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Abstract. In this paper we generalize an Approximate Lambda
Iteration (ALI) technique developed for scalar transfer problems
to a vectorial transfer problem for polarized radiation. Scalar
ALI techniques are based on a suitable decomposition of the
Lambda operator governing the integral form of the transfer
equation. Lambda operators for scalar transfer equations are
diagonally dominant, offering thus the possibility to use iterative
methods of the Jacobi type where the iteration process is based
on the diagonal of the Lambda operator (Olson et al. 1986).

Here we consider resonance polarization, created by the
scattering of an anisotropic radiation field, for spectral lines
formed with complete frequency redistribution in a 1D axisym-
metric medium. The problem can be formulated as an integral
equation for a 2-component vector (Rees 1978) or, as shown by
Ivanov (1995), as an integral equation for a (2×2) matrix source
function which involves the same generalized Lambda opera-
tor as the vector integral equation. We find that this equation
holds also in the presence of a weak turbulent magnetic field.
The generalized Lambda operator is a (2 × 2) matrix operator.
The element {11} describes the propagation of the intensity and
is identical to the Lambda operator of non-polarized problems.
The element {22} describes the propagation of the polariza-
tion. The off-diagonal terms weakly couple the intensity and
the polarization. We propose a block Jacobi iterative method
and show that its convergence properties are controlled by the
propagator for the intensity. We also show that convergence can
be accelerated by an Ng acceleration method applied to each
element of the source matrix. We extend to polarized transfer
a convergence criterion introduced by Auer et al. (1994) based
on the grid truncation error of the converged solution.
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1. Introduction

In the last ten years several very efficient iterative methods,
based on operator splitting techniques, have been developed to
carry out non-LTE line transfer calculations relevant to solar and
stellar atmospheres. They are usually referred to as Accelerated
Lambda Iteration methods (ALI), or more aptly as suggested
by Rybicki (1991), Approximate Lambda Iteration Methods,
since these iterative methods are based on approximate forms
of the Lambda operator (see Hubeny 1992 for a review of ALI
methods). One of these methods, introduced by Olson et al.
(1986, hereafter OAB; see also Kunasz & Auer 1988) is of the
Jacobi type (Stoer & Bulirsch 1980), i.e., the approximate op-
erator which serves to construct the iterative process is simply
the diagonal of the full transport operator. This means that the
approximate operator contains only the local interactions. The
OAB method lends itself to multi–dimensional extensions (Auer
& Paletou 1994; Auer et al. 1994; Väth 1994). It has also been
generalized to multi–level atoms and partial frequency redistri-
bution (Rybicki & Hummer 1991; Auer & Paletou 1994; Auer et
al. 1994) and to polarized transfer with Zeeman effect (Trujillo
Bueno & Landi degl’ Innocenti, 1996).

Modern Stokes polarimeters, already in operation or still
under development, are and will be providing accurate data
(sensitivity better than 10−4) with high spatial resolution. The
interpretation of these data requires that horizontal gradients
in the absorption coefficient and other atmospheric parameters
are taken into account. There is thus an urgent need to develop
efficient methods for solving multi–dimensional non-LTE po-
larized transfer equations. Here we make a first step in this
direction by showing that the one–dimensional version of the
OAB method can be generalized to resonance polarization and
to the Hanle effect produced by a weak turbulent magnetic field
which depolarizes the radiation without affecting the plane of
polarization. The present investigation is limited to lines formed
with complete frequency redistribution. In the case of the Sun,
complete redistribution is a very good approximation for all
spectral lines, except strong resonance lines such as the Ca II
H and K lines of Ca II, the D1 and D2 lines of Na I or the Ca
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I 4227 Å line for which partial frequency redistribution effects
have to be taken into account. We note that the iterative method
introduced in this work, which is referred to as PALI (Polar-
ized Approximate Lambda Iteration), is quite different from the
standard perturbation method for resonance polarization intro-
duced by Stenflo & Stenholm (1976) and used for instance in
Rees & Saliba (1982) or Faurobert-Scholl (1987, 1991). We
briefly recall its main steps in Sect. 3.1.

Resonance polarization is due to the coherent scattering of
an anisotropic radiation field by atoms. This process is the quan-
tum counterpart of the classical Rayleigh scattering (Hamilton,
1947). It is observed in a number of solar absorption lines (Sten-
flo et al. 1983a, b, Stenflo 1994) formed by anisotropic scatter-
ing of the photospheric radiation field. It leads to a non-LTE
transfer problem, which apart from the fact that it is vectorial,
has the same structure as the standard scalar non-LTE problem
for line formation. Similar equations arise when one considers
the Hanle effect caused by the action of a weak magnetic field
on resonance polarization. A magnetic field is considered to be
weak when the Zeeman splitting of the atomic levels is of the
order of the natural width of the line. Strong magnetic fields
producing a Zeeman effect lead to polarized transfer equations
of a very different nature.

In this paper, the PALI method is tested on axially sym-
metrical problems, i.e., with a radiation field independent of
the azimuth of the propagation direction. We treat two standard
line formation problems : 1D slab where photons are created
internally by thermal emission and the case of a slab which is
illuminated on both sides by a parallel incident beam. In the lat-
ter case we consider only the azimuthal average of the radiation
field in order to preserve the axial symmetry.

An axially symmetric polarized radiation field may be de-
scribed by a two-component vector I = (I,Q)T, where I and Q
are two Stokes parameters describing the intensity and the lin-
ear polarization. The notation T means transpose. As in Chan-
drasekhar (1960) we define Q by

Q = Il − Ir, (1)

where Il and Ir denote the components of vibration of the elec-
tric vector which are respectively perpendicular and parallel to
the solar limb (or equivalently parallel and perpendicular to the
meridian plane containing the line of sight).

Approximate Lambda Iteration methods are based on the
integral formulation of the transfer problem. The integral equa-
tion for the source function allows one to define the so-called
Lambda operator, which relates the source function at one point
in the medium to its values at all depth points. In polarized radia-
tive transfer the source function becomes a vector S. In axially
symmetrical situations it has two components SI and SQ. Both
depend on the optical depth, denoted by τ , and on the angle θ
between the propagation direction and the outward normal to
the surface. In the case of resonance polarization (and also for
polarization by a weak turbulent magnetic field), it is possible
to factorize the τ and θ dependence in the form

S(τ, µ) = Â(µ)P(τ ), (2)

where µ = cos θ. The quantity Â(µ) is a (2x2) matrix depending
only on µ and P(τ ) is a two-component column vector depend-
ing only on τ (Rees 1978). Their analytical expressions are given
in the next section. The vector P(τ ) satisfies a vectorial integral
equation also given in the next section. The kernel of this equa-
tion is a (2x2) matrix (Rees 1978, Faurobert-Scholl & Frisch
1989, hereafter FSF) which couples the two components.

An alternative approach to polarized transfer has been re-
cently developed by Ivanov and his co-workers (Ivanov 1995,
Ivanov et al. 1995). The polarized radiation field and the source
function are represented by (2x2) matrices, denoted respectively
by Î and Ŝ. They are related to the vectorial quantities intro-
duced previously through the equations

I(τ, x, µ) = Â(µ)Î(τ, x, µ)e, S(τ, µ) = Â(µ)Ŝ(τ )e, (3)

where e = (1, 1)T and x is the frequency variable. Comparing
the second equation in (3) with Eq. (2), we get

P(τ ) = Ŝ(τ )e. (4)

An advantage of this formalism is that the source matrix Ŝ(τ ) is
independent of µ. The intensity matrix obeys a matrix transfer
equation which is formally similar to the scalar transfer equation
for non-polarized problems. The source matrix satisfies a matrix
integral equation which has the same (2x2) matrix kernel as the
vectorial integral equation for P(τ ). The PALI method is based
on the integral equation for the matrix source function. Let us
notice that when the primary source of photons comes from
unpolarized thermal emission, as in the standard line formation
problems, two components of the (2x2) intensity and source
matrices are vanishing. In contrast, if the primary source of
photons is due to the scattering of a polarized incident beam,
then all the four components of the matrices are different from
zero, but there are still only two quantities which carry a physical
meaning (see Sect. 2).

In Sect. 2, we recall the vector and matrix formalisms for
linear resonance polarization and give the corresponding inte-
gral equations. We also show that these equations can handle
the case of a weak turbulent magnetic field with an isotropic
distribution. In Sect. 3 we discuss in detail the properties of
the Lambda operator for resonance polarization and propose a
block Jacobi operator splitting method. The classical point Ja-
cobi iterative method is recalled in Appendix A. In Sect. 4, we
present the PALI method and analyze its convergence properties
for lines formed in a self-emitting slab and in a slab illuminated
by a polarized radiation field. In the first example the degree of
polarization is always weak because it arises due to the limb–
darkening of the line radiation field. In the second example, it
may be fairly strong because the illumination by a polarized ra-
diation field introduces a primary source of polarization which
can be made as large as one wishes. The accuracy of the re-
sults is evaluated by comparison to calculations performed with
a standard non-iterative Feautrier method. This also allows us
to estimate the efficiency of the PALI method in terms of com-
puting time and memory requirements. As in the case of scalar
problems, we find that the convergence may be accelerated by
an Ng technique applied to each element of the source matrix.
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2. Vector and matrix polarized transfer equations

In non-magnetic situations, the one-dimensional transfer equa-
tion for the vector I = (I,Q)T may be written as

µ
∂I(τ, x, µ)

∂τ
= φ(x)I(τ, x, µ)− φ(x)S(τ, µ), (5)

where φ(x) is the scalar absorption profile function appear-
ing in non-polarized problems (Chandrasekhar 1960, Landi
degl’Innocenti, 1984). For the two-level atom model, with com-
plete frequency redistribution, the vector source function is
given by

S(τ, µ) = (1− ε)
∫ +∞

−∞
φ(x′)

1
2

∫ +1

−1
P̂ (µ, µ′)I(τ, x′, µ′) dµ′dx′ + εB(τ ), (6)

where ε denotes the probability of collisional destruction of the
photons per scattering event, and εB(τ ) is a thermal creation
term, assumed isotropic and unpolarized (B = (B, 0)T). The
phase matrix P̂ (µ, µ′) is given by

P̂ (µ, µ′) = P̂is +
3
4
W2P̂

(2)
0 (µ, µ′). (7)

The matrix P̂is is the isotropic phase matrix (only the first el-
ement is different from zero and equal to 1) and P̂ (2)

0 is given
by

P̂ (2)
0 (µ, µ′) =

1
2

(
1
3 (1− 3µ2)(1− 3µ′2) (1− 3µ2)(1− µ′2)
(1− µ2)(1− 3µ′2) 3(1− µ2)(1− µ′2)

)
. (8)

The coefficientW2 is a constant which depends on the quantum
numbers J and J ′ of the lower and upper levels of the transition.
For a normal Zeeman tripletW2 = 1. All the calculations carried
out in this paper correspond to the case W2 = 1.

We remark here that the Hanle effect by a weak microturbu-
lent magnetic field with isotropic distribution may be described
with a similar phase matrix. When the field is microturbulent
(correlation length of the field smaller than a typical line photon
mean free path), one can average the Hanle phase matrix over the
angular distribution of the magnetic field (Stenflo 1982; Landi
degl’Innocenti & Landi degl’Innocenti 1988; Faurobert-Scholl
1993). The averaged microturbulent Hanle phase matrix is given
by Eq. (7) itself with W2 multiplied by

[1− 0.4(s2
I + s2

II )], (9)

where

sI =
γ√

1 + γ2
, sII =

2γ√
1 + 4γ2

, (10)

and

γ = 0.88gJ
H

ΓR + D(2) + ΓI
. (11)

HereH denotes the magnetic field intensity, measured in Gauss,
gJ is the Landé factor of the upper level. The coefficients ΓR,
D(2) and ΓI are respectively the rates of radiative damping,
depolarizing and inelastic collisions, given in units of 107 s−1.

Actually the magnetic field affects only the core of spec-
tral lines (frequencies from line center, less than a few Doppler
widths). The wings are insensitive to the Hanle effect (Omont
et al. 1973; Stenflo 1994). However, when the polarization is
negligible in the wings, the core phase matrix can be used at
all frequencies. This situation is encountered for lines formed
with complete frequency redistribution because PI (τ ), the po-
larization component of the vector P(τ ), goes to zero when τ
is large. We can see on Eq. (17) that the main contribution to
PI (τ ) comes from core frequencies because of the factor φ(x′).
When τ is large, the radiation I(τ, x′, µ′) is isotropic at core fre-
quencies and hence its integral over µ weighted by (1− 3µ2) is
zero. For weak lines formed in stellar atmospheres, the same av-
eraged Hanle phase matrix can also be used throughout the pro-
file, because the absorption coefficient in the wings is negligible
compared to the continuous absorption. In contrast, for strong
resonance lines where partial redistribution effects have to be
taken into account, it is necessary to employ a frequency depen-
dent Hanle phase matrix. The exact form of this phase matrix is
still debated (Stenflo 1994; Bommier 1996; Frisch 1996; Stenflo
1996). To summarize, for lines formed with complete frequency
redistribution, the only effect of a microturbulent magnetic field
is to multiply the factor W2 by a positive constant smaller than
unity. We therefore do not discuss this effect any further here.

A remarkable property of Rayleigh scattering is that the
phase matrix P̂ (µ, µ′) can be factorized, i.e. the variables µ
and µ′ can be separated. This property was first pointed out by
Sekera (1963). The factorization however is not unique (Van
de Hulst 1980, Chap. 16; Ivanov 1995). Here we use the same
factorization as in Ivanov (1995) :

P̂ (µ, µ′) = Â(µ)ÂT(µ′), (12)

with

Â(µ) =

(
1
√

W2
8 (1− 3µ2)

0
√

W2
8 3(1− µ2)

)
. (13)

This decomposition enables one to write the vectorial source
function S(τ, µ) in the factorized form given in Eq. (2), with

P(τ ) = (1− ε)
∫ +∞

−∞
φ(x′)

1
2

∫ +1

−1
ÂT(µ′)I(τ, x′, µ′) dµ′dx′ + εB(τ ). (14)

The thermal emission term has the same form in Eqs. (6) and
(14) because B(τ ) = (B(τ ), 0)T implies
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B(τ ) = Â(µ)B(τ ). (15)

The two components of P(τ ) are

PI (τ ) = (1− ε)
∫ +∞

−∞
φ(x′)

1
2

∫ +1

−1
I(τ, x′, µ′) dµ′dx′ + εB(τ ), (16)

and

PQ(τ ) =

√
W2

8
(1− ε)

∫ +∞

−∞
φ(x′)

1
2

∫ +1

−1
[(1− 3µ′2)I(τ, x′, µ′) +

3(1− µ′2)Q(τ, x′, µ′)] dµ′dx′. (17)

We notice that PI (τ ) is formally identical to the source function
of non-polarized problems.

The integral equation for P(τ ) is obtained by introducing
the formal solution of Eq. (5) into Eq. (14). For a slab of total
optical thickness T with no incident radiation, one obtains

P(τ ) = (1− ε)
∫ T

0
K̂(τ − τ ′)P(τ ′) dτ ′ + εB(τ ). (18)

The (2x2) kernel matrix K̂ is defined by

K̂(τ ) =
∫ +∞

−∞
φ2(x′) dx′

1
2

∫ 1

0
ÂT(µ′)Â(µ′)e−|τ |φ(x′)/µ′ dµ′

µ′
dx′. (19)

It is symmetric, i.e., K12 = K21, and the element K11 is equal
to the kernel of the corresponding scalar problem.

The starting point of the matrix formalism introduced by
Ivanov (1995) is the matrix transfer equation

µ
∂Î(τ, x, µ)

∂τ
= φ(x)Î(τ, x, µ)− φ(x)Ŝ(τ ), (20)

with source matrix

Ŝ(τ ) = (1− ε)
∫ +∞

−∞
φ(x′)

1
2

∫ +1

−1
ÂT(µ′)Â(µ′)Î(τ, x′, µ′) dµ′dx′ + Ŝ∗(τ ), (21)

and Ŝ∗(τ ) a given primary source term which we discuss below.
The four elements of the matrix Ŝ(τ ) and the two components
of the vector P(τ ) are related by Eq. (4).

The matrix transfer equation (20) is formally identical to
the scalar transfer equation in non-polarized problems and one
easily derives by analogy a matrix integral equation for Ŝ(τ ). For
a slab with a total optical thickness T and no incident radiation,
Ŝ(τ ) obeys

Ŝ(τ ) = (1− ε)
∫ T

0
K̂(τ − τ ′)Ŝ(τ ′) dτ ′ + Ŝ∗(τ ). (22)

The elementS11 satisfies the same integral equation as the scalar
source function for non-polarized problems.

We now discuss the primary source term Ŝ∗(τ ). Multiplying
Eq. (20) by the matrix Â(µ) on the left and by the vector e =
(1, 1)T on the right and using Eqs. (3) and (15), we recover the
vectorial transfer equation (5), provided Ŝ∗(τ ) satisfies

εB(τ ) = Ŝ∗(τ )e. (23)

This relation yields two scalar equations for the two compos-
ite quantities (S∗11 + S∗12) and (S∗21 + S∗22) (the subscripts are
the row and column indices). Clearly two additional condi-
tions are necessary to uniquely determine the four elements
S∗αβ (α, β = 1, 2). Following Ivanov (1995) we assume that

Ŝ∗(τ ) is a diagonal matrix. This hypothesis, since it is con-
sistent with Eq. (23), does not affect the “physical” vectorial
quantities. Equation (23) thus leads to

Ŝ∗(τ ) =

(
εB(τ ) 0

0 0

)
. (24)

Because the second term on the diagonal is zero, only the ele-
ments S11 and S21 of the source matrix are different from zero.
This can be seen by writing the integral equation for each of the
four elements or by performing a Neumann series expansion of
the solution of Eq. (22).

We now consider the case of a medium illuminated at τ =
0 by a unidirectional partially polarized continuum radiation
Iinc = (Iinc, Qinc)T. In this case it is convenient to introduce
the diffuse radiation field which is zero in the inward direction
at the surface. The scattering of the incident radiation yields a
depth dependent primary source term which may be written as

Sinc(τ, µ) = Â(µ)Pinc(τ ), (25)

with

Pinc(τ ) =
1− ε

2
ÂT(−µ0)IincM (τ, µo), (26)

and

M (τ, µo) =
∫ +∞

−∞
e−τφ(x′)/|µ0|φ(x′) dx′. (27)

Here −µ0 (µ0 > 0) is the cosine of the angle of incidence of
the external radiation. The primary source in the matrix transfer
equation (20) for the diffuse radiation field is

Ŝ∗(τ ) =

(
P inc
I (τ ) 0

0 P inc
Q (τ )

)
, (28)

where P inc
I,Q(τ ) are the two components of Pinc(τ ). In this gen-

eral case, the source matrix Ŝ(τ ) is a full (2x2) matrix. The el-
ements of Ŝ(τ ) are coupled two by two within a same column,
i.e. S11 with S21 and S12 with S22. The matrix transfer equa-
tion is equivalent to a set of two independent vectorial transfer
equations.
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Fig. 1. The kernels Kαβ(τ ) and their primitives K∗
αβ(τ ) in lin-log

scales for Doppler profile.

We note here that the transformation of the vectorial trans-
fer equation into a matrix equation is always possible (Ivanov
1995). When the primary source term S∗(τ, µ) is not of the form
Â(µ) times a column vector, as in our two preceding examples,
one writes the radiation field as the sum of a diffuse field (multi-
ply scattered) and of a directly transmitted field (which satisfies
Eq. (5) with S(τ, µ) replaced by S∗(τ, µ)). The primary source
term for the diffuse field has then the required form.

3. The generalized Lambda operator

In this section we examine the properties of the operator Λ. In
Sect. 3.1 we present some general comments on the solution of
Eq. (29) that follow from the normalization and the behavior at
infinity of the elements of the matrix kernel K̂(τ ). In Sect. 3.2
we calculate numerically the elements of the matrix correspond-
ing to the operator Λ to examine its structure with respect to the
Jacobi iterative method.

3.1. The propagating and mixing kernels

The integral equation for the vector P or the matrix Ŝ can be
written in the symbolic form

P(τ ) = (1− ε)Λ(P) + Q(τ ), (29)

where Q(τ ) is a given primary source and Λ the integral operator
in Eqs. (18) and (22) for T = ∞. In explicit form, the integral

equation for P may be written as

PI (τ ) = (1− ε)
∫ ∞

0
K11(τ − τ ′)PI (τ ′) dτ ′

+ (1− ε)
∫ ∞

0
K12(τ − τ ′)PQ(τ ′) dτ ′ + QI (τ ), (30)

and

PQ(τ ) = (1− ε)
∫ ∞

0
K22(τ − τ ′)PQ(τ ′) dτ ′

+ (1− ε)
∫ ∞

0
K21(τ − τ ′)PI (τ ′) dτ ′ + QQ(τ ). (31)

The four kernelsKαβ(τ ), α, β = 1, 2 are the elements of the
matrix kernel K̂ defined in Eq. (19). Henceforth we use greek in-
dices to refer to the four elements of the (2×2) matrices involved
in the polarized transfer equations. Following Ivanov (1995), we
shall refer to the kernelsK11 andK22 as the propagating kernels
and to K12 as the mixing one. A slightly different version of the
kernel K̂ has been introduced in FSF for the case W2 = 1. Due
to a different factorization of the phase matrix, the kernel in FSF
is not symmetrical and KFSF

21 = (9/8)KFSF
12 . The kernel K11

has the same definition here and in FSF. For the other elements
we have K12 = (3

√
W2/8)KFSF

12 and K22 = W2K
FSF
22 . The

explicit expressions of the KFSF
αβ can be found in FSF. In Fig.

1 we show the three kernels and their primitives,

K∗
αβ(τ ) = 2

∫ ∞

τ

Kαβ(u) du, (32)

for the case W2 = 1. All the elements, Kαβ(τ ), α, β = 1, 2, are
even functions of τ . The propagating kernels K11 and K22 are
positive and are normalized to 1 andW2(7/10), respectively (the
norm is the integral from −∞ to +∞). The mixing (coupling)
kernel K12 = K21 has very different properties. Its integral over
(0,∞) is zero and as a consequenceK12 takes both positive and
negative values. There is only one change of sign which occurs
around τ = 1, with K12 positive for smaller values of τ and
negative for larger ones. Because we are dealing with complete
frequency redistribution, the Kαβ(τ ) decrease algebraically to
zero as τ → ∞. For a Doppler profile, for instance, they be-
have as 1/(τ 2

√
ln τ ). For τ → 0, they increase logarithmically.

Asymptotic series valid at large and small τ can be found in
FSF and in Ivanov et al. (1996a).

It is interesting to discuss the properties of Eqs. (30) and
(31), considered as two uncoupled scalar equations. The prop-
erties of Eq. (30), which has the same kernel normalized to unity
as the standard integral equation for a scalar source function, are
quite well known. In the limit of small ε, the characteristic scale
of variation of PI is given by the thermalization length which is
of order (ε

√− ln ε)−1 for a Doppler profile, and of order aε−2

for a Voigt profile with parameter a. At large depths,PI behaves
as the inhomogeneous term divided by ε, provided this term is
also slowly varying. Equation (31) is somewhat different since
the kernel K22 is normalized to W2(7/10). However we can
easily recast it in a standard form by a simple redefinition of the
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kernel. Introducing the kernel K̃22 = K22/W2(7/10) which is
then normalized to unity, we can rewrite Eq. (31) as

PQ(τ ) = (1− ε̃)
∫ ∞

0
K̃22(τ − τ ′)PQ(τ ′) dτ ′ + P ∗

Q(τ ), (33)

with

1− ε̃ = W2
7

10
(1− ε). (34)

Ivanov (1995) has introduced the notation εQ for ε̃. The inho-
mogeneous term P ∗

Q(τ ) is the sum of the coupling term and of
the primary source QQ(τ ). For ε� 1, one has ε̃ ' W2(3/10).
So the effective destruction probability is fairly large. As a result
PQ(τ ) will not depart very strongly from the inhomogeneous
term P ∗

Q(τ ). For instance at large τ , one has

PQ(τ ) ' 1
ε̃
P ∗
Q(τ ) =

10
3W2

P ∗
Q(τ ). (35)

Numerical solutions of Eq. (33) show that this relation is well
satisfied when τ > 10. Another consequence of the relatively
large value of ε̃ is that a Neumann series expansion of PQ(τ )
will be rapidly convergent.

We consider now the coupling terms. To understand the ef-
fect of a convolution by K12, let us assume that K12 acts on a
constant C. One has

C

∫ ∞

0
K12(τ − τ ′) dτ ′ = −1

2
CK∗

12(τ ), (36)

whereK∗
12(τ ) is the primitive ofK12(τ ) defined in Eq. (32). The

functionK∗
12(τ ) is negative for all τ , goes to zero for τ → 0 and

τ →∞. Its absolute value has a maximum around 6× 10−2 at
τ ' 0.75 (see Fig. 1). The convolution of a constant with K12

leads thus to a function which has a maximum at optical depths
around one and which is more than ten times smaller than the
original function. The functions PI (τ ) and PQ(τ ) are of course
not independent of τ unlike C but the behavior found above is
very typical of the action of K12.

The weakness of the coupling term in the equation forPI (τ )
and the normalization ofK22 to a value significantly smaller than
unity explain the success of the perturbation methods mentioned
in the Introduction. In a first step one solves the non-LTE prob-
lem for the intensity, neglecting the polarization, and then calcu-
lates the polarization by an iterative procedure which amounts
to a Neumann series expansion of Eq. (31). One then corrects
the intensity for the polarization and iterates until convergence.

3.2. The propagating and mixing operators

It is convenient to rewrite Eq. (29) for P in the form

A(P) = Q(τ ), (37)

where

A = [E − (1− ε)Λ]. (38)

Here E is the identity operator. The operator A involves three
linear operators : the operators A11 and A22 which are defined
by

Aααf (τ ) = f (τ )− (1− ε)
∫ ∞

0
Kαα(τ − τ ′)f (τ ′) dτ ′, (39)

for α = 1, 2 and the operator A12 defined by

A12f (τ ) = −(1− ε)
∫ ∞

0
K12(τ − τ ′)f (τ ′) dτ ′. (40)

Because K12 = K21, we have A12 = A21. In the subsequent
equations, we use only A12. A discretization of the τ variable
(τ = {τi}, i = 1, N ) transforms the operators Aαβ into square
matrices :

Aαβf (τ ) →
∑
j

Aαβ(i, j)fj , i = 1, N, (41)

with fj = f (τj). Note that we shall be using the same notation
for the integral operator and the corresponding matrix. Roman
letters are used to denote indices corresponding to the optical
depth grid. The choice of the grid and of the representation
of f (τ ) does affect the numerical values Aαβ(i, j) but not the
global properties that are discussed here.

For non-polarized problems, as already shown in OAB the
matrix A11 is diagonally dominant, i.e. satisfies the criterion

|A11(i, i)| ≥
∑
k/=i

|A11(i, k)|, i, k = 1, N, (42)

but what about A22 and A12? The criterion (42) is presented
with more detail in Appendix A. We stress that it is a sufficient
but not a necessary condition for the convergence of the Jacobi
iterative method. To analyze the structure of the matrices Aαβ ,
we have calculated their elements numerically by the method
which is described below. The iterative technique described in
Sects. 4 and 5 however, makes use only of the diagonal elements
of these matrices.

The results presented in this section have been obtained with
a Doppler profile andW2 = 1. To calculate the kernelsKαβ , we
have used the representation by Padé approximants established
in Hummer (1981) for K11 and in FSF for K22 and K12. It has
been noticed by Ivanov et al. (1996b) that there is a printing er-
ror in the coefficient p8 of K∗

22 : the last three significant digits
should be 649 and not 465. A mixed quadratic-linear represen-
tation is used for f (τ ). For a given grid point τi, we assume
for f (τ ′) a parabolic representation in the interval [τi−1, τi+1]
and a linear representation outside this interval. The asymptotic
analysis of the operator A11 (Frisch & Frisch 1977, Frisch &
Froeschlé 1977) shows that it is necessary to ensure the con-
tinuity of the first derivative of f (τ ′) in an interval centered
around τ ′ = τi, especially for a Doppler profile. The accuracy
of this representation has been examined by Bommier & Landi
degl’Innocenti (1994, 1996) and is typically around 2%.

In the lower panels of Figs. 2 and 3 we show the diagonal
elements Aαβ(i, i) and rows of Aαβ , i.e. Aαβ(i, j) for some
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Fig. 2. Behavior of the matrix (operator)
Aαα = E − (1 − ε)Λαα. Upper panels : 2D contours
of the entries Aαα(i, j). Lower panels : Diagonal ele-
ments Aαα(i, i) (smooth curve) and elements Aαα(i, j)
for selected values of the row index i and all values of
j. For each row i, the abscissa of the largest element
yields the corresponding optical depth since the largest
element is on the diagonal. For τ → ∞, the diagonal
elements of A11 and A22 go to ε and 0.3, respectively.

selected values of i and all values of j. The upper panel shows
2D contours of Aαβ(i, j). The upper left corner corresponds to
the elementAαβ(1, 1) and the lower right corner toAαβ(N,N ),
with N the total number of depth points. Fig. 3 actually shows
−A12(i, j). The figures have been produced with 10 grid points
per decade for τ between 10−2 and 103. The correspondence
between the grid index g and the optical depth τ is thus g =
10 log10 τ + 20.

For A11 and A22, Fig. 2 shows that the largest element, for
any row, lies on the diagonal. For A11 the diagonal elements go
to ε at large optical depths and for A22 they go to 3/10. These
values determine the asymptotic behavior of PI (τ ) and PQ(τ )
at large τ (see above). To examine the question of diagonal
dominance, we have calculated numerically the ratio

λαα = max
i
{
∑
k/=i

|Aαα(i, k)|/|Aαα(i, i)|}, α = 1, 2. (43)

For a grid spacing with 8 points per decade we find λ11 = 0.95
and λ22 = 0.48. We can conclude that A22 is also diagonally
dominant and that the spectral radius (see Varga 1962 or Ap-
pendix A for a definition) of the corresponding amplification
matrix is significantly smaller for A22 than for A11. For A11,
the ratio in Eq. (43) has its maximum value around τi = 32 and
for A22 around τi = 1.5. The values of λαα are grid dependent
(they increase when the grid becomes finer) but the position of
the maximum is essentially independent of the grid.

In Fig. 3, we can note that the diagonal elements of −A12

have a maximum of the order of 6 × 10−2 around τ = 4. This
value is of the same order as the maximum of−K∗

12. For τ → 0
and τ →∞, the diagonal elements go to zero. We find that the

value of λ12 is largely above unity. ClearlyA12 is not diagonally
dominant. The broad white–grey portion on the top left corner
in the upper panel roughly corresponds to optical depths where
the ratio in Eq. (43) is larger than unity. For rows of index less
than 3, the diagonal element is even not the largest.

The full matrixA has a block structure since each “element”
is a (2 × 2) matrix. The above analysis has shown us that the
two propagating operatorsA11 andA22 are diagonally dominant
and that the mixing operator A12 is not. As for the full matrix
A, it does not satisfy the criterion (42) for 3 < τ < 103. This is
roughly the region where A11 barely satisfied the criterion (42).
However, the standard (point) Jacobi method is convergent. We
have already pointed out that diagonal dominance is not a neces-
sary criterion for convergence. We have found that convergence
is somewhat faster if in place of the point Jacobi method, we use
a block Jacobi iterative method where the approximate transport
operator is a block diagonal matrix with elements dii defined
by

dii =

(
A11(i, i) A12(i, i)
A12(i, i) A22(i, i)

)
. (44)

In terms of the operator Λ,

dii =

(
1− (1− ε)Λ11(i, i) −(1− ε)Λ12(i, i)
−(1− ε)Λ12(i, i) 1− (1− ε)Λ22(i, i)

)
. (45)

The iterative method, its implementation and convergence
tests are described in the next section in the framework of the
matrix integral equation (22). From a computational point of
view it is more convenient to work with the matrix formalism
because the four elements of Î(τ ) and Ŝ(τ ) satisfy Eq. (20).
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Fig. 3. Behavior of the matrix (operator) −A12 = (1 − ε)Λ12. See
the caption of Fig. 2. The diagonal elements (bell shaped curve in the
lower panel) go to zero for τ →∞.

4. An approximate Lambda iteration method for polarized
transfer

4.1. Implementation of the iterative method

We consider the integral equation (22) which we write in the
symbolic notation

Ŝ = (1− ε)Λ(Ŝ) + Ŝ∗. (46)

Let us assume that we know an estimate of Ŝ, denoted by Ŝ(n).
At iteration (n + 1) we write

Ŝ(n+1) = Ŝ(n) + δŜ. (47)

The correction term obeys the equation

A(δŜ) = −A(Ŝ(n)) + Ŝ∗ (48)

with A = [E − (1 − ε)Λ] and E the identity operator. We
now replace in the l.h.s. of Eq. (48) the matrix A by the block
diagonal matrix D = {dii} introduced in Eq. (44). Expressing
in the r.h.s. of Eq. (48) the matrix A in terms of Λ, we obtain
for each optical depth grid point,

δŜ(τi) = d−1
ii [(1− ε)Λ(Ŝ(n))(τi)− Ŝ(n)(τi) + Ŝ∗(τi)]. (49)

Each term in this equation is a (2 × 2) square matrix. The ma-
trices dii and Λ(Ŝ(n))(τi) can be calculated as shown below by
integrating the radiative transfer equation (20) with given ma-
trices Ŝ(τ ).

Comparing the definition of Ŝ(τ ) with the integral equation
satisfied by Ŝ(τ ) (see Eqs. (21) and (46)) we see that

Λ(Ŝ(n))(τ ) = Ĵ (n)(τ ), (50)

with

Ĵ(τ ) =
∫ +∞

−∞
φ(x′)

∫ +1

−1
ÂT(µ′)Â(µ′)Î(τ, x′, µ′)

dµ′

2
dx′. (51)

The matrix Ĵ (n) is the frequency and angle averaged intensity for
polarized problems. Knowing Ŝ(n)(τ ) we calculate Î (n)(τ ) with
Eq. (20), using a Feautrier formal solution method and then in-
tegrate over frequencies and directions as shown in Eq. (51). To
ensure that the iterative method converges to the solution of the
actual problem, the matrix in the square bracket of Eq. (49) must
be calculated very accurately. This requires a preconditioning
of the transfer equation to avoid round–off and truncation errors
in the calculation of the differences Ĵ (n)(τi)− Ŝ(n)(τi) (see e.g.,
Rybicki & Hummer 1991). Actually the difficulty arises only
at large optical depths for the element {11} and is due to the
normalization to unity of the kernel K11.

The matrices dii are calculated once for all by solving
Eq. (20) with

Ŝ(τ ) = δ(τ − τi)

(
1 0
0 1

)
, (52)

where δ is the Dirac distribution. For this source matrix, as
shown by Eq. (50), Λαβ(i, i) = Jαβ(τi). The elements of dii
can then be calculated from Eq. (45).

In the vector formalism, two different vectorial source
terms : P(τ ) = δ(τ − τi)(1, 0)T and P(τ ) = δ(τ − τi)(0, 1)T are
needed to calculate the matrices dii. The first expression yields
Λ11(i, i) and Λ21(i, i) and the second one Λ12(i, i) = Λ21(i, i)
and Λ22(i, i).

Computational details

For the optical depth grid we use 8 points per decade. We stress
that the grid spacing determines both the accuracy of the result
and the speed of convergence of the iterative method. Roughly
speaking, the coarser is the grid, the faster is the convergence.
We can understand this trend in the following way: the “local”
approximation of the operator Λ represents the radiative interac-
tions in the neighborhood of each depth point τi, i.e. in between
τi−1 and τi+1. The extent of this region is larger if the optical
depth grid is not too fine. Indirectly, the long distance interac-
tions are then better represented. The effects of the grid spacing
and of other parameters such as ε and the optical thickness of
the medium on the rate of convergence have been studied in
detail in the case of scalar problems (e.g. OAB, Auer et al 1994;
Trujillo Bueno & Fabiani Bendicho, 1995). Having found es-
sentially the same effects for our vectorial/matrix problem, we
refer the reader to the articles listed above.

For the frequency grid, we use a two-point Gauss formula,
per decade of the profile function φ. The maximum value of the
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frequency, xm, is chosen such that Tφ(xm) ' 10−2, with T the
total optical thickness of the medium. Because the calculation
of Ĵ (n)(τ ) involves 2nd–order moments of Î (n)(τ ), the angular
grid must be sufficiently fine. After a few tests, we have retained
a three-point Gauss formula for µ ∈ [0, 1]. It yields an error of
order of 5% on the polarization and 1% on the intensity with
respect to a 9-point formula.

4.2. Test problems

In this paper we consider two different problems, (i) a self-
emitting slab with a uniform temperature, (ii) a slab illuminated
on both sides by an exterior radiation field. In our two examples
the slab is symmetric with respect to the mid-plane. We have
computed the radiation field in one half of the slab only, by
imposing that the derivatives of the four elements of the matrix
radiation field are zero at mid-plane.

In case (i),

S∗11(τ ) = εB; S∗22(τ ) = 0. (53)

Thus only the elements of the first column of Ŝ (i.e. S11 and
S21) are different from zero.

In case (ii), the internal thermal emission is zero but there
is at each surface an incident field of the form

Iinc = δ(µ∓ µo)Iinc (1, pinc)T, (54)

where ∓µo, (µo > 0) are the directions of the incident beam at
τ = 0 and τ = T , respectively. Combining Eqs. (13) and (26)
to (28), we find

S∗11(τ, µo) =
1− ε

2
Iinc [M (τ, µo) + M (T − τ, µo)] (55)

and

S∗22(τ, µo) =

√
W2

8
[(1− 3µ2

o) + 3pinc(1− µ2
o)]S∗11(τ, µo).(56)

Only the elements of the second column of Ŝ, i.e. S12 and S22,
depend on the polarization pinc of the incident radiation.

All the calculations have been carried out for a Voigt ab-
sorption profile with a = 10−3 and a depolarization parameter
W2 = 1. The medium is characterized by the total frequency av-
eraged line optical thickness T and the destruction probability
ε. All the results shown here correspond to T = 2 × 109 and
ε = 10−6. For the self-emitting slab, B = 1. For the illuminated
slab, B = 0, µo = 0.5, Iinc = 1 and pinc = −20%.

4.3. Behavior of the correction terms

We examine in this section the behavior of the corrections δŜαβ
as one advances in the iteration process, postponing to Sect. 4.6
the discussion on the convergence criterion. The relevant quan-
tities for this study are the maximum of the relative corrections

c(n)
αβ = max

τi
{|δS(n)

αβ(τi)/S
(n+1)
αβ (τi)|}. (57)
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Fig. 4. Maximum relative corrections c(n)
αβ as function of the iteration

number in lin-log scales for a slab with T = 2 × 109, ε = 10−6 and
a = 10−3. Upper Panel : self-emitting slab with B = 1. Lower Panel :
illuminated slab with Iinc = 1, pinc = −20%, and B = 0. Note
that the curves in the upper and lower panels have the same slope at
large n.

They are shown in Fig. 4, as function of iteration number n,
for the two test problems defined above. The stopping criterion
corresponding to Fig. 4 is c(n)

αβ ≤ 10−2ε = 10−8 for all α and β.
Figs. 6 and 7 show the convergence history of the source

matrix elements Sαβ(τ ) after application of the Ng acceleration
procedure discussed in Sect. 4.4. To start the iteration cycle
we have chosen Ŝ equal to the primary source term Ŝ∗. The
converged solution satisfies the set of equations

A11(S11) + A12(S21) = S∗11, (58)

A22(S21) + A12(S11) = 0, (59)

A11(S12) + A12(S22) = 0, (60)

A22(S22) + A12(S12) = S∗22. (61)

Fig. 4 shows that c21 for the self-emitting slab (upper panel)
and c12 for the illuminated slab (lower panel), go through sharp
maxima at the beginning of the iteration procedure. For scalar
transfer problems, the source function is always positive. Here
the elementsS21 for the self-emitting slab andS12 for the illumi-
nated slab have a change of sign (see Figs. 6 and 7). The sharp
maxima in the maximum relative corrections appear whenever
the depth point where the change of sign occurs is very close to a
grid point. The corrections c21 and c12 start to decrease smoothly
when this point does not move spatially from one iteration to
the other. To avoid these peaks in the iteration process, which
have no special meaning, and can even be a real nuisance if the
zero of the converged solution happens to be very close to a
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Fig. 5. Effect of Ng acceleration. Solid line : maximum relative cor-
rections c̄(n)

αβ . Dotted line : same quantities with Ng acceleration. Same
values of the model parameters as in Fig. 4 are employed. Upper Panel :
self-emitting slab. Lower Panel : illuminated slab.

grid point, it seems preferable to define the maximum relative
corrections with the modified formula

c̄(n)
αβ = max

τi

{
|δS(n)

αβ(τi)|
1
2 [|S(n+1)

αβ (τi)| + |S(n+1)
αβ (τi+1)|]

}
. (62)

Fig. 5 shows the variation of the c̄(n)
αβ with n. Differences be-

tween c̄(n)
αβ and c(n)

αβ appear only at the beginning of the iterations.
They essentially disappear for large values of n.

Another striking feature of Fig. 4 is that all the cαβ have
the same rate of decrease at large n. The numerical results give
ln c(n)

αβ ∼ n ln |λ1| with |λ1| = 0.916 ± 0.005. This value is
controlled by the operator A11. We give a simple model in Ap-
pendix B to explain this behavior. We can also understand it
directly from Eqs. (58) to (61). In Eq. (58), the coupling term
A12(S21) is negligible compared to the primary source term S∗11
(see Sect. 3.1). Therefore the rate of decrease of c11 is deter-
mined by the largest eigenvalue (in modulus) of the amplifi-
cation matrix F11, corresponding to A11. Its value, 0.916, is
consistent with the upper bound λ11 = 0.95 given in Sect. 3.2.
For c22 (see lower panel) we observe a larger rate of decrease
at the beginning of the iterations. At the start of the iteration
process, the rate of decrease of c22 is controlled by the operator
A22 because the coupling termA12(S12) in Eq. (61) is negligible
compared to S∗22 (we start the iterations with S12 = 0). We have
shown in Sect. 3.2 that λ22, the upper bound for the eigenvalues
of the amplification matrix corresponding toA22, is smaller than
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Fig. 6. Convergence history of the source function elementsSαβ(τ ) for
a self-emitting slab with B = 1, T = 2× 109, ε = 10−6 and a = 10−3.
The dotted lines show the initial solutions which are equal to εB for
S11(τ ) and to 0 for S21(τ ). Upper panel S11(τ ) in log-log scales. Lower
panel S21(τ ) in log-lin scales.

λ11. Hence the observed phenomenon. When the mixing term
A12(S12) becomes relevant, the rate of decrease of c22 becomes
equal to the rate of decrease of c12 which is also determined by
|λ1| since the transport operator acting on S12 is A11. For S21,
the transport term is controlled by A22 but the coupling term
by A11 through S11. It is the latter, because it decreases more
slowly, which dominates at large n. We can summarize this dis-
cussion, by saying that S12, S21 and S22 are slave modes of S11

at large n.

4.4. Ng acceleration

In the scalar case, several techniques have been proposed to
accelerate the speed of convergence of ALI methods, the most
commonly used ones are the Ng acceleration technique and the
orthomin method (see Auer 1991 for a review). A recent inves-
tigation (Auer et al. 1994) shows that they have essentially the
same effect. Since the memory requirement for the Ng technique
is significantly smaller than for the orthomin method, we have
retained the former one. Ng acceleration is applied separately
to each element of the matrix Ŝ.

Fig. 5 shows the dependence on n of the c̄(n)
αβ , without and

with the Ng acceleration. In this acceleration procedure, ev-
ery fourth iteration the source function is replaced by a linear
combination of the 3 previous iterations. The coefficients are
calculated in order to minimize the “distance” between S(n)

αβ

and S(n+1)
αβ (see OAB). The distance is defined as the sum over

all the depth points of the squared difference between these two
functions, multiplied by a positive weight. For the 11-element
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Fig. 7. Convergence history of the source
function elements for a slab illuminated by
an incident polarized radiation field of in-
tensity Iinc and polarization pinc = −20%.
Same slab parameters as in Fig. 6 with
B = 0. The dotted lines show the initial solu-
tions. All the elements Sαβ(τ ) are in log-lin
scales. Only one half of the slab is repre-
sented because the slab is symmetric about
the mid-plane.

we employ the same weight as in OAB, i.e.W11(τi) = 1/S11(τi)
so that the region of small optical depths whereS11(τ ) is small is
properly taken into account. For the other elements, we simply
use Wαβ(τi) = 1.

A delayed start of Ng when the maximum error becomes
smaller than 1, as sometimes advocated (Rybicki and Hummer
1991), does not improve the convergence. The Ng acceleration
is always started at the fourth iteration and applied each fourth
iteration. We have not tried to increase the number of regular it-
erations between an application of the Ng extrapolation scheme,
since there does not seem to be much to gain (Auer et al. 1994).
We see that the effect of the Ng method is to accelerate the
convergence by a factor 3 to 4. For S11, each application of the
Ng acceleration produces a decrease in the correction term. For
the other elements, the readjustment occurring at the iteration
following the Ng extrapolation produces an increase in the cor-
rection term which is due to the fact that the Ng extrapolated
values are not consistent with the transfer equation. The overall
convergence is however almost the same for c̄(n)

11 and the other
c̄(n)
αβ (see Fig. 5).

4.5. Some comments on the solution of the test problems

Figs. 6 and 7 show the convergence history of the elements
of the source matrix after application of the Ng acceleration.
One easily sees the effect of the Ng extrapolations every fourth
iteration. After convergence, these elements satisfy Eqs. (58) to
(61). We also recall that they are related to the components of
the vector source function P(τ ) by Eq. (4), which we can write
as

PI (τ ) = S11(τ ) + S12(τ ),

PQ(τ ) = S21(τ ) + S22(τ ). (63)

We first consider the self-emitting slab. In this case S11(τ ) =
PI (τ ) and S21(τ ) = PQ(τ ) (the second column of the matrix
source function is zero). The element S11(τ ) is essentially iden-
tical to the non–polarized scalar source function S(τ ) because
the mixing term is negligible compared to the primary source
term S∗11(τ ). We note that S11(τ ) is almost thermalized to the
Planck function but not fully (its value is slightly under unity at
mid-slab), because the thermalization length aε−2 is of the or-
der of the actual slab thickness. The surface value is essentially
governed by the exact result (Ivanov 1990)

P 2
I (0) + P 2

Q(0) = εB, (64)

which holds for a semi-infinite medium with a uniform primary
source εB, with B = (B, 0)T. Since PQ(0) is very small com-
pared to PI (0), one has, as shown in Fig. 6, S11(0) ' √εB.

The element S21(τ ) has values of the order of magnitude of
−A12(S11) as seen from Eq. (59). At small optical depths one
has thus S21(τ ) ' −K∗

12(τ )S11(0). Since S11(0) ' 10−3, this
yields S21(τ ) of the order of 10−5 at the surface. We note also
that S21(τ ) has a change of sign. One can verify that it coincides
with a change in the anisotropy of the radiation field which goes
from limb darkening to limb brightening when the optical depth
increases inward from the surface.

We now consider the case of the illuminated slab. Because ε
is very small and the slab thickness is of the same magnitude as
the thermalization length, the slab is almost totally reflecting. As
a resultS11(0) ' Iinc and the influence of the incident polarized
radiation field on S11(τ ) is felt over most of the slab (note the
linear scale for S11(τ ) in Fig. 7). In contrast, the polarization
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their sumPQ(τ ) are shown as function of optical depth in log-lin scales.

stays concentrated near the surface because a large number of
scatterings act efficiently to destroy polarization in the deeper
layers.

For the element S21(τ ), the argument developed above leads
to S21(τ ) ' −K∗

12(τ ). Hence, at the surface S21(τ ) of the order
of 10−2.

The element S12(τ ) is negligibly small at all depths com-
pared to S11(τ ) because of the smallness of the coupling term
A12(S22) (see Eq. (60).

Finally we remark that S22 is of the order of S∗22. There are
two reasons for this behavior, the mixing term A12(S12) (see
Eq. (61)) is negligible compared to the primary source S∗22 and
A22 has an interaction range of order unity. We show in Fig. 8
the elements S21(τ ) and S22(τ ) and their sum PQ(τ ) which is
the relevant physical quantity for the polarization component.

Concerning the illuminated slab, one may raise the ques-
tion whether the convergence of the iterative process should
be tested on the four elements of the matrix Ŝ(τ ) or only on
the physical quantities PI (τ ) and PQ(τ ) (see Eq. (63)). For the
intensity component, S12(τ ) is negligible compared to S11(τ ).
Therefore it is sufficient to test their sum for convergence. Since
c̄(n)

12 ≈ 10 c̄(n)
11 , testing PI (τ ) will save a number of iterations.

For the polarization component, S21(τ ) and S22(τ ) are of the
same order, with S21(τ ) positive for all τ and S22(τ ) negative
for all τ . Their sum PQ(τ ) shown in Fig. 8 has a change of sign.
As a consequence, the maximum relative correction for PQ(τ )
(not shown in Figs. 4 nor 5), oscillates at the beginning of the it-
erations and is larger than c̄(n)

21 . For the polarization component,
it thus appears preferable to apply the convergence criterion to
S21(τ ) and S22(τ ) separately. This is an advantage of the matrix
formulation over the vector formulation.

4.6. Convergence criterion

A stopping criterion for the iterative procedure, commonly used
for scalar transfer problems (see e.g. Auer & Paletou 1994) is
c(n) ≤ 10−2ε. The same criterion is applied by us to each of
the c̄(n)

αβ to produce Figs. 4 and 5. Recently Auer et al. (1994)
have pointed out that the converged solution for a grid with a

given spacing contains a built-in truncation error, with respect
to the true solution that could be obtained on a grid with infinite
resolution, and they stress that it is a waste of computing time
to approach the converged solution corresponding to a given
grid with an accuracy which is larger than that of the converged
solution itself. For polarized transfer, as discussed in Sect. 4.5,
the relevant quantities for testing the convergence of the method
are the source function PI (τ ) for the intensity and, depending
whether the primary source is polarized or not, the matrix ele-
ments S21(τ ) and S22(τ ), or the source function PQ(τ ) for the
polarization.

We now discuss the new convergence criterion suggested by
Auer et al. (1994) for the case of the self-emitting slab transfer
problem. The relevant quantities for the convergence test are
the intensity and polarization source functions PI (τ ) = S11(τ )
and PQ(τ ) = S21(τ ). The test introduced by Auer et al. (1994)
involves three quantities which are defined below and plotted in
Fig. 9. The first one is the maximum relative correction, already
introduced in Sect. 4.3, which we write here as

c̄(n)
I,Q(g) = max

τ
[|P (n+1)

I,Q (g)− P (n)
I,Q(g)|/P̄ (n)

I,Q(g)]. (65)

The subscripts I and Q refer to the intensity and polarization
component, P̄ (n)

I,Q(g) stands for the denominator in Eq. (62) and
g is an index indicating the level of spatial resolution of the
optical depth grid. We adopt the convention of Auer et al. (1994)
that the larger is the index g the finer is the grid. The second
quantity of concern is the maximum relative convergence error,

e(n)
I,Q(g) = max

τ
[|P (n)

I,Q(g)− P (∞)
I,Q (g)|/P̄ (∞)

I,Q (g)], (66)

where n = ∞ indicates that one is dealing with the fully con-
verged solution on grid g. The third quantity is the maximum
truncation error,

E(n)
I,Q(g) = max

τ
[|P (n)

I,Q(g)− P (∞)
I,Q (∞)|/P̄ (∞)

I,Q (∞)], (67)

where g = ∞ indicates the true solution on a grid of infinite res-
olution. To determine the convergence and the truncation errors
we have calculated the converged solution P (∞)

I,Q (g) and the true

solution P (∞)
I,Q (∞) with a non iterative Feautrier method, using

8 and 16 depth points per decade, respectively. The angle and
frequency grid points employed for the direct Feautrier solution
are the same as for the iterative method. An elegant method for
estimating the true error, based on a grid doubling strategy, is
described in Auer et al. (1994).

Fig. 9 shows that the maximum relative correction c̄(n)
I,Q(g)

(also plotted in Fig. 5, upper panel) goes to zero when n goes
to infinity and that the maximum relative error e(n)

I,Q(g) has the

same rate of decrease as c̄(n)
I,Q(g) before it reaches a constant

value. In the scalar case, Auer et al. (1994) have shown that

e(n)(g) ≈ c(n)(g)
|λ|

|1− λ| , (68)

whereλ is the eigenvalue which controls the rate of convergence.
This relation is obtained by writing that the converged solution
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satisfies Eq. (A5). One can verify, using |λ1| ' 0.916, that
the relation (68) holds in the case at hand for both PI (τ ) and
PQ(τ ). The relation (68) predicts that e(n)(g) goes to zero for n
going to infinity. Here, it goes to a constant of order 10−6 for
the intensity component and of order 10−4 for the polarization
component. The reason is simply that we have used for P (∞)

I,Q (g)
the solution given by a direct Feautrier method, and not the
converged solution of the iterative process. Differences between
these two solutions are to be expected since they are obtained
with different numerical methods involving different levels of
truncation errors in the algorithms. For instance, the Feautrier
method requires the inversion of large (2Nt × 2Nt) matrices,
with Nt being the product of the number of directions by the
number of frequencies.

Whenn goes to infinity, the true errorE(n)
I,Q(g) goes to a con-

stant E(∞)
I,Q(g) which measures the error between the converged

solution and the true solution. Fig. 9 shows that one introduces
a 1% error on the intensity component and a 5% error on the po-
larization component when the grid spacing goes from 16 depth
points per decade to 8 depth points per decade. The suggestion
of Auer et al. (1994) is to stop the iterative process when the
maximum relative error becomes smaller than the true error.
Here this criterion becomes

e(n)
I,Q(g) < E(∞)

I,Q(g), (69)

for both the I and Q component. To apply this criterion one
needs a method for estimating E(∞)

I,Q(g) and the variation with

n of the maximum relative error e(n)
I,Q(g). The latter can be de-

duced from the iterative process itself which yields both |λ1|
and c̄(n)

I,Q(g) and hence e(n)
I,Q(g) with the help of Eq. (68). For the

example of Fig. 9, the criterion (69) leads to c̄(n)
I < 10−3 and

c̄(n)
Q < 10−2. Fig. 5 (upper panel) shows that it is satisfied after

just 30 iterations, if the Ng acceleration procedure is applied.

4.7. CPU requirements

Using the matrix formalism developed by Ivanov (1995), we
have shown that the Jacobi-type ALI method introduced by
OAB for scalar problems can be generalized to vectorial prob-
lems such as resonance polarization of spectral lines. To demon-
strate the usefulness of the PALI method, we still have to show
that it offers a significant gain in computing time with respect
to a direct method of solution, say, of the Feautrier type.

LetNν andNµ be the number of frequency and angle points.
For the Feautrier method, the computing time increases as N 3

t

and the memory space as N 2
t where Nt = NνNµ. In ALI meth-

ods, they both increase linearly withNt. In Table 1 we compare
various computing times for our reference self-emitting slab
problem. The calculations have been performed on a Sun 670
MP workstation with a stringent stopping criterion, c̄(n)

αβ < 10−8

for all α and β. It is clear that the advantage of the PALI method
is overwhelming when a large number of frequency points is
required for a given problem. The Ng acceleration reduces the
computing time by a factor of 2 although the number of iter-
ations needed to reach the stopping criterion is cut down by a
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Fig. 9. Maximum of the relative corrections c̄(n)
I,Q, of the relative errors

e(n)
I,Q and of the true errors E(n)

I,Q as functions of the iteration num-
ber for the self-emitting slab transfer problem. Upper Panel : intensity
component. Lower Panel : polarization component.

Table 1. CPU time requirements. Self-emitting slab with T = 2× 109,
ε = 10−6, a = 10−3, Nµ = 3 and 8 depth points per decade.

Method Nν = 20 Nν = 30 Nν = 50
Feautrier 97s 345s 2300s

PALI 25s 48s 93s
PALI + Ng 14s 23s 43s

factor of 3-4. Every fourth iterations some CPU time is spent in
the calculation of the coefficients of the linear combination used
for the Ng acceleration. In the light of the discussion presented
in Sect. 4.6, a softer stopping criterion is suitable for the PALI
method also. In that case, the CPU requirements of PALI will
be even less than what is given in Table 1.

5. Conclusions

In this paper we have introduced an Approximate Lambda It-
eration method of the block-Jacobi type for non-LTE polarized
transfer (PALI). The iterative scheme has been developed us-
ing the formalism of the matrix transfer equation introduced
by Ivanov (1995), which appears ideal for the generalization
of operator splitting techniques to polarized transfer problems.
We have tested the method on two standard problems in strongly
non-LTE conditions : a self-emitting slab and a slab illuminated
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by a polarized radiation field. The convergence and accuracy
aspects of the PALI method have been analyzed in terms of the
asymptotic properties of the amplification matrix. It was nec-
essary to introduce a new definition for the maximum relative
correction which serves to follow the convergence of the itera-
tion process, because the Stokes parameters for the polarization
are not always positive quantities unlike the scalar intensity.
We also suggest a convergence (or stopping) criterion for PALI,
based on the recent work of Auer et al. (1994) on scalar Approx-
imate Lambda Iteration methods. Our PALI method is simple
to code, and in its present form can handle axisymmetric sit-
uations, including Hanle depolarization by turbulent magnetic
fields. The gain in computing time and memory over standard
non-iterative methods, makes it a method of choice for exten-
sions to multi-dimensional geometries.
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Appendix A: the Jacobi iterative method

Let us consider a linear system

Ax = g, (A1)

whereA = {aij} is a (N×N ) square matrix. The Jacobi method
amounts to rewriting this system as

Dx + (A−D)x = g, (A2)

where D is the diagonal of A. One then chooses the iterative
algorithm

Dx(n+1) + (A−D)x(n) = g, (A3)

where the superscripts denote the order in the iteration process
(Varga 1962; Stoer and Bulirsch 1980). Equation (A3) can also
be written as

∆x(n) = x(n+1) − x(n) = D−1[−Ax(n) + g], (A4)

or as

x(n+1) = Fx(n) + w, (A5)

where F = E −D−1A is the amplification matrix, E being the
identity matrix, and w = D−1g. The multiplication of the known
vector [−Ax(n) + g] by a diagonal matrix yields the correction
to the nth-order estimate. Thus, the inverse of the matrix A has

never to be calculated. Equation (A4) also shows that the Jacobi
method, as all the other operator splitting methods, amounts to
making an estimation of the corrective term.

The rate of convergence of any iterative procedure is con-
trolled by the spectral radius of the amplification matrix

ρ(F ) = max
i
|λi|, (A6)

where the λi are the eigenvalues (real or complex) of the ma-
trix F (Varga 1962). We deduce from Eq. (A5) that ∆x(n) =
F∆x(n−1). Hence, asymptotically for large n,

∆x(n) ' λmax∆x(n−1), (A7)

with λmax being the complex eigenvalue of F with the largest
modulus (or absolute value if the λi are real) (Puls & Herrero
1988). This asymptotic relation shows that |λmax| < 1 is a
necessary condition for the convergence of the iterative process;
that smaller the |λmax|, the faster is the convergence; that |λmax|
can be deduced from the iterative process itself, and finally that
the relation ln |∆x(n)| ∼ n ln |λmax| holds at large n.

It is generally difficult to determine the spectral radius of a
given matrix. Nevertheless, upper bounds can be found from the
theorem of Gerschgorin (Varga 1962; Stoer and Bulirsch 1980).
Applied to the matrix F , this theorem states that |λmax| < 1 if
the condition

|aii| >
∑
k/=i

|aik|, 1 ≤ i, k ≤ N, (A8)

is satisfied. Thus the Jacobi method is convergent for all ma-
trices which satisfy Eq. (A8). Such a matrix A is said to be
strictly diagonally dominant. There is a weaker formulation for
irreducible matrices which applies to the matrices at hand in the
PALI method. The strict inequality > can be replaced by≥ but
the strict inequality must hold for at least one row io. We note
here that Eq. (A8) is a sufficient but not a necessary condition
for convergence of the Jacobi method.

Appendix B: A model for the convergence of the PALI iter-
ative method

We consider the system of two coupled ordinary differential
equations

dx1

dt
= −k1x1(t) + η1x2(t), (B1)

dx2

dt
= −k2x2(t) + η2x1(t), (B2)

where 0 < k1 < k2 < 1 and η1,η2 � 1. We assume, that x1(0)
and x2(0) are given numbers of order unity. We first consider
Eq. (B2). For small values of twe can neglect the coupling term,
thus x2(t) decreases as e−k2t. For sufficiently large values of t,
x2(t) is determined by the balance between the coupling term
and−k2x2(t) and thusx2(t) ∝ x1(t). Thus asymptotically,x2(t)
behaves as x1(t), which itself behaves essentially as e−k1t. It is
the slowest decreasing term which determines the asymptotic
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behavior of both x2(t) and x1(t). One can recover these results
by constructing the full analytical solution of Eqs. (B1) and
(B2). It is clear that the vector (x1(t), x2(t))T plays the role
of the first or second column of the matrix δS(n)

αβ , that t plays
the role of the iteration number, that the coefficients η1 and
η2 express the weakness of the coupling between the intensity
and the polarization Stokes parameters and that k1 and k2 stand
for the largest (in absolute value) eigenvalues of the matrices
E − F11 and E − F22, with E the matrix identity, and F11 and
F22 the amplification matrices corresponding to the operators
A11 and A22.
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