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ABSTRACT
The ohmic decay of magnetic fields confined within the crust of neutron stars is considered by incorporating

the effect of spacetime curvature produced by the intense gravitational field of the star. It is shown that the
general relativistic effect reduces the magnetic field decay rate substantially and that, especially at the late time
of the evolution, the decay rate decreases by several orders of magnitude when compared with the case without
the relativistic effect.
Subject headings: magnetic fields— relativity — stars: neutron

1. INTRODUCTION

The magnetic field evolution in neutron stars has been a
subject of much discussion over the years, in both the obser-
vational and theoretical contexts. Calculations of ohmic decay
of dipolar magnetic fields were performed by Sang & Chan-
mugam (1987), who demonstrated that the field does not
decay exponentially. The reviews by Lamb (1991), Chan-
mugam (1992), and Phinney & Kulkarni (1994) provide the
present understanding on the decay of magnetic fields in
isolated neutron stars. Haensel, Urpin, & Yakovlev (1990)
pointed out the possibility that magnetic fields in the core
could decay rapidly by ambipolar diffusion. The studies of
magnetic field configurations in which the field vanishes in the
stellar core (Sang & Chanmugam 1987; Chanmugam & Sang
1989; Urpin & Muslimov 1992; Urpin & Van Riper 1993)
show that because of the relatively low electrical conductivity
of crustal matter, the decay times may be short enough to be
of observational interest if the impurity concentration is high
and the field is initially confined to a small part of the crust. On
the other hand, considering field configurations that do not
vanish in the core, Pethick & Sahrling (1995) showed that the
shortest possible decay time is about 2 orders of magnitude
longer than the characteristic timescale for decay of configu-
rations in which the magnetic field vanishes in the core.
In all the investigations an important feature of neutron

stars, the spacetime curvature produced by the intense gravi-
tational field, has not been taken into account, although it is
well known that the spacetime curvature exterior and interior
to neutron stars can significantly alter the electromagnetic
field (Wasserman & Shapiro 1983; Sengupta 1995; Bocquet et
al. 1995).
In this Letter it is demonstrated, by adopting a simplified

model, that the decay rate decreases significantly when the
general relativistic effect is taken into consideration. It is,
however, worth mentioning that because of a lack of proper
understanding about the initial configuration of the magnetic
field and of the impurity parameter, which plays a crucial role
in determining the electrical conductivity, no model presented
so far can be attributed to represent the quantitative feature of
the actual situation. Nevertheless, all these investigations are
important from the qualitative point of view and provide
significant insight on the decay of the magnetic field. The

scope of the present work, although also limited to an ideal-
istic situation, is sufficient to demonstrate the important role
played by curved spacetime at the crust of neutron stars in
governing the decay of magnetic fields. The present result
indicates that the spacetime curvature produced by the intense
gravitational field at the crust can lead to characteristic decay
times much longer than the existing estimations.

2. MAGNETIC FIELD EVOLUTION IN CURVED SPACETIME

If hydrodynamic motions are negligible and the anisotropy
of the electrical conductivity is small, then the induction
equation in flat spacetime can be written as follows:
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where s is the electrical conductivity.
If a stationary gravitational field is taken into account, then

the corresponding induction equation in curved spacetime can
be written as follows:
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where Fij is the electromagnetic field tensor, gij are the
components of spacetime metric that describes the back-
ground geometry, g 5 det ugiju, and u0 is the time component of
the velocity vector of the fluid (I have considered ui 5 0).
Here and afterward, Latin indices run over spatial coordinates
only, whereas Greek indices run over both time and space
coordinates.
Now we need to choose a spacetime metric that describes

the geometry of the region under consideration. Although in
Newtonian theory the gravitational field of a rotating body is
the same as that of a nonrotating body, in general relativity
rotation affects the spacetime geometry. However, in the
absence of any suitable metric that can describe the spacetime
geometry inside a rotating neutron star, I consider, in the
present investigation, a stationary and static gravitational field.
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Furthermore, it is well known (see, for example, Datta,
Thampan, & Bhattacharya 1995 and references therein) that
the gravitational mass of the entire crust of neutron stars
consists of less than 3% of the total mass of the star for any
equation of state; hence, the self-gravitation of the crust is
negligible compared to the gravitational field due to the core.
Since in the present work the magnetic field is considered to be
confined within the outermost crust, and the magnetic field
strength therein is supposed to be sufficiently low compared to
the gravitational field, so that the spacetime curvature is not
affected by the electromagnetic field, one can very well adopt
the exterior Schwarzschild metric, which, on the other hand,
simplifies the calculations. The metric is given by the follow-
ing:

ds2 5 S1 2
2m

r D c2 dt2 2 S1 2
2m

r D21

dr 2 2 r 2

3 ~du2 1 sin2 u df2!, (3)

where m 5 MGyc2,M being the total gravitational mass of the
core. Since the crust consists of less than a few percent of the
total gravitational mass,M can be regarded as the total mass of
the star.
If F(ab) are the components of the electromagnetic field

tensor in a local Lorentz frame, then the components of the
electromagnetic field tensor Fgd are defined in the curved
spacetime through the following relation:

F~ab! 5 l~a!
g l~b!

d Fgd, (4)

where l(b)
a are the nonzero components of the orthonormal

tetrad of the local Lorentz frame for the Schwarzschild
geometry given in Sengupta (1995).
Following the convention, I restrict myself by the consider-

ation of the decay of a dipolar magnetic field that has axial
symmetry, so that the vector potential A may be written as (0,
0, Af) in spherical polar coordinates, where Af 5 A(r, u, t).
Since the hydrodynamic motion is negligible, ui 5 dxiyds 5 0,
and the metric gives u0 5 (1 2 2myr)21y2.
Substituting the metric components in equation (2) and

using the definition Fab 5 (Ab,a 2 Aa,b), one obtains the in-
duction equation in Schwarzschild geometry in terms of the
vector potential as follows:
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Now for the flat spacetime I choose Af 5 f(r, t) sin uyr,
where r and u are the spherical radius and polar angle,
respectively, and one gets from equation (1)
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where x 5 ryR, and R is the radius of the star.
For the general relativistic case, the choice is guided by the

form of the time-independent dipole magnetic field in Schwar-
zschild geometry obtained by Wasserman & Shapiro (1983)

and can be written as Af 5 2g( x, t) sin2 u. Hence, from
equation (5) one obtains
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where y 5 2myR.
For both the cases, I impose the usual boundary conditions,

which are the following: (1) in the deep layer of the crust, the
magnetic field vanishes; and (2) at the outer boundary of the
crust, the field matches onto an exterior dipole magnetic field.

3. THE MODEL

I shall follow Urpin & Van Riper (1993) in my approach,
with one exception. To simplify the calculations, I neglect the
neutron star cooling, which can significantly decrease the field
decay rate, since the conductivity of the crust depends on the
temperature T. The qualitative nature of the present results,
however, will not be altered if one incorporates the neutron
star cooling, as long as s itself is independent of the spacetime
curvature. Calculations of ohmic decay of a bipolar magnetic
field without the effect of the neutron star cooling were
performed by Sang & Chanmugam (1987). Their results have
been used to check the numerical accuracy of the present
results corresponding to flat spacetime.
As mentioned in the Introduction, any given magnetic field

configuration in flat spacetime would be modified by the
curvature of spacetime produced by the gravitational field. If
initially (at t 5 0)

Af~r, u, 0! 5 Af~r, u ! 5
f ~r, 0!

r
sin u 5

f ~r!

r
sin u

for flat spacetime, then for curved spacetime

Af~r, u, 0! 5 Af~r, u ! 5 2
3rf ~r!

8m3 s~r! sin
2 u,

where s(r) is the general relativistic correction factor. Hence, it
can be shown (Wasserman & Shapiro 1983) that if one
assumes the initial value of f(r, t) 5 f(r) for flat spacetime,
then for curved spacetime

g~r, 0! 5 g~r! 5
3rf ~r!

8m3 Fr 2 ln S1 2
2m

r D 1 2mr 1 2m2G .
(8)

Clearly, if r 3 E, then g(r) 3 f(r).
I have considered the decay of the magnetic field that

initially occupies the surface layers of the crust up to a depth
x 5 0.955, which corresponds to the density 5 3 1011 g cm23.
Following the approaches of Urpin & Van Riper (1993), I

have calculated the electrical conductivity within the crust that
has been derived by Urpin & Yakovlev (1980). The effect of
electron-ion scattering has been neglected, since the region
where this effect could be important is sufficiently thin. The
impurity parameter Q has been taken as 0.001, and the
conductivity is calculated by assuming the region under con-
sideration to be isothermal with a constant temperature T 5
107 K. Results with T 5 105 K have also been presented for
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few relevant cases. The calculations have been performed by
considering a neutron star of mass 1.4 MJ and radius 10.6 km.

4. RESULTS AND DISCUSSIONS

Equations (6) and (7), with the corresponding boundary
conditions, have been solved numerically. The calculations
have been performed by making use of the standard Crank-
Nicholson differencing scheme. For the sake of comparison of
the results, the magnetic field in Schwarzschild geometry has
been transformed into a local Lorentz frame by using equation
(4). If one takes the mass M to be sufficiently low (,0.01 MJ),
then the decay profile calculated in the local Lorentz frame
coincides with that for the flat spacetime, and for the present
purpose this provides sufficient check for the numerical accu-
racy of the results. The effect of general relativity in governing
the magnetic field decay is clearly depicted in the figures.
Figure 1 shows the evolution of the surface magnetic field
normalized to its initial value for both the general relativistic
and nonrelativistic cases. The qualitative nature of the decay
profiles is the same as that presented by Sang & Chanmugam
(1987), as in both the cases the effect of the neutron star
cooling has not been taken into consideration. In the present
work such a type of effect is not relevant, since it is expected
that the cooling process and hence the electrical conductivity
are independent of the spacetime curvature.
In Figure 1 the decay of the surface magnetic field is

presented for neutron stars with masses 1 MJ, 1.4 MJ, and 1.8
MJ and with the same radius R 5 10.6 km. However, the
electrical conductivity is calculated by adopting the 1.4 MJ

mass configuration. It is clear from the figure that the decay
rate decreases significantly with the increase in mass, i.e., with
the increase in the gravitational field for the whole period of
evolution. Unlike the case for flat spacetime, the decay rate
gradually slows down as the time increases. In other words, the

effect of general relativity becomes more significant with the
increase in the age of the star. At the late stages of evolution,
say, after 3 Gyr, the difference in the strength of the surface
magnetic field between the two cases becomes as large as
about 3 orders of magnitude. It is interesting to note that if the
mass of the star is as high as 1.8MJ, which can be possible with
any stiff equation of state of matter inside the star, then
because of the effect of spacetime curvature, the decay rate
decreases so dramatically that when the other physical effects
such as cooling of the neutron star, which also play a signifi-
cant role in reducing the decay rate, are incorporated, the
decay in the magnetic field could be too small to be deter-
mined observationally, and during the whole life span of the
star, the strength of the magnetic field would remain almost
the same with that of its initial value. Since general relativistic
effects alone can reduce the decay rate significantly, observa-
tional evidence of a faster decay rate may constrain the
compactness of the neutron star and hence the equation of
state of matter inside the star. It is worth mentioning here that
the general relativistic effect on the magnetic field is less
uncertain than any other physical phenomenon exterior or
interior to isolated neutron stars.
In Figure 2 the variation of the magnetic field along the

radial points inside the crust at different times is presented for
a neutron star of mass 1.4 MJ. The initial field strength
increases by the inclusion of the general relativistic effect. This
result is well known for a time-independent dipole magnetic
field (Wasserman & Shapiro 1983; Sengupta 1995). After 5
Myr the strength of the magnetic field for the curved space-
time becomes almost equal to the initial value of the field
strength when the general relativistic effect is not included.
Subsequently, for flat spacetime the field strength at any time
remains much lower than that for curved spacetime. However,
it cannot be inferred that, because of the modification in the

FIG. 1.—The evolution of surface magnetic field normalized to its initial
value for flat and curved spacetimes. Solid lines represent the results for curved
spacetime, while broken lines represent that for flat spacetime. The numbers
near the curves indicate mass in 1 MJ. For all the cases, the radius is taken as
R 5 10.6 km, and the electrical conductivity is calculated for a 1.4 MJ neutron
star crust.

FIG. 2.—The dipole magnetic field at different times along the normalized
radial points. The numbers near the curves indicate t in Myr, and the curves
corresponding to t 5 0 indicate the initial value of the magnetic field. Unless
indicated, all the curves present the results with temperature T 5 107 K. Solid
lines represent the case for curved spacetime, while broken lines represent that
for flat spacetime.
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initial configuration of the magnetic field, the final field
strength becomes much higher for the general relativistic case
than that for the case of flat spacetime. Rather, the entire
evolution should be modified by the general relativistic effect,
as indicated by equation (7). As the temperature of the crust
must decrease with time, the electrical conductivity becomes
higher; hence, at the late stages of evolution the decay rate
should decrease substantially, irrespective of the nature of the
surrounding spacetime. In Figure 2, the magnetic field
strengths at 1 Gyr with the crust temperature T 5 105 K for
both the general relativistic and nonrelativistic cases are
presented. The results provide a confirmation of the above
fact. Since the magnetic field strength for the general relativ-
istic case is almost double to its value when the relativistic
effect is not considered, it is very much likely that the magnetic
field decay should be too small to be detected observationally
if both the cooling effect and the general relativistic effect are
together taken into account. Therefore, detailed investigations
by considering the neutron star cooling and other physical
phenomena along with the general relativistic effect will be of
much theoretical interest.

5. CONCLUSIONS

The important message that is conveyed by the present
calculations is that whatever be the electrical conductivity of
the crustal material, high or low, irrespective of the question of
whether the magnetic field vanishes at the core or not, and
whatever be the impurity content of the neutron star crust, the
decay time of the magnetic field is lengthened by the intense
gravitational field that certainly exists inside the star. Sang &
Chanmugam (1987) showed that the decay is not exponential,
while Urpin & Muslimov (1992) pointed out that even if the
magnetic field is initially absent in the core, diffusion of the

field into a highly conducting core would retard the surface
field decay. Pethick & Sahrling (1995) suggested that if long
decay times were established observationally, these could not
necessarily be inferred as the evidence for matter in the stellar
core having a high conductivity. Irrespective of all the uncer-
tainties that still exist and require further theoretical investi-
gations, as well as observational evidence, the present result
can at least provide a firm understanding that general relativity
is certainly responsible if the decay time is indeed very long.
Therefore, the present demonstration is important in the sense
that it establishes concrete restrictions on the theoretically
possible ways of obtaining short ohmic decay times for mag-
netic fields in neutron stars. Furthermore, the present results
provide an interesting feature in that the more compact is the
neutron star, the longer is the decay time; hence, the general
relativistic effects on the decay of the magnetic field could be
a possible tool for restricting the equation of state of matter
inside the star, which determines the compactness of the
neutron star.
The crucial lesson that the present results provide is that, in

addition to the calculations of the conductivity with a better
estimation of the impurity content, the incorporation of the
effects of superfluidity and superconductivity in the core and
other physical effects such as Hall drift, full consideration of
the general relativistic effects must be given in order to make
more realistic estimates of decay times of the magnetic field.

I am grateful to the late N. C. Rana (1954–1996), who
initiated this work and had been a constant source of encour-
agement until his sudden demise. Thanks are due to the
anonymous referee for useful comments and constructive
criticisms.
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