes with t

FIG. 1. The effect of Breit interaction on the excitation energi
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value of Z. This contribution decreases as the value ofZ
increases.

In Table V, transition decay rates are given fro
2s2p 3P2 state to the ground state. It is clear that all t
calculations are in fairly good agreement. The small discr
ancies are due to the way in relativistic and the ma
electron effects are incorporated in the different metho
Most of the other calculations have used relativistic corr
tions to the nonrelativistic interaction Hamiltonian term
obtain the magnetic quadrupole moment operator. For d
bly ionized carbon, Jo¨nsson and Froese Fischer@4# calcu-
lated the same transition probability with the MCDF-EO
1RCI method~with the Breit interaction and biorthogona

.

TABLE III. Excitation energies~in cm21) from the ground
state.

2s2p( 3P2)
Z NIST EOL

6 52447.11 52509.6
7 67416.3 67467.1
8 82385.3 82432.7
9 97437 97493.2

10 112704 112736.7
11 128218 128247.4
12 144091 144117.4
13 160429 160439.9
14 177318 177320.6
15 194856 194861.8
17 232660a 232410.5
18 252683 252688.1
19 274090a 274143.4
20 296950 296933.5
22 347240 347200.8
26 471780 471784.7
28 549500 549579.8
30 640470 640263.8
35 938933.4
40 1373896.5
45 1995158.4
50 2864042.8
55 4054174.1

aFrom Kelly’s unpublished work~http://physics.nist.gov/cgi-bin/
AtData/main-asd!.

TABLE IV. ^1s2s3s3p1/2(
3P2)uM2u1s2s3p1/23p3/2(

1S0)& ma-
trix element values for differentZ’s.

Z Value

6 1.15736~22!a

16 4.12406~23!

28 2.23929~23!

40 1.50165~23!

50 1.17056~23!

aThe notationa(b) implies a310b.
8-4
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TABLE V. Transition rate~in sec21) from 2s2p(3P2) to the ground state.

Z l(Å) EOL MCHF1BP Glass Others

6 1906.7 5.176~23! 5.193~23! 5.261~23! 5.139a,5.215~23!b

7 1483.3 1.147~22! 8.772~23! 1.161~22! 1.13~22!c

8 1213.8 2.152~22! 1.602~22! 2.171~22! 2.17~22!c

9 1025.7 3.633~22! 2.897~22! 3.700~22!

10 887.0 5.720~22! 5.235~22! 5.838~22! 5.76~22!c

11 779.7 8.572~22! 7.997~22!

12 693.9 1.239~21! 1.177~21! 1.269~21! 1.25~21!c

13 623.3 1.745~21!

14 563.9 2.410~21! 2.460~21! 4.8d,2.38~21!c

15 513.2 3.281~21!

16 466.5 4.461~21! 4.55~21!c

17 430.3 5.906~21!

18 395.7 7.858~21! 7.993~21!

19 364.8 1.0423
20 336.8 1.3804 1.405 1.41c

22 288.0 2.4234
24 244.8 4.433
26 211.9 7.6459 7.930 7.69c,10.2d

28 181.9 1.3824~1! 13.8c

30 156.2 2.5289~1!

35 106.5 1.1899~2!

40 72.8 5.8742~2!

45 50.1 2.8789~3!

50 34.9 1.3675~4!

55 24.7 6.2006~4!

aReference@4#. cReference@7#.
bReference@8#. dReference@10#.
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basis set!. There is very good agreement between our re
and theirs. Our result agrees with their result~they also have
calculated transition probability using the observed transit
energy! if we use the standard excitation energy value for
M2 transition probability calculation. Thus the small di
crepancy is mainly due to the details of the optimization
the orbitals. As expected for low-Z ions, our results are no
different from all the other results obtained using relativis
corrections. But for heavier ions the discrepancies are lar
M2 transition probabilities are not available in the literatu
for many of the highly ionized atoms.

IV. CONCLUSION

The MCDF-EOL method was applied to compute the e
citation energies and theM2 transition probabilities of Be-
04250
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like ions. The accuracy of the computed excitation energ
is in excellent agreement with the NIST database. This w
highlights a number of unique and desirable features of
MCDF-EOL method for highly ionized atoms. For instanc
the MCDF-EOL calculations yield results with reasonab
accuracy using a fewer number of virtual orbitals than so
of the other atomic many-body approaches. Also, the imp
tance of the Breit interaction has been highlighted.
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