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ABSTRACT
We calculate the temperature proÐles of (thin) accretion disks around rapidly rotating neutron stars

(with low surface magnetic Ðelds), taking into account the full e†ects of general relativity. We then con-
sider a model for the spectrum of the X-ray emission from the disk that is parameterized by the mass
accretion rate, the color temperature, and the rotation rate of the neutron star. We derive constraints on
these parameters for the X-ray source Cygnus X-2 using the estimates of the maximum temperature in
the disk along with the disk and boundary layer luminosities, using the spectrum inferred from the
EXOSAT data. Our calculations suggest that the neutron star in Cygnus X-2 rotates close to the cen-
trifugal mass-shed limit. Possible constraints on the neutron star equation of state are also discussed.
Subject headings : accretion, accretion disks È stars : individual (Cygnus X-2) È stars : neutron È

stars : rotation È X-rays : stars

1. INTRODUCTION

The soft X-ray spectra of luminous low-mass X-ray
binaries (LMXBs) are believed to originate in the geometri-
cally thin accretion disks around neutron stars with weak
surface magnetic Ðelds (see, e.g., White 1995). An important
parameter in modeling these spectra is the maximum value
of the e†ective temperature in the accretion disk. The e†ec-
tive temperature proÐle in the disk can be estimated
(assuming that the disk radiates from its surface like a
blackbody) if one knows the accretion energy released in the
disk. In a Newtonian treatment, the innermost region of an
accretion disk surrounding a neutron star with a weak mag-
netic Ðeld will extend rather close to the neutron star
surface. The amount of energy released in the disk will be
one-half of the total accretion energy, the other half being
released in the thin boundary layer between the disk inner
edge and the neutron starÏs surface. This then gives the disk
an e†ective temperature that varies with the radial dis-Tefftance r as and the maximum e†ective tem-Teff P r~3@4,
perature will depend on the (nonrotating) neutron starT effmax
mass M and the radius R as whereT effmaxP (MM0 /R3)1@4, M0
is the steady state mass accretion rate. In this approach, the
value of in the disk occurs at a radial distance of 1.36T effmax
R.

Mitsuda et al. (1984) parameterized the disk spectrum by
the maximum temperature of the disk using the above for-
malism and assumed that the mass of the neutron star is
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equal to 1.4 These authors assumed that the innerM
_

.
parts of the disk did not contribute to the X-ray spectrum
and suggested a multicolor spectrum for the X-ray emission
from the disk. It was shown by these authors that the
observed spectra of Sco X-1, 1608[52, GX 349]2, and GX
5-1, obtained with the Tenma satellite, can be well-Ðtted
with the sum of a multicolor spectrum and a single black-
body spectrum (presumably coming from the boundary
layer). White, Stella, & Parmar (1988) (WSP) suggested that
the simple blackbody accretion disk model should be modi-
Ðed to take into account the e†ects of electron scattering.
Using EXOSAT observations, these authors compared the
spectral properties of the persistent emission from a number
of X-ray burst sources with various X-ray emission models.
Their work suggests that either the neutron star (in each
system considered) rotates close to equilibrium with the
Keplerian disk or that most of the boundary layer emission
is not represented by a blackbody spectrum.

For accretion disks around compact objects, one possi-
bility is that the accretion disk is not Keplerian in nature.
For example, Titarchuk, Lapidus, & Muslimov (1998) have
formulated a boundary problem in which the Keplerian
accretion Ñow in the inner disk is smoothly adjusted to the
neutron star rotation rate. The generality of such a formula-
tion permits application even to black holes but only for
certain assumed inner boundary conditions. These authors
demonstrate that there exists a transition layer (having an
extent of the order of the neutron star radius) in which the
accretion Ñow is sub-Keplerian. An attractive feature of this
formalism is that it allows super-Keplerian motion at the
outer boundary of the transition layer, permitting the for-
mation of a hot blob that ultimately bounces out to the
magnetosphere. This formalism (Osherovich & Titarchuk
1999a, 1999b ;Titarchuk & Osherovich 1999 ; Titarchuk,
Osherovich, & Kuznetsov 1999) therefore provides a
mechanism for the production of high-frequency quasi-
periodic oscillations (QPOs) observed in the X-ray Ñux

473



474 BHATTACHARYYA ET AL. Vol. 542

from several LMXBs. Such e†ects, when taken into account,
can modify the Newtonian disk temperature proÐle
(Chakrabarti & Titarchuk 1995).

There are several other e†ects that will modify the New-
tonian disk temperature proÐle, such as the e†ects of
general relativity and of irradiation of the disk by the
central neutron star. The wind mass loss from the disk and
the residual magnetic Ðeld near the disk inner edge may also
play a part in modifying the e†ective temperature (Knigge
1999). Czerny, Czerny, & Grindlay (1986) calculated the
LMXB disk spectra assuming that a disk radiates locally as
a blackbody with the energy Ñux determined by viscous
forces as well as irradiation by the boundary layer and took
into account relativistic e†ects, some of them in an approx-
imate way. The possible e†ects of general relativity were
also discussed by Hanawa (1989), using the Schwarzschild
(nonrotating) metric and assuming that the neutron star
radius is less than the radius of the innermost stable circular
orbit which he identiÐed as the disk inner(rin\ 6 GM/c2),
boundary. The color temperature was assumed to be higher
than the e†ective temperature by a factor of 1.5. It was
found by Hanawa (1989) that the observations are consis-
tent with a geometrically thin, optically thick accretion disk
whose inner edge is at with r being the Schwarzs-r \ rin,child radial coordinate.

An important dynamical aspect of disk accretion onto a
weakly magnetized neutron star is that the neutron star will
get spun up to its equilibrium period, which is of the order
of milliseconds (see Bhattacharya & van den Heuvel 1991
and references therein). The e†ect of rotation is to increase
the equatorial radius of the neutron star and also to relo-
cate the innermost stable circular orbit (for a corotating
disk) closer to the stellar surface (as compared to the Sch-
warzschild case). These e†ects will be substantial for rapid
rotation rates in a fully general relativistic treatment that
includes rotation. Therefore, for accreting neutron stars
with low magnetic Ðelds, the stellar radius can be greater or
less than the radius of the innermost stable orbit, depending
on the neutron star equation of state (EOS) and on the
spacetime geometry. The e†ect of the magnetic Ðeld will be
to constrain the location of the inner edge of the accretion
disk to the magnetospheric radius. In such a case,(Alfve� n)

would lose the astrophysical relevance that is discussedrinhere. However, this will be so only if the magnetic Ðeld
strength B is large. The problem addressed in this paper
refers to LMXBs that contain old neutron stars that are
believed to have undergone sufficient magnetic Ðeld decay
(Bhattacharya & Datta 1996). Clearly, for low magnetic
Ðeld case, a number of di†erent disk geometries will be
possible if the general relativistic e†ects of rotation are
taken into account. These structural di†erences inÑuence
the e†ective temperature proÐle, and the conclusions
derived by Czerny et al. (1986) and Hanawa (1989) are likely
to be modiÐed.

In this paper we attempt to highlight the e†ects of general
relativity and the rotation of the neutron star on the accre-
tion disk temperature proÐle and then apply them to the
particular case of the X-ray source Cygnus X-2. For simpli-
city, we (unlike Titarchuk et al. 1998) assume the accretion
disk to be fully Keplerian, geometrically thin, and optically
thick. We Ðrst give a theoretical estimate of the modiÐ-
cations in that would result if the inclusion of theT colmax
rotational e†ects of general relativity were made and illus-
trate these modiÐcations by taking representative neutron

star EOSs. We then consider a model for the spectrum
parameterized by the mass accretion rate, the color factor,
and the rotation rate of the accreting neutron star (assumed
to be weakly magnetized). We derive constraints on these
parameters for the X-ray source Cygnus X-2, for which we
take the estimates of the disk luminosity, and theT effmax,
boundary layer luminosity from the analysis of WSP. A
conclusion of our work is that the neutron star in Cygnus
X-2 has a rapid spin rate close to the centrifugal mass-shed
limit.

The format of this paper is as follows : In ° 2 we discuss
the rotational general relativistic e†ects on the disk tem-
perature using a formalism given by Page & Thorne (1974),
and we also discuss the disk irradiation by the neutron star.
The theoretical predictions for the temperature proÐles with
these e†ects taken into account are presented in ° 3. Section
4 deals with the comparison of observations and its implica-
tions for the parameters of our model for Cygnus X-2. A
summary and discussions are presented in ° 5.

2. THE EFFECTIVE TEMPERATURE OF THE DISK

2.1. E†ects of General Relativity and Rotation
The e†ective temperature in the disk (assumed to be opti-

cally thick) is given by

Teff \ (F/p)1@4 , (1)

where p is the Stephan-Boltzmann constant and F is the
X-ray energy Ñux per surface area. We use the formalism
given by Page & Thorne (1974), who gave the following
general relativistic expression for F emitted from the surface
of an (geometrically thin and nonÈself-gravitating) accretion
disk around a rotating black hole :

F(r) \ M0
4nr

f (r) , (2)

where

f (r) \ [)K,r(E3 [ )K l8)~2
P
rin

r
(E3 [ )K l8)l8,r dr . (3)

Here is the disk inner edge radius, and are the speciÐcrin E3 l8
energy and the speciÐc angular momentum of a test particle
in a Keplerian orbit, and is the Keplerian angular veloc-)Kity at radial distance r. In our notation, a comma followed
by a variable as subscript to a quantity represents a deriv-
ative of the quantity with respect to the variable. Also, in
this paper, we use the geometric units c\ G\ 1.

For accreting neutron stars located within the diskÏs
inner edge, the situation is analogous to the black hole
binary case, and the above formula, using a metric describ-
ing a rotating neutron star, can be applied directly for our
purpose. However, unlike the black hole binary case, there
can be situations for neutron star binaries where the
neutron star radius exceeds the innermost stable circular
orbit radius. In such situations the boundary condition,
assumed by Page & Thorne (1974), that the torque vanishes
at the disk inner edge, will not be strictly valid. The use of
equation (1) will then be an approximation. This will a†ect
the temperatures close to the disk inner edge but not T effmax
to any signiÐcant degree (see ° 5 for discussion).

In order to evaluate using equation (1), we need toTeffknow the radial proÐles of and For this, we ÐrstE3 , l8, )K.
have to compute the equilibrium sequences of neutron stars
in rapid rotation. These can be calculated by noting that the
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spacetime around a rotating neutron star can be described
by the following metric (Cook, Shapiro, & Teukolsky 1994) :

ds2\ gjb dxj dxb (j, b \ 0, 1, 2, 3)

\ [ec`o dt2] e2a(dr6 2] r6 2dh2)
]ec~or6 2 sin2 h(d/[ u dt)2 , (4)

where the metric potentials c, o, a, and the angular velocity
(u) of local inertial frame with respect to an observer at
inÐnity are all functions of the quasi-isotropic radial coordi-
nate and the polar angle (h) ; is related to the Schwarzs-(r6 ) r6
child radial coordinate (r) through the equation r \
r6 e(c~o)@2.

On the assumptions that the matter is a perfect Ñuid and
that the spacetime described by metric (4) is stationary,
axisymmetric, asymptotically Ñat, and reÑection-symmetric
(about the equatorial plane), the Einstein Ðeld equations
reduce to three nonhomogeneous, second-order, coupled
di†erential equations (for c, o, and u) and one ordinary
di†erential equation (for a) in terms of v and P (the total
energy density and the pressure of neutron star matter,
respectively) in addition to terms involving c, o, u, and a
(see Komatsu, Eriguchi, & Hachisu 1989). We have solved
these equations (self-consistently and numerically) to obtain
c, o, u, a, P, and ) (which is the angular velocity of the
neutron star matter as measured by a distant observer) as
functions of and h. The angular velocity enters into ther6
equations through the rotation law (which must be
speciÐed) for the matter distribution. The equilibrium solu-
tions so obtained can then be used to calculate bulk struc-
ture parameters such as gravitational mass M, equatorial
radius R, angular momentum J, etc., of the rotating neutron
star. We assume that the neutron star rotates rigidly. Thus,
) is constant for the stellar matter distribution and is taken
to be equal to where is deÐned as the angular veloc-)

*
, )

*ity of the neutron star as measured by a distant observer.
Equation (1) gives the e†ective disk temperature withTeffrespect to an observer comoving with the disk. From the

observational viewpoint, this temperature must be modi-
Ðed, taking into account the gravitational redshift and the
rotational Doppler e†ect. In order to keep our analysis trac-
table, we use the expression given in Hanawa (1989) for this
modiÐcation :

1 ] z\
A
1 [ 3M

r
B~1@2

. (5)

With this correction for 1 ] z, we deÐne a temperature rele-
vant for observations as(Tobs)

Tobs\
1

1 ] z
Teff . (6)

2.2. Computation of andE3 , l8, )K
For the work presented in this paper, we compute con-

stant gravitational mass (M) equilibrium sequences for
rigidly and rapidly rotating neutron stars using the formal-
ism described above (see Datta, Thampan, & Bombaci 1998
for details), keeping in mind the importance of the param-
eters M and for modeling the X-ray emission from)

*LMXBs. These sequences are constructed starting from the
static limit all the way up to the rotation rate corresponding
to the centrifugal mass-shed limit. The latter limit corre-
sponds to the maximum for which centrifugal)

*
(\)ms)forces are able to balance the inward gravitational force. We

now brieÑy describe how the quantities and areE3 , l8, )Kcalculated ; for details, the reader is referred to Thampan &
Datta (1998). For a material particle in the gravitational
Ðeld described by metric (4), we can write down the equa-
tion of motion in the equatorial plane (see, e.g., Misner,
Thorne, & Wheeler 1973). These will be in terms of u,E3 , l8, r6 ,
and the metric coefficients. The equation of motion in the
radial direction deÐnes the e†ective gravitational potential.
The two conditions for orbits (circularity and extremum) at
any r yield values for and as given byE3 l8

E3 [ ul8 \ e(c`o)@2
J1 [ v2

, (7)

l8 \ vr6 e(c~o)@2
J1 [ v2

, (8)

where is the physical velocity of thev\ ()[ u)r6 e~o sin h
matter. The equations of motion in the azimuthal direction
and in the time direction yield the Keplerian angular veloc-
ity :

)K \ e2o(r6 ) l8/r6 2
(E3 [ ul8)

] u(r6 ) . (9)

2.3. Computation of andEBL E
D

We deÐne the speciÐc gravitational energy release due to
the ingress of a material particle from inÐnity to the disk
inner edge as and that due to the particle spiraling inED,
from the disk inner edge to the surface of the star as the
boundary layer energy For the case where the diskEBL.inner edge coincides with the stellar surface, is the dif-EBLference in the energy of the particle in a Keplerian orbit at
r \ R and that when it is at rest on the stellar surface. The
exact expressions for and are determined by theEBL EDe†ective potential corresponding to any given spacetime
metric. For the Schwarzschild metric and the ““ slow ÏÏ-
rotation Hartle-Thorne metric, the boundary layerÈtoÈdisk
luminosity ratio has been calculated by Sunyaev & Shakura
(1986) and Datta, Thampan, & Wiita (1995), respectively.
Calculations of and corresponding to the metric (4)EBL EDand used for the modeling in this paper are discussed in
detail in Thampan & Datta (1998).

2.4. Disk Irradiation by the Neutron Star
For luminous LMXBs, there can be substantial irradia-

tion of the disk surface by the radiation coming from the
neutron star boundary layer. The radiation temperature at
the surface of a disk irradiated by a central source is given
by (King, Kolb, & Burderi 1996)

Tirr(r) \
CgM0 c2(1[ b)

4npr2
h
r

(n [ 1)
D1@4

, (10)

where g is the efficiency of conversion of accreted rest mass
to energy, b is the X-ray albedo, h is the half-thickness of the
disk at r, and n is given by the relation h P rn. For the actual
values of b, h/r, and n needed for our computation here, we
choose the same values (i.e., 0.9, 0.2, and 9/7, respectively) as
given in King et al. (1996). Although the above equation is
derived based on Newtonian considerations, corrections
due to general relativity (including that of rapid rotation)
will be manifested through the factor g. We have made a
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general relativistic evaluation of g for various neutron star
rotating conÐgurations, corresponding to realistic neutron
star EOS models , as described in Thampan & Datta (1998).
Since and will dominateTirr(r)P r~1@2 Teff(r)P r~3@4, Tirrover only at large distances. The net e†ective tem-Teffperature of the disk will be given by (see Vrtilek et al. 1990)

Tdisk(r)\ [T eff4 (r)] T irr4 (r)]1@4 . (11)

For the Cygnus X-2 modeling presented here, we Ðnd that
does not play any signiÐcant role. However, since thisTirrquantity has consequences for the disk instability, we calcu-

late it using equation (10) and illustrate it for the rotating
neutron star models considered here.

3. RESULTS FOR THE DISK TEMPERATURE PROFILE

3.1. Neutron Star Equations of State
The neutron star EOS is an important determining factor

for the structure parameters of the star. A variety of neutron
star EOSs is available in the literature, ranging from very
soft to very sti† models. For the purpose of our calculation,
we have chosen four EOS models : (A) Pandharipande
(1971) (hyperons), (B) Baldo, Bombaci, & Burgio (1997)
(AV14 ] 3bf), (C) Walecka (1974), and (D) Sahu, Basu, &
Datta (1993). Of these, model A is soft, model B is interme-
diate in sti†ness, and models C and D are sti† EOS. With
this representative choice of EOS, the results of our calcu-
lations are expected to be of sufficient generality.

3.2. T he Results
We have calculated the disk temperature proÐles for

rapidly rotating, constant gravitational mass sequences of
neutron stars in general relativity. For our purpose here, we
choose two values for the gravitational mass, namely, 1.4

and 1.78 the former being the canonical mass forM
_

M
_

,
neutron stars (as inferred from binary X-ray pulsar data),
while the latter is the estimated mass for the neutron star in
Cygnus X-2 (Orosz & Kuulkers 1999). It may be noted with
caution (Haberl & Titarchuk 1995) that this value is not
conÐrmed from X-ray burst spectral analysis. We use the
value of M \ 1.78 for the illustration of our results andM

_leave the issue for future conÐrmation. In order to make a
comparison with observations of Cygnus X-2, we need to
calculate the values of the and as functions ofEBL, ED, T effmax
the stellar rotation rate for the above chosen values of)

*the gravitational mass (M).
In Table 1 we list the values of the stellar rotation rate at

centrifugal mass shed limit the neutron star radius R ;)ms ;the radius of the inner edge of the disk and therin ; EBL, ED,
ratio and and and for the twoEBL/ED ; T effmax T obsmax reffmax robsmax
mentioned values of M and for the di†erent EOS models.
The last nine computed quantities are given for two values
of neutron star rotation rate, namely, the static limit ()

*
\

and the centrifugal mass shed limit The0) ()
*

\ )ms).quantities and are in speciÐc units (i.e., units ofED EBLrest energy of the accreted particle). The temperaturesm0c2are expressed in units of K (whereM0 171@4 ] 105 M0 17 \
g s~1). From this table it may be seen that for aM0 /1017

given neutron star, gravitational mass (M) : (1) )msdecreases for increasing sti†ness of the EOS model. (2) The
radius R is greater for sti†er EOSs. (3) The behavior of rindepends on whether or and hence appearsrms [R rms \R
nonmonotonic. (4) The energy for the nonrotating con-EBLÐguration decreases with the sti†ness of the EOS. For a
conÐguration rotating at the mass shed limit, is insig-EBLniÐcant. (5) In the nonrotating limit, remains roughlyEDconstant for the varying sti†ness of the EOS model.
However, for the rapidly rotating case, the value of ED

TABLE 1

THEORETICALLY COMPUTED PARAMETERS

MODEL A MODEL B MODEL C MODEL D

PARAMETER ) 1.4 M
_

1.4 M
_

1.78 M
_

1.4 M
_

1.78 M
_

1.4 M
_

1.78 M
_

)ms ( 103 rad s ~1) . . . . . . . . . 11.026 7.001 8.219 6.085 6.808 4.652 5.088
R ( km) . . . . . . . . . . . . . . . . . . . . . . )\ 0 7.46 11.01 9.84 12.28 12.32 14.74 15.76

)\ )ms 11.44 15.72 15.19 17.26 17.28 20.74 21.16
rin ( km) . . . . . . . . . . . . . . . . . . . . . )\ 0 12.40 12.41 15.81 12.41 15.75 14.74 15.79

)\ )ms 11.44 15.72 15.19 17.26 17.28 20.74 21.16
EBL ( m0 c2) . . . . . . . . . . . . . . . . . )\ 0 0.275 0.153 0.262 0.128 0.185 0.097 0.136

)\ )ms 9.0 E-5 5.0 E-5 5.0 E-5 4.0 E-5 1.4 E-4 1.4 E-4 6.0 E-5
ED ( m0 c2) . . . . . . . . . . . . . . . . . . )\ 0 0.057 0.057 0.057 0.057 0.057 0.055 0.057

)\ )ms 0.073 0.057 0.071 0.053 0.064 0.045 0.054
EBL/ED . . . . . . . . . . . . . . . . . . . . . . )\ 0 4.809 2.673 4.574 2.248 3.239 1.779 2.387

)\ )ms 1.0 E-3 9.0 E-4 7.0 E-4 8.0 E-4 2.0 E-3 3.0 E-3 1.0 E-3
T effmax ( M0 171@4 ] 105 K) . . . . . . )\ 0 47.64 47.64 42.16 47.64 42.16 45.98 42.16

)\ )ms 56.94 46.54 49.28 43.80 45.45 38.32 39.42
reffmax ( km) . . . . . . . . . . . . . . . . . . . )\ 0 19.76 19.76 25.18 19.75 25.06 21.13 25.16

)\ )ms 16.14 21.64 21.42 23.68 24.05 28.39 29.21
T obsmax ( M0 171@4 ] 105 K) . . . . . . )\ 0 39.98 39.98 35.05 39.98 35.05 38.87 35.05

)\ )ms 45.99 39.98 39.98 37.79 37.79 33.95 33.95
robsmax ( km) . . . . . . . . . . . . . . . . . . . )\ 0 22.29 22.31 28.45 22.31 28.30 23.44 28.41

)\ )ms 18.70 23.69 24.58 25.60 26.90 30.14 31.72

NOTE.ÈCentrifugal mass shed limit the neutron star radius (R), the disk inner edge radius the speciÐc gravitational energy()ms), (rin),release in the boundary layer and in the disk their ratio the maximum e†ective temperature the radial location(EBL) (ED), (EBL/ED
), (T effmax),

in the disk corresponding to and (see text), and the radial location corresponding to this. These values are listed for(reffmax) T effmax T obsmax (robsmax)
two values of M for all of the EOS models considered here (except for EOS model [A], where the maximum neutron star mass is less than
1.78 so only M \ 1.4 is considered). The number following the letter E represents powers of 10.M

_
, M

_
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FIG. 1.ÈDisk inner edge radius curve 1) and neutron star radius (R ; curve 2) as functions of the neutron star angular velocity for various EOS(rin ; ()
*
)

models. The curves are for a Ðxed gravitational mass (M \ 1.4 of the neutron star.M
_

)

decreases with increasing sti†ness. (6) The ratio inEBL/EDstatic limit is highest for the softest EOS model. For the
rapidly rotating case, this ratio is uniformly insigniÐcant. (7)
The temperatures and decrease with increasingT effmax T obsmax
sti†ness of the EOS models. However, these values exhibit
nonmonotonic variation with (see Fig. 5 for the Ðrst)

*parameter). (8) The rest of the parameters, namely, andreffmax
are nonmonotonic with respect to the EOS sti†nessrobsmax,

parameter.
In Figure 1 we display the variation of R (dashed curve)

and (continuous curve) with for M \ 1.4 for therin )
*

M
_four EOS models that we have chosen. From this Ðgure it is

seen that for a constant gravitational mass sequence, and
for both soft and intermediate EOS models, for slowrin[ R
rotation rates, whereas for rapid rotation rates Inrin\ R.
other words, for neutron stars spinning very rapidly, the
inner edge of the disk will almost coincide with the stellar
surface. It may be noted that for the sti† EOS models, this
condition obtains even at slow rotation rates of the neutron
star.

It is instructive to make a comparison between the tem-
perature proÐles calculated using a Newtonian prescription
with that obtained in a relativistic description using the
Schwarzschild metric. This is shown in Figure 2 for the EOS
model B and M \ 1.4 (the trend is similar for all theM

_EOS models). The vertical axis in this Ðgure is (in thisTeffand all other Ðgures except Fig. 6 the temperatures are
shown in units of K), and in the horizontal axisM0 171@4 ] 105
the radial distance is in kilometers. This Ðgure underlines
the importance of general relativity in determining the acc-
retion disk temperature proÐles ; the Schwarzschild result
for is always less than the Newtonian result, and, forT effmax

the neutron star conÐguration considered here, the overesti-
mate is almost 25%. For the sake of illustration, we also
show the corresponding curve for a neutron star rotating at
the mass shed limit (curve 4, Fig. 5). The disk inner edge is at
the radius of the innermost stable circular orbit for all the
cases. Note that the disk inner edge should be at R for

FIG. 2.ÈGeneral relativistic corrections to the Newtonian temperature
proÐles for EOS model B and the neutron star gravitational mass M \ 1.4

Curve 1 corresponds to the Newtonian case, curve 2 to the Schwarzs-M
_

.
child case, and curve 3 to a neutron star rotating at the centrifugal mass
shed limit, calculated using the metric (4). For curve 1, it is assumed that

In this and all subsequent Ðgures (except Fig. 6) the tem-rin \ 6GM/c2.
perature is expressed in units of 105 K, where is the steady stateM0 171@4 M0 17mass accretion rate in units of 1017 g s~1.
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FIG. 3.ÈTemperature proÐles incorporating the e†ects of rotation of
the neutron star. The plots correspond to (a) EOS model B and an
assumed neutron star mass of M \ 1.4 for rotation rates (curveM

_
)

*
\ 0

1), rad s~1 (curve 2), rad s~1 (curve 3),)
*

\ 3.647] 103 )
*

\ 6.420] 103
and rad s~1 \ (curve 4), and (b) the same assumed)

*
\ 7.001 ] 103 )msmass and for the EOS models A (curve 1), B (curve 2), C (curve 3),)

*
\)msand D (curve 4).

Newtonian case, but we have taken asrin\ 6GM/c2
assumed in Shapiro & Teukolsky (1983).

The e†ect of neutron star rotation on the accretion disk
temperature, treated generally relativistically, is illustrated
in Figures 3a and 3b. Figure 3a corresponds to the EOS
model B. The qualitative features of this graph are similar
for the other EOS models and are not shown here.

However, the temperature proÐles exhibit a marked depen-
dence on the EOS. This dependence is illustrated in Figure
3b, which is done for a particular value of All)

*
\ )ms.these temperature proÐles have been calculated for a

neutron star mass equal to 1.4 The temperature pro-M
_

.
Ðles shown in Figure 3a do not have a monotonic behavior
with respect to This behavior is a composite of two)

*
.

underlying e†ects : (1) the energy Ñux emitted from the disk
increases with and (2) the nature of the dependence of)

*
rin(where vanishes, i.e., the boundary condition) on (seeTeff )

*Fig. 1). This is more clearly brought out in Figure 4, where
we have plotted versus for selected constant radialTeff )

*distances (indicated in six di†erent panels) and EOS (B). At
large radial distances the value is almost independent ofTeffthe boundary condition ; hence the temperature always
increases with in Figure 4f.)

*The variations of the ratio andED, EBL, EBL/ED, T effmax
with are displayed in Figure 5 for all EOS models con-)

*sidered here. All the plots correspond to M \ 1.4 M
_

.
Unlike the constant central density neutron star sequences
(Thampan & Datta 1998), for the constant gravitational
mass sequences does not have a general monotonicEDbehavior with The quantity has a behavior akin to)

*
. T effmax

that of (because of the reasons mentioned earlier). TheEDenergy decreases with slowly at Ðrst but rapidly asEBL )
*
,

tends to The variation of with respect to)
*

)ms. EBL/ED )
*is similar to that of EBL.In Figure 6 we provide a comparison between the e†ec-

tive temperature (eq. [1]) and the irradiation temperature
(eq. [10]) proÐles (both in units of K). We have takenM0 171@4Figure 6a is for while Figure 6b isg \EBL] ED. )

*
\ 0,

for a higher rad s~1. The curves are for the)
*

\ 6420

FIG. 4.ÈPlot of vs. for chosen constant radial distances for Ðxed neutron star mass M \ 1.4 and EOS (B). The plots correspond to (a) r \ 13Teff )
*

M
_km, (b) r \ 18 km, (c) r \ 35 km, (d) r \ 100 km, (e) r \ 2000 km, and ( f ) r \ 5000 km.
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FIG. 5.ÈThe variations of the and with for a chosen neutron star mass value of 1.4 for the four EOS models. The curvesED, EBL, EBL/ED, T effmax, )
*

M
_have the same signiÐcance as Fig. 3b.

gravitational mass corresponding to 1.4 for the EOSM
_model B. The irradiation temperature becomes larger than

the e†ective temperature at some large value of the radial
distance, with the ratio of the former to the latter becoming
increasingly large beyond this distance. For a small EBLcompared to (as will be the case for a rapid neutron starEDspin rate), irradiation e†ects in the inner disk region will not

FIG. 6.ÈComparison between the radial proÐles of (curve 1) andTeff(curve 2), calculated for b \ 0.9, h/r \ 0.2, and n \ 9/7Tirr g \EBL] E
D
,

in eq. (10) for two values of neutron star spin rates : (a) and (b))
*

\ 0
rad s~1. The curves are for a neutron star conÐguration)

*
\ 6.420] 103

having M \ 1.4 described by EOS model B. The temperatures are inM
_

,
units of and the radial extent is in km. For illustrative purposes, weM0 171@4,have displayed this comparison in a log-log plot.

be signiÐcant. DeÐning the radial point where the irradia-
tion temperature proÐle crosses the e†ective temperature
proÐle as and the corresponding temperature asr \ rcrosswe display plots of and with respectivelyTcross, rcross Tcross )

*in Figures 7a and 7b. It can be seen that increases withrcrossjust as does, and hence the irradiation e†ect)
*

EDdecreases with increasing Therefore decreases with)
*
. Tcrossincreasing )

*
.

In Figure 8 we illustrate the disk temperature (Tdisk)proÐle for EOS model B corresponding to M \ 1.4 forM
_

FIG. 7.È(a) vs. and (b) vs. These are for a Ðxedrcross )
*

Tcross )
*
.

neutron star gravitational mass of M \ 1.4 and for the di†erent EOSM
_models as in Fig. 3b. Here is calculated for b \ 0.9,Tirr g \ EBL ] ED,

h/r \ 0.2, and n \ 9/7.
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FIG. 8.ÈThe disk temperature proÐles for a M \ 1.4(Tdisk) M
_neutron star corresponding to EOS model B, having various rotation rates

as in Fig. 3a. These curves are obtained for and the same values ofg \ EBL,b, h/r, and n as in Fig. 6. are used

various values of In Figure 9 we illustrate the variation)
*
.

of with at Ðxed radial points in the disk. The e†ectTdisk )
*of on can be noted in Figure 9f.Tirr Tdisk

4. COMPARISON WITH OBSERVATIONS : IMPLICATIONS

FOR CYGNUS X-2

The X-ray spectrum will have two contributions : one
from the optically thick disk and the other from the bound-
ary layer near the neutron star surface. The spectral shape
of the disk emission depends on the accretion rate. For

g s~1, the opacity in the disk is dominated byM0 > 1017
free-free absorption and the spectrum will be a sum of
blackbody spectra. The temperature of the local spectra
(with respect to a comoving observer) will be equal to the
temperature at that radius. The observer at a largeTeff(r)distance will see a temperature which includes theTobs(r),e†ect of gravitational redshift and Doppler broadening, as
mentioned in ° 2. At higher accretion rates g s~1)(M0 B 1017
the opacity will be dominated by Thomson scattering, and
the spectrum from the disk is that of a modiÐed blackbody
(Shakura & Sunyaev 1973). However, for still higher accre-
tion rates, Comptonization in the upper layer of the disk
becomes important, leading to saturation in the local spec-
trum to form a Wien peak. The emergent spectrum can then
be described as a sum of blackbody emissions but at a
di†erent temperature than The spectral temperatureTobs.that is seen by a distant observer is the color temperature

In general, where the function f is calledTcol. Tcol \ f (r)Tobs,the color factor (or the spectral hardening factor), and it
depends on the vertical structure of the disk. Shimura &
Takahara (1995) calculated the color factor for various acc-
retion rates and masses of the accreting compact object
(black hole) and found that f B (1.8È2.0) is nearly indepen-
dent of the accretion rate and the radial distance for M0 D

These authors Ðnd that for the accretion rate D10%M0 Edd.of the Eddington limit, f B 1.7. More recently, however,
from analysis of the high-energy radiation from GRO
J1655È40, a black-hole transient source observed by the
Rossi X-Ray T iming Explorer (Borozdin et al. 1999) obtain
a value of f \ 2.6, which is higher than previous estimates
used in the literature. With this approximation for theTcol,spectrum from optically thick disks with high accretion
rates can be represented as a sum of diluted blackbodies.

FIG. 9.ÈPlots of vs. at various chosen radial distances : (a) r \ 13 km, (b) r \ 35 km, (c) r \ 100 km, (d) r \ 200 km, (e) r \ 250 km, and ( f )Tdisk )
*r \ 1000 km. These are for EOS model B, an assumed gravitational mass value of 1.4 and the same values of g, b, h/r, and n as in Fig. 8 are used.M

_
,
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TABLE 2

OBSERVATIONAL CONSTRAINTS FOR EOS MODELS A, B, C, AND D

EOS M (M
_

) f l
*

(kHz) lin (kHz) R (km) reffmax (km) M0

A . . . . . . 1.4 L 1.37[1.16] 1.753[1.743] 1.755[1.755] 11.3[10.7] 16.0[15.6] 11.2[5.8]
U 1.99[2.56] 1.755[1.755] 1.787[1.944] 11.4[11.4] 16.1[16.1] 22.9[27.5]

B . . . . . . 1.4 L 1.53[1.29] 1.106[1.087] 1.132[1.123] 15.2[14.3] 21.0[20.0] 13.8[7.2]
U 2.18[2.74] 1.112[1.113] 1.177[1.285] 15.6[15.6] 21.5[21.6] 27.0[33.5]

C . . . . . . 1.4 L 1.57[1.33] 0.964[0.945] 0.975[0.971] 16.8[15.6] 23.1[21.7] 14.9[7.7]
U 2.24[2.81] 0.968[0.968] 1.015[1.134] 17.2[17.2] 23.6[23.7] 29.3[36.5]

D . . . . . . 1.4 L 1.67[1.42] 0.736[0.719] 0.745[0.742] 20.1[18.6] 27.6[25.7] 17.5[9.1]
U 2.38[2.97] 0.740[0.740] 0.779[0.876] 20.7[20.7] 28.3[28.4] 34.6[42.4]

B . . . . . . 1.78 L 1.58[1.33] 1.303[1.292] 1.322[1.315] 14.8[14.2] 21.2[20.7] 8.9[4.7]
U 2.28[2.91] 1.307[1.307] 1.361[1.462] 15.1[15.1] 21.4[21.4] 17.2[21.4]

C . . . . . . 1.78 L 1.65[1.39] 1.081[1.067] 1.086[1.085] 17.1[16.2] 23.8[23.0] 9.8[5.1]
U 2.39[3.01] 1.083[1.083] 1.109[1.209] 17.3[17.3] 24.0[24.1] 19.3[24.0]

D . . . . . . 1.78 L 1.74[1.47] 0.806[0.791] 0.817[0.813] 20.6[19.2] 28.6[27.1] 11.4[6.0]
U 2.50[3.15] 0.809[0.809] 0.848[0.938] 21.1[21.1] 29.1[29.2] 22.2[27.7]

NOTE.ÈL and U stand for lower and upper limits. The parameters are f (color factor), (frequency of the neutron star),l
*

lin(frequency of the last orbit in the disk), R ( radius of the neutron star), (radius where the e†ective temperature of the disk isreffmax
maximum), and (the accretion rate). The limits are for 25% uncertainty in luminosity and 10% uncertainty in the colorM0
temperature. Values in brackets are for 50% uncertainty in luminosity and 20% uncertainty in the color temperature. For
EOS model A, the mass of the neutron star cannot exceed 1.63 hence the 1.78 solution is not presented. is theM

_
; M

_
M0 EddEddington accretion rate, which is g s~1, where M is the neutron star mass.1.4] 1017M/M

_

The local Ñux at each radius is

Fl \ 1
f 4 nBl( fTeff), (12)

where is the Planck function. For high accretion rates,Blthe boundary layer at the neutron star surface is expected to
be optically thick, and an additional single-component
blackbody spectrum should be observed.

The EXOSAT observations of Cygnus X-2 (Hasinger et
al. 1986) have been Ðtted to several models by WSP. One of
the models is of a blackbody emission up to the innermost
stable circular orbit of the accretion disk and an additional
blackbody spectrum to account for the boundary layer
emission. The spectrum from such a disk is the sum of
blackbody emission with a temperature proÐle

T P r~3@4[1 [ (rin/r)1@2]1@4 . (13)

WSP have identiÐed this temperature as the e†ective tem-
perature that, as mentioned by them, is inconsistent, since
the accretion rate for Cygnus X-2 is high g s~1).(M0 B 1018
However, as mentioned above, identifying this temperature
proÐle as the color temperature makes the model consistent
if the color factor is nearly independent of radius. More-
over, the inferred temperature proÐle (i.e. isTobs\ Tcol/f )similar to the one developed in the previous section. There-
fore, in this paper we assume that the maximum of the
best-Ðt color-temperature proÐle is related to theT colmax
maximum temperature computed in previous sectionT obsmax
by Shimura & Takahara (1995) suggested a(T colmaxB f T obsmax).
value of 1.85 for the factor f for an assumed neutron star
mass equal to 1.4 and where is theM

_
M0 \ 10M0 Edd, M0 EddEddington luminosity, with the mass-to-energy conversion

efficiency taken as unity.
For the source Cygnus X-2, the best spectral Ðt to the

data is when K, ergs s~1,T colmax\ 1.8] 107 L D \ 2.1] 1038
and ergs s~1 (WSP), where is the diskL BL \ 2.8 ] 1037 L Dluminosity and is the luminosity in the boundary layer.L BLThe distance to the source and the inclination angle to the
source have been estimated by Orosz & Kuulkers (1999) to
be B8 kpc and 60¡, respectively. From these values one can

obtain, using the formalism described in ° 2, the angular
velocity of the neutron star for a given neutron star()

*
)

mass, the accretion rate the color factor f, and the(M0 ),
equation of state. However, in order to make an allowance
for the uncertainties in the Ðtting procedure and in the value
of z and also those arising because of the simplicity of the
model, we consider a range of acceptable values for T colmax,

and In particular, we allow for deviations inL D, L BL. T colmax
and the best-Ðt luminosities ; we take two combinations of
these, namely, (10% and 25%) and (20% and 50%), where
the Ðrst number in parentheses corresponds to the error in

and the second to the error in the best-Ðt luminosities.T colmax
Note that we neglect the irradiation temperature here, since

at the inner region of the disk (the region whereTdiskB Teffthe disk temperature reaches a maximum). The constraints
on and f are calculated for two values of the mass ofM0 , )

*
,

the neutron star in Cygnus X-2, namely, 1.4 and 1.78 M
_

.
We obtain a range of consistent values for and fM0 , )

*
,

(and, hence, allowed ranges of di†erent quantities). The pro-
cedure is as follows :

As described in the previous section, we can calculate the
di†erent quantities R, etc.) as a function(ED, EBL, T obsmax, rin,of Taking the observed (or Ðtted) values for)

*
. T colmax, L BL,and with the error bars, we have two limiting(L BL ] L D)

values for each of these quantities. We assume a particular
value for each of f and from which we obtain the corre-M0 ,
sponding Ðtted values of and by theT obsmax, EBL, (EBL ] ED)
relations andEBL \ L BL/M0 , EBL] ED \ (L BL] L D)/M0 ,

By interpolation we calculate two corre-T obsmax \T colmax/f.
sponding limiting (i.e., the allowed range in for)

*
Ïs )

*
)

each Ðtted quantity. We take the common region of these
three ranges, which is the net allowed range in We do)

*
.

this for the in the range of 10~13È10~6 yr~ 1M0 Ïs M
_(which is reasonable for LMXBÏs) with a logarithmic inter-

val of 0.0001 for a particular value of f. If, for some thereM0 ,
is no allowed then that value of is not allowed. Thus)

*
, M0

we get the allowed range of for a particular f. Next, weM0
repeat the whole procedure described above for various
values of f in the range of 1È10. If, for some f, there is no
allowed then that f is not allowed. Thus we get anM0 ,
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allowed range of f. Taking the union of all the allowed
ranges of we get the net allowed range of (and simi-M0 , M0
larly the net allowed range of for a particular EOS,)

*
)

gravitational mass, and a set of error bars. The allowed
ranges of R, etc. then easily follow, since theirEBL, ED,
general variations with respect to are already known.)

*The results of this exercise for various equations of state are
shown in Table 2. From Table 2 we can read o† the allowed
range in f, R, and Forl

*
\ )

*
/2n, lin\)K,in/2n, reffmax, M0 .

example, for gravitational mass M \ 1.4 with anM
_

,
assumed uncertainty of 25% in the luminosity and 10%
uncertainty in color temperature, these are, respectively,
1.37È2.39, 0.736È1.755 kHz, 0.745È1.787 kHz, 11.3È20.7 km,
16.0È28.3 km, and 11.2È34.6 On relaxing the condi-M0 Edd.tions on luminosity and color temperature to 50% and
20%, respectively, the corresponding ranges change to 1.16È
2.97, 0.719È1.743 kHz, 0.742È1.955 kHz, 10.7È20.7 km, 15.6È
28.4 km, and 5.8È42.4 M0 Edd.The EOS model A is the softest in the sample. The
maximum mass of neutron stars (at correspond-)

*
\)ms)ing to this EOS is 1.63 Therefore the constraint resultsM

_
.

for Cygnus X-2 using this EOS are done only for M \ 1.4
Since the luminosity in the boundary layer is aboutM

_
.

10% of the disk luminosity, the neutron star is expected to
be spinning close to the maximum allowed value. This is
reÑected in our results by the ratio of In all)

*
/)ms B 0.95.

of these cases the neutron star radius happens to be larger
than the innermost stable circular orbit. Hence the radius of
the inner edge of the disk coincides with the neutron star
radius. Therefore, the angular velocity of the particles in the
disk inner edge will be very nearly equal to that of the
neutron star. This implies that the viscous torque in the disk
inner edge will not be very signiÐcant, and the use of the
Page & Thorne (1974) formalism will not introduce any
gross error in the constraint estimates presented by us.

5. SUMMARY AND DISCUSSION

In this paper we have calculated the temperature proÐles
of accretion disks around rapidly rotating and non-
magnetized neutron stars using a fully general relativistic
formalism. The maximum temperature and its location in
the disk are found to di†er substantially from their values
corresponding to the Schwarzschild spacetime, depending
on the rotation rate of the accreting neutron star. We have
considered a model for the spectrum of the X-ray emission
from the accretion disk, parameterized by the mass accre-
tion rate, the color temperature, and the rotation rate of the
star. We have compared the maximum e†ective tem-
perature in the disk and the accretion luminosities
(corresponding to the disk and the boundary layer) to the
results of spectral Ðtting for the X-ray source Cygnus X-2
(WSP) and derived constraints on these parameters for the
neutron star in this X-ray binary. The main conclusion of
our analysis is that the neutron star in Cygnus X-2 has a
rapid spin rate (close to the centrifugal mass shed value) and
that the system has a fairly large accretion rate (several
times 1018 g s~1). The low luminosity of the boundary layer
compared to that of the disk for Cygnus X-2 is consistent
with the above conclusion that the neutron star in this
system has a rapid rotation rate. The low value of the ratio

justiÐes our assumption that the radiation pressureL BL/L Dis negligible in the disk, making the geometrically thin
approximation for the disk is reasonable. According to
Shimura & Takahara (1995), the spectrum from the disk

can be represented as a multicolor blackbody only if M0 [
Our results for Cygnus X-2 are in accord with this.0.1M0 Edd.Interestingly, if we take the lower value 1.7 for the color

index f (Shimura & Takahara 1995), we obtain a consistent
set of results, except for the sti†est EOS model (D). This
suggests that the comparatively lower values of f would
disfavor a sti† EOS for neutron star matter. However, if we
take the value of f \ 2.6, as reported by Borozdin et al.
(1999), one would require an EOS model that is sti†er than
the sti†est used here, or a mass greater than M \ 1.78 M

_(if one uses the narrower limits on the luminosity and color
temperature). On the other hand, if one were to use the
broader limits, the hardening factor f \ 2.6 is disallowed
only by the softest EOS model.

Here we have assumed that the magnetic Ðeld of the
neutron star is weak, which implies that the radius of the
last orbit of the accretion disk should be much greater than
the radius (e.g., Shapiro & Teukolsky 1983),Alfve� n rA

R? rA \ 2.9] 107
A M0
M0 Edd

B~2@7
k304@7
A M
M

_

B~3@7
, (14)

where M is the mass of the neutron star, is the magnetick30moment in units of 1030 G cm3, and is in centimeters.rAThe above condition implies that for RB 15 km,
and M \ 1.4 the magnetic momentM0 /M0 Edd B 20, M

_
,

or the magnetic Ðeld in the surface shouldk30> 3.4 ] 10~2
be less than 1010 G. So the conclusions presented by us will
be valid for the neutron star magnetic Ðeld up to a few times
109 G.

In our analysis we have assumed that the boundary layer
between the disk and the neutron star surface does not
a†ect the inner regions of the disk. This will be a valid
approximation when the boundary layer luminosity is
smaller than the disk luminosity and the boundary layer
extent is small compared to the radius of the star. The Ñux
received at Earth from this region is

FBL \
A
2nR

*R
D2
B

cos h
ApT BL4

n
B

, (15)

where *R is the width of the boundary layer, D\ 8 kpc is
the distance to the source, h \ 60¡ is the inclination angle,
and is the e†ective temperature. Spectral Ðtting gives aTBLbest-Ðt value for ergs s~1 cm~2 andFBLB 4 ] 10~9 TBL \

keV, where is the color factor forTcol(BL)/fBL\ 2.88/fBL fBLthe boundary layer and is the color temperature ofTcol(BL)the boundary layer. Using these values, *RB 0.2 km,f BL4which is indeed smaller than R, provided the boundary
layer color factor is close to unity. This is supported byfBLthe work of London, Taam, & Howard (1986) and Ebisu-
zaki (1987), who obtained fBLB 1.5.

A few comments regarding the validity of the Page &
Thorne (1974) formalism for accreting neutron star binaries
are in order here. Unlike for the case of black holes, neutron
stars possess a hard surface that could be located outside
the marginally stable orbit. For neutron star binaries, this
gives rise to the possibility that the disk inner edge coincides
with the neutron star surface. We have assumed that the
torque (and hence the Ñux of energy) vanishes at the disk
inner edge even in cases where the latter touches the
neutron star surface. In the case of rapid spin of the neutron
star (as we infer for Cygnus X-2), the angular velocity of a
particle in Keplerian orbit at disk inner edge will be close to
the rotation rate of the neutron star. Therefore, the torque
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between the neutron star surface and the inner edge of the
disk is expected to be negligible. Independent of whether or
not the neutron star spin is large, Page & Thorne (1974)
argued that the error in the calculation of will not beTeffsubstantial outside a radial distance where is given byr0, r0In our calculation we Ðnd that (whichr0[ rin\ 0.1 rin. reffmax
is the most important region for the generation of X-rays) is
greater than by several kilometers for all the cases con-r0sidered.

The shortest timescale of the system is given by the fre-
quency in the innermost stable circular orbit Table 2,(lin ;
col. 5). A periodic oscillation in the system should be at a
frequency lower than (unless the model invoked tolinexplain the temporal behavior predicts substantial power in
the second harmonic, i.e., The maximum fre-lQPO B 2lin).quency of the kHz QPO observed for Cygnus X-2 is 1005
Hz (Wijnands et al. 1998). The sti†est EOS, model D, will
then be disfavored, since kHz for this model.lin\ 1
Further, the neutron star mass estimate in Cygnus X-2
(B1.78 Orosz & Kuulkers 1999) is not consistent withM

_
;

the soft EOS model A. Our analysis, therefore, favors
neutron star EOS models that are intermediate in the
sti†ness parameters.

We have not attempted to model the observed temporal
behavior of the source and, in particular, the QPO obser-
vations. Beat frequency models identify the peak separation
of the two kHz QPO observed with the neutron star spin
rate. For Cygnus X-2, the observed peak separation is
*l\ 346 ^ 29 Hz (Wijnands et al. 1998), which is smaller
than the typical rotation frequencies calculated here.

However, a pure beat-frequency model has been called into
question because of several observations. For instance, *l
has been observed to vary by about 40% for Sco X-1 (van
der Klis et al. 1997), and the kHz QPO frequencies have
been found to be correlated with the break frequency (B20
Hz) of the power spectrum density. An alternate model,
where the QPOs are suggested to originate because of non-
Keplerian motion of matter in the disk (Osherovich &
Titarchuk 1999a, 1999b ; Titarchuk & Osherovich 1999 ;
Titarchuk et al. 1999), has been proposed. These authors
have also demonstrated the model by applying it to particu-
lar sources. Inclusion of this Newtonian model into the
framework of the calculations mentioned in this paper
would require a parallel formulation within the spacetime
geometry chosen herein.

X-ray binaries like Cygnus X-2 are believed to be the
progenitors of the millisecond pulsars. Therefore, the dis-
covery of a pulsar with a period B1 ms will strengthen the
model presented in this paper in terms of a rapidly rotating
accreting neutron star. X-ray spectral analysis of Cygnus
X-2 and similar sources using data from recent satellites
(e.g., BeppoSAX, ASCA, and the Chandra X-ray
Observatory) is required to provide further support to the
model presented in this paper.

We thank Paul J. Wiita for reading the manuscript and
suggesting improvements in the presentation. S. B., A. V. T.,
and R. M. dedicate this paper to the memory of our
coauthor, the late Professor B. Datta who passed away
during the course of this work.
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