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Abstract. In this paper we present an Approximate Lambda It-
eration method to treat the Hanle effect (resonance scattering
in the presence of a weak magnetic field) for lines formed with
complete frequency redistribution. The Hanle effect is maxi-
mum in the line core and goes to zero in the line wings. Referred
to as PALI-H, this method is an extension to non-axisymmetric
radiative transfer problems of the PALI method presented in
Faurobert-Scholl et al. (1997), hereafter referred to as Paper I.
It makes use of a Fourier decomposition of the radiation field
with respect to the azimuthal angle which is somewhat more
general than the decomposition introduced in Faurobert-Scholl
(1991, hereafter referred to as FS91).

The starting point of the method is a vector integral equa-
tion for a six-component source vector representing the non-
axisymmetric polarized radiation field. As in Paper I, the Ap-
proximate Lambda operator is a block diagonal matrix. The
convergence rate of the PALI-H method is independent of the
polarization rate and hence of the strength and direction of the
magnetic field. Also this method is more reliable than the per-
turbation method used in FS91.

The PALI-H method can handle any type of depth-
dependent magnetic field. Here it is used to examine the depen-
dence of the six-component source vector on the co-latitude,
azimuthal angle and strength of the magnetic field. The depen-
dence of the surface polarization on the direction of the line-of-
sight and on the magnetic field is illustrated with polarization
diagrams showing Q/I versus U/I at line center. The analysis
of the results show that the full six-dimension problem can be
approximated by a two-component modified resonance polar-
ization problem, producing errors of at most 20 % on the surface
polarization at line center.
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1. Introduction

In Paper I of this series (Faurobert-Scholl et al. 1997), we have
introduced an iterative numerical method of the Approximate
Lambda Iteration (ALI) type to solve polarized radiative transfer
equations describing the linear resonance polarization of spec-
tral lines formed with complete frequency redistribution. The
method described in Paper I can be applied to spectral lines
formed in non-magnetic regions or in the presence of a weak
isotropic turbulent magnetic field. It is tailored for radiation
fields with an axial symmetry. The gain in memory space and
computing time with respect to standard methods which do not
make use of an Approximate Lambda Operator is quite signifi-
cant.

Here we show that the method of Paper I can be gener-
alized to handle the Hanle effect which describes the action
of a weak magnetic field on resonance polarization. It applies
when the magnetic sublevels of transition are sufficiently close
in frequency that the natural linewidths of the sublevels overlap
significantly. Permanent phase coherences between the Zeeman
sublevels are partially destroyed leading to changes in the de-
gree of linear polarization and in the orientation of the plane
of polarization of the scattered radiation. The diagnostic po-
tential of the Hanle effect with optically thick lines is already
quite impressive. It was first used for solar prominences (Landi
Degl’Innocenti et al. 1987; Bommier et al. 1989), then for the up-
per solar atmosphere (see the review in Faurobert-Scholl 1996).
Other references can be found in Stenflo (1994). More recently
the Hanle effect has been considered for the detection of weak
magnetic fields in stellar envelopes (Ignace et al. 1997). Efforts
to increase the efficiency of numerical methods able to treat
this effect promise to be rewarding. The presence of an oriented
magnetic field breaks the axial symmetry of the problem. The
required generalization of the method of Paper I is achieved
by means of an azimuthal Fourier expansion of the radiation
field. As in Paper I we restrict ourselves to the approximation
of complete frequency redistribution in the line.

In Sect. 2 we describe the polarized line transfer equations,
and an azimuthal Fourier expansion method which can handle
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any depth-dependent magnetic field. It is more general than the
decomposition used in Faurobert-Scholl (1991), henceforth de-
noted by FS91, which was restricted to a magnetic field with
constant azimuthal angle. In Sect. 3 we present a reduced ra-
diative transfer problem for a six-dimensional vector radiation
field. It is the starting point for the PALI-H operator pertur-
bation method tested in Sect. 4 on a bench-marking problem
with a uniform magnetic field. In Sect. 5 we study the effects of
changing the direction and strength of a uniform vector magnetic
field. A case of a vector magnetic field with a depth dependent
azimuthal angle is also considered. We also discuss the basic
symmetries of the problem. In Sect. 6 we apply the PALI-H
method to construct various polarization diagrams. We study
their dependence on the direction of the line of sight and on the
vector magnetic field strength and orientation. We remark on a
simple approximation to the full Hanle problem and show that
it can be used for initial rough estimations of the magnetic field
parameters in an inversion code for polarimetric observations.
Some concluding remarks are presented in Sect. 7.

2. Basic equations

All the equations needed to calculate the Hanle effect produced
by a depth-dependent magnetic field, for a line formed with
complete frequency redistribution, are given in this section.
They generalize equations obtained in FS91 for the case of a
magnetic field with a uniform (constant with depth) azimuthal
angle. Many of the equations to be given here have already been
published, but are spread out in several articles, not all of them
with easy access (such as Faurobert-Scholl 1993). Hence the
presentation here of a complete set of equations.

2.1. Polarized line radiative transfer equation

In the presence of a weak magnetic field, the radiative transfer
equation for the Stokes vector may be written as

µ
∂I (τ, x,n)

∂τ
= φ(x)

[
I (τ, x,n)− S (τ, x,n)

]
, (1)

where φ is the scalar absorption profile function (Landi
Degl’Innocenti 1985). All the sign conventions, and the symbols
for the physical quantities have the same meaning as in FS91 : τ
is the frequency averaged line optical depth, x is the frequency
separation from line center, measured in Doppler width units,
n(θ, ϕ) is the propagation direction of the ray where θ is the co-
latitude (µ = cos θ) and ϕ is the azimuth of the ray. The positive
optical depth is measured in the direction opposite to the vertical
axis z (see Fig. 1). For lines formed with complete frequency
redistribution, the vector source function S is independent of
frequency and may be written as

S (τ,n) = (1− ε)
∫ +∞

−∞
φ(x′)∫

P̂H(n,n′,B) I (τ, x′,n′)
dΩ′

4π
dx′ + S ∗(τ ), (2)
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Fig. 1. Geometry specifying the direction of the magnetic field B and
of the line-of-sight n. Angles θ and θB are the co-latitudes of n and
B, respectively. The azimuthal angles ϕ and ϕB are measured starting
from the x-axis in the anti-clockwise direction in the xy-plane

where S ∗ is a given primary source term and P̂H is the
Hanle phase matrix. In this paper all matrices are denoted with
italic letters accentuated with a hat. As in FS91 and Landi
Degl’Innocenti (1985), we neglect depolarizing collisions. The
main results of this paper are independent of this simplifying as-
sumption. Depolarizing collisions can be introduced by making
ε a vector instead of scalar (Landi Degl’Innocenti et al. 1990).

The vector magnetic fieldB is characterized by its strength
B and by the angles θB and ϕB defined as shown in Fig. 1.
The full Hanle phase matrix is a (4 × 4) matrix which couples
together the three Stokes parameters I , Q and U but does not
couple them to the Stokes parameter V . Here we are interested
in the Hanle effect on the linear polarization of spectral lines.
We may thus consider only the three–component Stokes vector
I = (I,Q, U )T and source vector S = (SI, SQ, SU)T. The
primary source term is assumed to be of thermal origin. Hence
it is unpolarized and we may write it as S ∗(τ ) = (S∗I , 0, 0)T

where S∗I = εBν , with Bν the Planck function at the line center
frequency. An explicit analytical expression of the Hanle phase
matrice P̂H was first given by Landi Degl’ Innocenti & Landi
Degl’ Innocenti (1988).

2.2. The azimuthal Fourier expansion method

In a 1D medium, in the absence of magnetic field and of inci-
dent collimated radiation, the radiation field is axially symmet-
ric, i.e. it does not depend on the azimuth ϕ. This is no longer
true when a magnetic field is present. It is well known that
the non-axisymmetric transfer problem of Rayleigh scattering
polarization can be simplified by expanding the azimuthal an-
gle dependence of the specific intensity and source vector (see
Chandrasekhar 1960 p. 250). This method is generalized for the
Hanle scattering problem in FS91, where the azimuthal angle
dependence of I and S is expanded in a Fourier series with
respect to the azimuthal angle difference ∆ϕ = (ϕ−ϕB), where
ϕB is assumed to be depth-independent. Here we present a more
general formulation, where I and S are expanded in Fourier
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series with respect to ϕ. It can thus be used in cases where ϕB

varies with depth.
Because of its 2π-periodicity with respect to the variable ϕ,

the specific intensity vector may be expanded as

I (τ, x, µ, ϕ) =
∑k=+N

k=−N Ĩ k(τ, x, µ)eikϕ, (3)

where

Ĩ k(τ, x, µ) =
∫ 2π

0

dϕ

2π
I (τ, x, µ, ϕ)e−ikϕ. (4)

The Hanle phase matrix may be expanded in a two-dimensional
Fourier expansion with respect to ∆ϕ = (ϕ − ϕB) and ∆ϕ′ =
(ϕ′ − ϕB). In FS91 and Faurobert-Scholl (1993) it was shown
that this expansion is limited to terms of order 2. Namely,

P̂H(µ, ϕ, µ′, ϕ′, θB, ϕB, B) (5)

=
2∑

k=−2

2∑
l=−2

P̂ k,l
H (µ, µ′, θB, B)eik(ϕ−ϕB)eil(ϕ

′−ϕB).

Explicit expressions of the Fourier coefficients were also given,
however with some misprints.

2.3. Fourier coefficients of the Hanle phase matrix

The Fourier components P̂ k,l
H (µ, µ′, θB, B) may be written as

linear combinations of matrices which depend only on the an-
gular variables µ and µ′ with scalar coefficients which depend
only on the magnetic field variables θB and B. Namely,

P̂ k,l
H (µ, µ′, θB, B) (6)

=
∑
m=1,4

ρk,lm (θB, B)p̂k,lm (µ, µ′), k, l = 0,±1,±2.

In the particular case k = l = 0,

P̂ 0,0
H (µ, µ′, θB, B) = Îis + ρ0,0

1 p̂0,0
1 , (7)

where Îis is the isotropic matrix all the elements of which are
zero except the element (1,1) which is unity. The coefficients
ρk,lm are complex scalars whereas the matrices p̂k,lm have real
elements.

A remarkable property of the Hanle phase matrix is that it has
a diadic representation. It is of the same nature as the diadic rep-
resentation for Rayleigh scattering introduced by Domke (1971;
see also Ivanov 1995). The matrices p̂k,lm can be factorized as
tensor products of two vectors depending on µ and µ′ respec-
tively and the isotropic matrix as the tensor product of two con-
stant vectors. Furthermore, only six vectorsZi are necessary to
construct the Hanle phase matrix. We indeed have

Îis = Z0Z
T
0 , (8)

and

p̂k,lm (µ, µ′) = Zi(µ)ZT
j (µ′), i, j = 1, ..., 5. (9)

Table 1. Values of the indices i and j for Eq. (9)

m=1 m=2
k\l 0 1 2 1 2
0 1,1 1,2 1,3 1,4 1,5
1 2,1 2,2 2,3 2,4 2,5
2 3,1 3,2 3,3 3,4 3,5

m=3 m=4

k\l 0 1 2 1 2
1 4,1 4,2 4,3 4,4 4,5
2 5,1 5,2 5,3 5,4 5,5

The index i depends on k andm and the index j on l,m. Table 1
shows how to obtain i and j for positive values of k and l. For
example p̂2,1

3 (µ, µ′) = Z5(µ)ZT
2 (µ′). The symmetry relations

p̂k,lm = p̂k,−lm and p̂k,lm = p̂−k,lm provide the p̂k,lm for negative
values of k and/or l.

The vectors Zi are given by :

Z0(µ) =

( 1
0
0

)
, Z1(µ) =

√
W

8

( 1− 3µ2

3(1− µ2)
0

)
, (10)

Z2(µ) =

√
3W
2

µ
√

1− µ2

µ
√

1− µ2

0

 , (11)

Z3(µ) =

√
3W
4

( 1− µ2

−(1 + µ2)
0

)
, (12)

Z4(µ) =

√
3W
2

( 0
0√

1− µ2

)
, Z5(µ) =

√
3W
2

( 0
0
µ

)
. (13)

The parameter W is the standard W2(J, J ′) atomic depolariza-
tion factor which is equal to unity for a transition J = 0, J ′ = 1.
Note that all the p̂k,lm are proportional to W .

The coefficients ρk,lm , k, l > 0, may be written as

ρk,lm =
1
4

[(ak,lm − a−k,−lm )− i(ak,−lm + a−k,lm )], (14)

ρ−k,lm =
1
4

[(ak,lm + a−k,−lm )− i(ak,−lm − a−k,lm )], (15)

ρ0,l
m =

1
2

(a0,l
m − ia0,−l

m ), (16)

ρk,0m =
1
2

(ak,0m − ia−k,0m ), (17)

ρ0,0
m = a0,0

m . (18)

ρ−k,−lm = [ρk,lm ]∗, ρk,−lm = [ρ−k,lm ]∗, (19)

ρ0,−l
m = [ρ0,l

m ]∗, ρ−k,0m = [ρk,0m ]∗. (20)

The notation [ ]∗ stands for complex conjuguate.
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Table 2. Symmetries of the coefficients ak,l

k\l 0 1 -1 2 -2
0 a0,0 a0,1 a0,−1 a0,2 a0,−2

1 a0,1 a1,1 a1,−1 a1,2 a1,−2

-1 −a0,−1 −a1,−1 a−1,−1 a−1,2 a−1,−2

2 a0,2 a1,2 −a−1,2 a2,2 a2,−2

-2 −a0,−2 −a1,−2 a−1,−2 −a2,−2 a−2,−2

All the coefficients ak,lm , m ≥ 2 can be expressed in terms
of the ak,l1 :
For l ≥ 0 and all values of k :

ak,l2 = (−1)l+1ak,−l1 , ak,−l2 = (−1)lak,l1 . (21)

For k ≥ 0 and all values of l :

ak,l3 = (−1)k+1a−k,l1 , a−k,l3 = (−1)kak,l1 . (22)

For k l ≥ 0 (k l is the product of k by l) :

ak,l4 = (−1)|k|+|l|a−k,−l1 . (23)

For k l ≤ 0 :

ak,l4 = (−1)k+l+1a−k,−l1 . (24)

The coefficients ak,l1 satisfy symmetry relations. For l, k =
±1,±2 :

ak,l1 = al,k1 , for k l > 0,

ak,l1 = −al,k1 , for k l < 0. (25)

For k = 0,

a0,l
1 = al,01 , for l > 0,

a0,l
1 = −al,01 , for l < 0. (26)

The symmetry relations satisfied by the ak,l1 , which for simplic-
ity are henceforth denoted by ak,l, are also shown in Table 2.
The ρk,lm depend thus only on 15 different coefficients which are
given in Eq. (39).

2.4. Fourier expansion of the Stokes source vector S

Substituting the azimuthal Fourier expansions of P̂H and I
in Eq. (2), we can perform analytically the azimuthal integra-
tion over ϕ′. This yields the azimuthal Fourier expansion of
the source vector. As the Hanle phase matrix has no Fourier
component of order higher than 2, the same property holds for
the source vector. The complex Fourier components S̃ k of the
vector S , defined as in Eq. (4), are given by

S̃ k(τ, µ) = δk,0S
∗(τ ) + (1− ε)e−ikϕB

1
2

∫ +∞

−∞
dx′φ(x′)∫ +1

−1
dµ′

2∑
l=−2

P̂ k,l
H (µ, µ′, θB, B)e−ilϕBĨ −l(τ, x′, µ′), (27)

where δ is the Kronecker symbol. Since we have an axially
symmetric primary source term, only the Fourier component
k = 0 has an inhomogeneous term. In the following we prefer
to deal with real quantities (as in FS91). Boldface calligraphic
uppercase letters accentuated with a tilde are used to denote the
complex Fourier components. For the real Fourier components,
we change the calligraphic font to an italic font and replace
the tilde by an horizontal line. Boldface calligraphic uppercase
letters are also used for the Stokes vector and associated source
function.

The real Fourier components are given by

S0 = S̃ 0,

Sk = S̃ k + S̃ −k, k > 0,

S−k = i(S̃ k − S̃ −k), k > 0. (28)

The Fourier expansion of S may then be written as

S (τ, µ, ϕ) = S0(τ, µ) +
∑k=2

k=1
[Sk(τ, µ) cos kϕ

+ S−k(τ, µ) sin kϕ]. (29)

Each vector Sk is a three-component vector. However for sym-
metry reasons, the azimuthal average of Stokes U vanishes.
Thus S0, which is the azimuthal average of S , has only two
components.

2.5. Factorization of the Fourier source vector

Following FS91, we introduce a new vector SF defined by

SF =
[
S0,S1,S−1,S2,S−2

]T
. (30)

It is a 14-component vector since S0 is a 2-component vector,
while the otherS±k are 3-component vectors. A 14-component
vector denoted by IF is constructed in a similar fashion with the
components of the real Fourier expansion coefficients Ik of I .
It satisfies the radiative transfer equation :

µ
∂IF(τ, x, µ)

∂τ
= φ(x)

[
IF(τ, x, µ)− SF(τ, µ)

]
. (31)

Using Eqs. (7)–(28) and (30), it is straightforward, although
lengthy, to show that SF can be written in the factorized form

SF(τ, µ) = (1− ε)B̂(µ)R̂(ϕB)M̂B(θB, B)R̂(−ϕB)J (τ )

+ B̂(µ)S∗(τ ). (32)

A key property of (32) is thatS∗(τ ) andJ (τ ) are six-component
vectors. Hereafter all six-components vectors are denoted with
boldface italic uppercase letters. The matrices and vectors ap-
pearing in this equation are defined in the following sub-
sections.
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2.5.1. The irreducible mean intensity J

The vector J is defined by

J (τ ) =
1
2

∫ +∞

−∞
φ(x′)

∫ +1

−1
[B̂T(µ′) IF(τ, x′, µ′)] dµ′ dx′. (33)

It is directly related to the six irreducible tensors introduced
by Landi Degl’Innocenti et al. (1990) in their density matrix
formalism of the Hanle effect (see also Landi Degl’Innocenti
1984). The difference between the vector J of this paper and
the vector P introduced in Paper I and in FS91 is that J has no
factor (1− ε) and does not include the primary source term S ∗

(see Eq. (14) in Paper I). It is a six-component vector while P
is a two-component vector. In analogy with Paper I, we denote
the first two components of J by JI and JQ, whereas the other
components are denoted by J±1 and J±2.

2.5.2. The matrices B̂T and B̂

B̂T is a (6× 14) matrix. In symbolic notation, it may be written
as

B̂T(µ) =


ZT

0 0 0 0 0
ZT

1 0 0 0 0
0 ZT

2 −ZT
4 0 0

0 ZT
4 ZT

2 0 0
0 0 0 ZT

3 ZT
5

0 0 0 ZT
5 −ZT

3

 . (34)

To obtain the explicit expression it suffices to replace the line
vectorsZT

i by their three components, except forZT
0 andZT

1 for
which only the first two components are being used (the vectors
Zi(µ) are given in Eqs. (10) to (13)). Because of the block
structure of B̂T, the first two components of JI and JQ of the
vectorJ depend only on the azimuthal average of I (i.e. on I0),
the third and fourth components J±1 depend only on the Fourier
components I±1 whereas the fifth and sixth components, J±2,
depend only on I±2.

B̂ is a (14 × 6) matrix which is the transpose of B̂T. In
symbolic notation, it may be written as

B̂(µ) =


Z0 Z1 0 0 0 0
0 0 Z2 Z4 0 0
0 0 −Z4 Z2 0 0
0 0 0 0 Z3 Z5

0 0 0 0 Z5 −Z3

 . (35)

Here theZi are three-component column vectors, except forZ0

and Z1 which, as above, are two-component vectors. Clearly,
B̂(µ) is made of three blocks. The first (2 × 2) block, which
contains the first two elements of the first row, is identical to the
matrix Â(µ) of Paper I.

2.5.3. Primary source term

The second term in the r.h.s. of Eq. (32) is a primary source
term. It comes from the first term in the r.h.s. of Eq. (27). It is
easy to see that

S∗(τ ) = S∗I (τ )[1, 0, 0, 0, 0, 0]T, (36)

and hence that S∗(τ ) = B̂(µ)S∗(τ ). Being able to write the pri-
mary source term in this factorized form is necessary to arrive at
the reduced problem described in Sect. 3. If the primary source
term in Eq. (2) is not isotropic and unpolarized this factorization
may not hold. A simple method for overcoming this difficulty
is to write the Stokes vector as

I (τ, x,n) = I d(τ, x,n) + I ∗(τ, x,n), (37)

where I ∗(τ, x,n) is the solution of the problem with the in-
ternal source S∗(τ ) but no scattering term. A similar decompo-
sition is used in Ivanov (1995) for Rayleigh scattering and in
Ivanov et al. (1997) for resonance polarization. In the transfer
equation for the diffuse radiation field I d(τ, x,n), the primary
source term is then of the required form. When there are no inter-
nal primary sources but an external non-axisymmetric incident
radiation field I o(x,n), the same technique applies. It is now
the directly transmitted field created by the incident radiation
which should be subtracted from the total field.

2.5.4. The matrix M̂B

The (6 × 6) matrix M̂B depends only on the magnetic field
strengthB and its co-latitude θB. Except for the first row and the
first column, it is almost the matrix of the coefficientsak,l1 = ak,l,
k, l = 0,±1,±2. Taking into account the symmetries of the ak,l

shown in Table 2, M̂B may be written as
1 0 0 0 0 0
0 M22 M23 M24 M25 M26

0 2M23 M33 M34 M35 M36

0 −2M24 −M34 M44 M45 M46

0 2M25 M35 −M45 M55 M56

0 −2M26 −M36 M46 −M56 M66

 , (38)

where

M22 = a0,0 = 1− 3S2
B

γ2
B

1 + γ2
B

[1− 3γ2
B

1 + 4γ2
B

S2
B],

M23 =
a0,1

2
= −

√
3
2
CBSB

γ2
B

1 + γ2
B

[1− 6γ2
B

1 + 4γ2
B

S2
B],

M24 =
a0,−1

2
= −

√
3
2
SB

γB

1 + γ2
B

[1− 3γ2
B

1 + 4γ2
B

S2
B],

M25 =
a0,2

2
=

√
3
2
S2

B
γ2

B

1 + 4γ2
B

[1− 3γ2
B

1 + γ2
B

C2
B],

M26 = −a
0,−2

2
=

√
3
2
S2

BCB
3γ3

B

(1 + γ2
B)(1 + 4γ2

B)
,

M33 =
a1,1

2
= 1− γ2

B

1 + γ2
B

[1− 12γ2
B

1 + 4γ2
B

S2
BC

2
B],

M34 =
a1,−1

2
= −CB

γB

1 + γ2
B

[1− 6γ2
B

1 + 4γ2
B

S2
B],

M35 =
a1,2

2
= CBSB

3γ2
B

1 + 4γ2
B

[1− γ2
B

1 + γ2
B

(C2
B − S2

B)],

M36 = −a
1,−2

2
= −SB

γB

1 + γ2
B

[1− 6γ2
B

1 + 4γ2
B

C2
B],
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M44 =
a−1,−1

2
= 1− γ2

B

1 + γ2
B

[1 +
3

1 + 4γ2
B

S2
B],

M45 =
a−1,2

2
= −SB

γB

1 + 4γ2
B

[1− 3γ2
B

1 + γ2
B

C2
B],

M46 = −a
−1,−2

2
= −CBSB

3γ2
B

(1 + γ2
B)(1 + 4γ2

B)
,

M55 =
a2,2

2
= 1− γ2

B

1 + 4γ2
B

[1 + 3C2
B(1 +

γ2
B

1 + γ2
B

S2
B)],

M56 = −a
2,−2

2
= CB

2γB

1 + 4γ2
B

[1 +
3
2

γ2
B

1 + γ2
B

S2
B],

M66 =
a−2,−2

2
= 1− γ2

B

1 + γ2
B

[1 +
3

1 + 4γ2
B

C2
B], (39)

where

CB = cos θB, SB = sin θB. (40)

The dimensionless parameterγB, which depends on the intensity
of the magnetic field, is given by

γB =
2πνLgJ

A
, (41)

where νL = eB/4πmc is the Larmor frequency of the electron
in the magnetic field, gJ is the Landé factor of the upper level
and A the destruction rate of the upper level alignment. It is the
sum of the radiative, inelastic and depolarizing collision rates
(see e.g. Bommier 1996, Eq. (32)). We note here that the matrix
M̂B differs from the one in FS91. The elements M26 to M56

have opposite signs.

2.5.5. The matrix R̂

The matrix R̂ may be written as

R̂(ϕB) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 c1 −s1 0 0
0 0 s1 c1 0 0
0 0 0 0 c2 s2

0 0 0 0 −s2 c2

 , (42)

where

c1 = cosϕB, s1 = sinϕB, (43)

c2 = cos 2ϕB, s2 = sin 2ϕB. (44)

The matrix R̂(−ϕB) comes from the factor e−ilϕB in Eq. (27)
and R̂(ϕB) from e−ikϕB . This factor yields a rotation matrix
which becomes R̂(ϕB) when it is commuted with B̂(µ). The ma-
trix R̂(ϕB) is a unitary matrix. It satisfies R̂(ϕB)T = R̂(−ϕB) =
R̂(ϕB)−1.

3. The irreducible transfer equation

The transfer equation (31) for the vector IF is simpler than the
original transfer equation (1) for the Stokes vector I , because

Fig. 2. The Hanle scattering kernelsKαβ (upper panel) and their primi-
tivesK∗

αβ (lower panel) in lin-log scales for Voigt profile with a damp-
ing parameter a = 10−3 and W = 1. The normalization of Kαβ is
given by K∗

αβ(τ = 0) ' K∗
αβ(τ = 10−3)

the real Fourier components Ik do not depend on the azimuth.
However the source termSF is still a function of two variables :
the optical depth τ , and the co-latitude θ of the ray. The fac-
torization of SF, given in Eq. (32), suggests to introduce a new
radiation field I(τ, x, µ), and a new source function S(τ ), that
depends only on the optical depth, defined by :

IF(τ, x, µ) = B̂(µ)I(τ, x, µ), (45)

SF(τ, µ) = B̂(µ)S(τ ). (46)

We shall refer to the six-component vectors I andS as the “irre-
ducible radiation field” and “irreducible source vector”. Eq. (32)
shows that

S(τ ) = (1− ε)ĤB(θB, ϕB, B)J (τ ) + S∗(τ ), (47)

where

ĤB(θB, ϕB, B) = R̂(ϕB)M̂B(θB, B)R̂(−ϕB). (48)

When B = 0, the matrix M̂B becomes an unit matrix and so
does ĤB. The vector S∗ has already been defined in Eq. (36).
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Introducing Eq. (45) into Eq. (33), we can rewrite J as

J (τ ) =
1
2

∫ +∞

−∞
φ(x′)∫ +1

−1
B̂T (µ′) B̂(µ′) I(τ, x′, µ′) dµ′ dx′. (49)

The irreducible radiation field satisfies the transfer equation

µ
∂I(τ, x, µ)

∂τ
= φ(x)[I(τ, x, µ)− S(τ )]. (50)

Left multiplying this equation on both sides by B̂(µ) and com-
muting the matrix multiplication with the derivative with respect
to τ , we indeed recover the transfer equation for IF.

We can now establish a vector integral equation for the ir-
reducible source vector S. It will be the basis for the iterative
method presented in Sect. 4. Following the standard method, we
first write the formal solution of Eq. (50). Using then Eqs. (47)
and (49), we obtain :

S(τ ) =

(1− ε)ĤB(τ )
∫ T

0
K̂(τ − τ ′)S(τ ′) dτ ′ + S∗(τ ), (51)

where T is the optical thickness of the medium and ĤB(τ )
the matrix defined in Eq. (48), the other three arguments be-
ing dropped for convenience.

The matrix K̂ is defined by

K̂(τ ) =
1
2

∫ +∞

−∞
φ2(x′)∫ 1

0
B̂T (µ′) B̂(µ′)e−|τ |φ(x′)/µ′ dµ′

µ′
dx′. (52)

It is a (6× 6) matrix which may be written as,
K11 K12 0 0 0 0
K12 K22 0 0 0 0

0 0 K33 0 0 0
0 0 0 K33 0 0
0 0 0 0 K44 0
0 0 0 0 0 K44

 . (53)

The first (2 × 2) block is identical to the kernel matrix for ax-
isymmetric resonance polarization problems. The kernels K33

andK44 were introduced by Landi Degl’Innocenti et al. (1990).
We recall that K11 is normalized to unity and K12 to zero. All
the kernelsK22,K33 andK44 have the same normalization, viz.,∫ +∞

−∞
Kαα(τ ) dτ =

7
10
W, α = 2, 3, 4. (54)

The Kαβ and their primitives K∗
αβ , defined by

K∗
αβ(τ ) = 2

∫ ∞

τ

Kαβ(u) du, (55)

are shown in Fig. 2 for the case W = 1 and positive values of
τ (remember that they are even functions of τ ). The Kαβ and
their primitives are positive except for K12 and K∗

12. They de-
crease algebraically to zero at large optical depths and increase
logarithmically as τ → 0. The properties of the propagating
kernels K11 and K22 and of the mixing kernel K12 have been
discussed at length in Paper I. The kernels K33 and K44 play a
similar role as K22.

To end this section we briefly comment on Eq. (51). It looks
very much like the vector integral equation for resonance polar-
ization in zero magnetic field considered in Paper I. However the
true kernel of this integral equation is the product ĤBK̂. When
ĤB depends on optical depth, the integral equation is not of the
Wiener-Hopf type since the kernel is not a displacement kernel.
When ĤB is a constant matrix, the Wiener-Hopf character is
maintained. However, in contrast with resonance polarization
in zero magnetic field, the kernel is not a symmetric matrix and
hence the transport operator is not self-adjoint. We stress also
that in this equation all the components ofS are coupled inspite
of the fact that the matrix K̂ has a very simple structure (see
Eq. (53)).

For completeness we give below the analytical expressions
of all the non-zero elements of K̂ :

K11(τ ) =
1
2

∫ +∞

−∞
φ2(x)E1(|τ |φ(x)) dx, (56)

K12(τ ) =
1
2

√
W

8

∫ +∞

−∞
φ2(x)

[E1(|τ |φ(x))− 3E3(|τ |φ(x))] dx, (57)

K22(τ ) =
W

8

∫ +∞

−∞
φ2(x)

[5E1(|τ |φ(x))− 12E3(|τ |φ(x)) + 9E5(|τ |φ(x))] dx, (58)

K33(τ ) =
3W

8

∫ +∞

−∞
φ2(x)

[E1(|τ |φ(x)) + E3(|τ |φ(x))− 2E5(|τ |φ(x))] dx, (59)

K44(τ ) =
3W
16

∫ +∞

−∞
φ2(x)

[E1(|τ |φ(x)) + 2E3(|τ |φ(x)) + E5(|τ |φ(x))] dx. (60)

The En are the usual exponential integral functions.
We note here for further use that J also satisfies an integral

equation. Combining Eqs. (51) with (47) we readily obtain

J (τ ) = (1− ε)
∫ T

0
K̂(τ − τ ′)ĤB(τ ′)J (τ ′)dτ ′

+ J∗(τ ), (61)

where

J∗(τ ) = (1− ε)
∫ T

0
K̂(τ − τ ′)S∗(τ ′) dτ ′. (62)
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Fig. 3. Maximum relative corrections c(n)
α , α = I,Q,±1,±2 as

function of the iteration number n. Slab model with parameters
(T, a, ε, Bν ) = (2 109, 10−3, 10−6, 1), and (γB, θB, ϕB) = (1, 30◦, 0◦)
is employed. The upper panel shows the c(n)

α computed with the defi-
nition (66). The lower panel shows the same quantity computed with
the modification given in Eq. (67). The effect of Ng acceleration is
also shown in the lower panel. Note that all the curves (without Ng
acceleration) have asymptotically the same slope for large values of n

For a non-polarized primary source of thermal origin, J∗ =
(J∗I , J

∗
Q, 0, 0, 0, 0) with

J∗I (τ ) = (1− ε)S∗I

[
1− 1

2
[K∗

11(τ ) + K∗
11(T − τ )]

]
. (63)

J∗Q is also given by Eq. (63) with K∗
12 in place of K∗

11.

Thanks to the transformations carried out in the preceding
sections, the calculation of the Stokes vector I has been re-
duced to the solution of the vector transfer equation (50) where
the vector source function S depends only on optical depth and
satisfies the integral equation (51). We solve it in the next section
by an operator perturbation method.

4. The numerical method of solution

4.1. The iterative procedure

The integral equation forS(τ ) can be written in a symbolic form
as

S = (1− ε)ĤBΛ̂[S] + S∗. (64)

After discretization of the τ -variable, the operator Λ̂ becomes
a (NT × NT) matrix, where NT is the number of points in the
optical depth grid {τi}. Each element of Λ̂ is a (6× 6) matrix.
Using the same kind of iterative method as in Paper I, we write
the correction δS(n) to the current estimate S(n) as

δS(n) = [1̂− (1− ε)ĤBΛ̂∗]−1

[(1− ε)ĤBJ
(n) − S(n) + S∗]. (65)

Here 1̂ is the (6×6) identity matrix and Λ̂∗ is the approximate Λ̂
operator. To calculate J (n) we solve the transfer equation (50)
withS(n) as source function and then average the resulting solu-
tion I (n) over frequencies and directions according to Eq. (49).
The operator Λ̂∗ is constructed by keeping only the (6×6) matri-
ces Λ̂(i, i), i = 1, NT, on the diagonal of Λ̂. Each matrix Λ̂(i, i)
is calculated by placing a matrix point source (delta function
source) at the grid point τi (see Paper I). Since this calculation
has to be repeated at each grid point it turns out to be the most
time consuming part of the iterative method.

4.2. Computational details and test problems

We consider isothermal, self-emitting plane parallel slab atmo-
spheres with no incident radiation at the boundaries. These
slab models are characterized by a set of input parameters
(T, a, ε, Bν), where T is the optical thickness of the slab, a
the Voigt parameter of the line, ε the photon destruction prob-
ability per scattering, and Bν the unpolarized internal thermal
source. We consider the case of a pure line with no background
continuum absorption. We restrict our attention to a two-level
atom model with an atomic depolarization parameter set to unity
(W = 1). The magnetic field is characterized by a set of 3 param-
eters (γB, θB, ϕB). For the optical depth grid, we use a resolution
of 8 points per decade in a logarithmic scale, covering the range
10−2 ≤ τ ≤ T . A frequency grid with 2 points per decade in
the value of the profile function φ is used. The last frequency
point in the grid, xmax, is chosen such that Tφ(xmax) < 10−2.
A 5-point Gaussian quadrature formula with µ ∈ [0, 1] is em-
ployed for angular grid. The grid points {µi} correspond to the
five angles θ = (18◦, 40◦, 60◦, 77◦, 87◦).

The calculations have been performed with two sets of at-
mospheric parameters :
• A first set (T, a, ε, Bν) = (2 109, 10−3, 10−6, 1). It corre-
sponds to a line which has reached thermalization at mid-slab.
This model is used to test the convergence of the iterative
method.
• A second set (T, a, ε, Bν) = (2 102, 10−3, 10−4, 1). This
model is used to study the influence of the magnetic field pa-
rameters on the polarization. At small optical depths (order of
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Fig. 4. Convergence history of the six components of S(n) (see
Eq. (47)). The upper left panel shows log10 S

(n)
I and the other pan-

els 105 S(n)
α , α = Q,±1,±2. Same model as in Fig. 3. The dotted

lines show the initial solutions (εBν for SI, and zero for all other com-
ponents). The effect of Ng acceleration (3-step jump of S(n)

α towards
convergence) is clearly seen. Since the slab is symmetric about the
mid-plane, the results are shown only for the half-slab

unity or less), the qualitative behavior of the polarization is al-
most independent of the total optical thickness of the slab. It is
of course computationally much faster to consider a slab with
T = 2 102 than a slab with T = 2 109.

When the atmospheric and magnetic field parameters are
uniform, the polarized radiation field is symmetric about the
mid-plane at T/2. The transfer problem can be solved on a
half-slab, by imposing as boundary condition at the mid-plane
that the derivative of the intensity vector I with respect to
τ vanishes. The presence of a unidirectional magnetic field
does not break the mid-plane symmetry, because of the sym-
metries of the Hanle phase matrix. For example I (0, x, µ, ϕ) =
I (T, x,−µ, ϕ).

4.3. Convergence properties of the method

As in Paper I, we have studied the convergence property of the
method by following the dependence on the iteration number n
of the c(n)

α , the maximum relative corrections of the components
of the source vector S. The upper panel in Fig. 3 shows the c(n)

α

defined by

c(n)
α = max

τi

{ |δS(n)
α (τi)|

|S(n+1)
α (τi)|

}
, (66)

with |δS(n)
α (τi)| = |S(n+1)

α (τi)−S(n)
α (τi)|. The lower panel shows

the c(n)
α with the denominator in Eq. (66) replaced by

S̄(n+1)
α (τi) =

1
2

[|S(n+1)
α (τi)| + |S(n+1)

α (τi+1)|] . (67)

The iterative process is stopped when maxα{c(n)
α } < 10−2ε.

In the lower panel of Fig. 3 we also show the effect of an Ng
acceleration applied only on SI(τ ) (see Paper I for details).

Comparing Fig. 3 of this paper with Figs. 4 and 5 of Pa-
per I, we see that the convergence properties of the iterative
method are exactly the same as in the non-magnetic case. This
is a direct consequence of the fact that all the polarization com-
ponents behave as slave modes of the intensity component in
the asymptotic regime of large n. One can verify that the speed
of convergence as measured by the ratio c(n+1)

I /c(n)
I keeps the

same value when a magnetic field is switched on. Thus a nice
property of the PALI-H iterative method is that the convergence
rate is independent of the strength and direction of the magnetic
field.

Fig. 4 shows the convergence history of the six components
of S(n). The component SI almost reaches its saturation value,
Bν = 1, at mid-slab because the line is nearly thermalized. As
a consequence SI(τ ) ' √

ε = 10−3 at τ = 0 and τ = T . All
the other components go to zero in the interior. Near the two
boundaries they vary rapidly and change their sign.

To verify the accuracy and proper convergence of the it-
erative scheme we have compared its results with those of a
non-iterative Feautrier scheme with a 8 points per decade res-
olution in spatial grid. Once the stopping criterion has been is
satisfied, the two solutions are identical up to 6 significant digits.

To estimate the optical depth grid-truncation error we have
followed Auer et al. (1994) grid-doubling strategy. It has al-
lowed us to estimate the errors on the intensity component SI.
Employing a 3-level grid doubling procedure with successively
2, 4 and 8 points per decade, we obtain on SI, true errors of
4.54 10−3 in the second stage, and 8.48 10−4 in the third. For
the polarization components, the grid-doubling strategy does
not seem to offer a reliable estimation of the accuracy. More
sophisticated methods seem to be required when dealing with
functions which do not have a constant sign. We have also found
that the grid-doubling strategy does not offer a significant gain
in computing time for the reason that it is expensive to compute a
(6×6) Hanle approximate operator on début at each level of the
grid doubling scheme. For resonance polarization with partial
frequency redistribution this grid-doubling strategy appears on
the contrary very promising (Paletou & Faurobert-Scholl 1997).
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Fig. 5. Symmetries of the irreducible mean intensity vector com-
ponents Jα with respect to the inclination angle θB of the mag-
netic field. The upper left panel shows log10 JI and the other
panels 105 Jα, α = Q,±1,±2. Slab model with parameters
(T, a, ε, Bν ) = (2 102, 10−3, 10−4, 1) and (γB, ϕB) = (1, 0◦). The
numbers near the curves refer to the values of θB. Notice the sym-
metry/anti-symmetry of the polarized components about θB = 90◦, the
small sensitivity of JQ to the value of θB and also the relative magni-
tudes of J±1 and J±2 in comparison with JQ

5. Properties of the irreducible vectors J and S

We discuss in this section the main properties of the six-
component vectors J and S. We investigate in particular the
dependence of J and S on the three parameters defining the
magnetic field, θB, ϕB, and γB. In the results presented below,
θB and γB are always kept uniform but we discuss one case with
a depth-dependent ϕB since this feature could not be handled
with the FS91 formulation. When ϕB is uniform, it is sufficient
to calculate the solution with ϕB = 0. A simple transformation
(see Sect. 5.4) yields the solution for an arbitrary ϕB.

All the results shown in this section have been ob-
tained with the atmospheric parameters (T, a, ε, Bν) =
(2 102, 10−3, 10−4, 1). For this slab model the product aT is

smaller than unity and hence the radiative transfer effects in
the line are restricted to the Doppler core. We note also that
the thickness T is much smaller than the thermalization length
which is around 1/ε

√− ln ε ' 3 103. Hence the slab is effec-
tively thin and the diffuse radiation field is almost independent
of ε. Also because the line is not thermalized, the polarization
goes to a constant at mid-slab. However, at depths around unity
or less it behaves qualitatively as with the effectively thick slab
model used in Sect. 4.

The integral equation (61) for J and the relation (47) be-
tween J and S will be used in the analysis of the properties of
J and S.

5.1. Dependence of J on the co-latitude θB

For the computations in this section, we assume γB = 1 and let
θB vary between 0◦ and 180◦. As explained above, we have set
the value of ϕB to zero. Fig. 5 shows the depth–dependence of
the six components JI, JQ, J±1, J±2 for various values of θB.
The upper left panel shows log10 JI and the other panels 105 Jα,
α = Q,±1,±2. Figs. 7 to 10 devoted to S also show log10 SI

in the upper left panel and 105 Sα, α = Q,±1,±2, in the five
other panels.

We list below the main properties of J . Some of them have
already been pointed out in the literature (see e.g. FS91 and the
references therein).

• JI is essentially independent of θB. Actually it is almost inde-
pendent of the magnetic field as explained below.
• JQ depends weakly on θB and is approximately equal to the
resonance polarization value which corresponds to θB = 0. Near
the surface (τ ' 10−2), it is in absolute value about ten times
smaller than JI.
• In absolute value and near the surface, the components J±1

and J±2 are roughly ten times smaller than JQ.
• All the polarization components Jα, α = Q,±1,±2, change
their sign at roughly the same optical depth τ .
• The components of J satisfy the symmetry relations :

Jα(θB) = Jα(π − θB), α = I,Q,−1,+2,

Jα(θB) = −Jα(π − θB), α = +1,−2. (68)

These symmetries imply thatJ+1 = J−2 = 0 for θB = 90◦. When
θB = 0◦ the components J±1 and J±2 are identically zero since
the radiation field is axisymmetric.

The symmetries of J are readily found by examining
Eq. (61) with ĤB = M̂B and the coefficients of the matrix M̂B

given in Eq. (39). A change θB → π − θB amounts to change
the sign of CB = cos θB while keeping SB = sin θB unchanged.
Hence the coefficients M23, M26, M34, M35, M46, M56, which
go to zero when θB = 90◦, change sign under this transforma-
tion. One can then easily check that it leads to the symmetries
presented in Eq. (68).

Consider now the structure of the matrix product K̂M̂B.
The first column is identical to the first column of K̂. Therefore
the components J±1 and J±2 are coupled to JQ and between
themselves but not to JI. The component JQ is coupled to JI
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Fig. 6. Elements of the second column of the matrix M̂B(θB, B) as
function of θB for various values of γB (i.e. of the magnetic field
strength B). Solid lines : γB=0.1, dotted lines : γB=0.3, short-dashed
lines : γB=0.5, dot-dashed lines : γB=1, triple-dot-dashed lines : γB=3,
and long-dashed lines : γB=10. The case of γB=1 is highlighted for
clarity. This figure is useful to understand the θB and γB dependence
of the polarized source vector components Sα, shown in the Figs. 7
and 9

but this coupling is independent of the magnetic field and fairly
weak, as already discussed in Paper I, because it is controlled
by the kernel K12. As for JI, its dependence on the magnetic
field is almost negligible since all the coupling terms with the
polarization components, which are anyhow much smaller in
magnitude, involve only the kernel K12.

The optical depth at which JQ and the other polarization
components change sign is roughly determined by the optical
depth at which the radiation field II(τ, x, µ) corresponding to the
source functionSI(τ ) changes its angular dependence from limb
darkening (at the surface) to limb brightening (in the interior).
For this reason it is essentially independent of the magnetic field.

The values of JI at the middle of the slab and at the surface
can be evaluated with the scaling laws proposed in Frisch (1988)

for the Doppler profile. Correcting for a mistake in Eq. (4.6) of
that paper, they may be written as

JI

(
T

2

)
∼ < Q > T

√
ln T ,

JI(0) ∼ < Q > T 1/2(ln T )1/4, (69)

where < Q > is a mean value of the primary source term. For
the model at hand,< Q >' εBν . These scaling laws yield good
estimates if one chooses T = 102 to evaluate JI at the middle
of the slab and T = 2 102 to evaluate it at the surface. One
gets JI(T2 ) ∼ 2 10−2 and JI(0) ∼ 2 10−3. The exact numerical
values are JI(T2 ) = 2.24 10−2 and JI(0) = 1.89 10−3.

5.2. Dependence of S on the co-latitude θB

In Fig. 7 we show the dependence of the six components of S
on θB. To obtain S, it suffices to multiply J by the matrix M̂B

(or ĤB in the general case) (see Eq. (47)) and add the primary
source term S∗. For the model at hand S∗ can be neglected
since it contributes only to the intensity component SI and is at
least an order of magnitude smaller than SI (10−4 as compared
to 2 10−3 approximately; see Fig. 7). The main properties of
the six components of S are easy to explain. Because J±1 and
J±2 are much smaller than JQ and JQ is much smaller than JI,
to evaluate the components of S it is sufficient to keep the first
and second column in the matrix M̂B written in Eq. (38). This
approximation yields

SI ' JI, SQ 'M22JQ, (70)

S+1 'M32JQ, S−1 'M42JQ, (71)

S+2 'M52JQ, S−2 'M62JQ. (72)

We show in Fig. 6 the elements of the second column of M̂B

as function of θB for different values of γB . Note that they are
of order unity, except for M12 which is identically zero. The
approximations (70) to (72) explain why the polarization com-
ponents of S are of the same order of magnitude. Comparing
Figs. 6 and 7 we see that the θB-dependence of the components
of S follows indeed closely the variation of the Mα2. We recall
that JQ is almost independent of θB (see Fig. 5). For example,
near the surface, the decrease (in absolute value) of SQ between
θB = 0◦ (resonance polarization) and θB = 60◦ follows the de-
crease of the coefficient M22. Then between 60◦ and 90◦, M22

has a very small rise which also shows up in the variation of SQ.

5.3. A perturbative method based on approximate solutions

The results discussed in this section suggest a perturbative
method for solving the transfer problem and an approximation
to evaluate the Stokes vector. The perturbation method was used
in FS91. The approximation is also to be found in FS91. The
idea is to keep only the first two columns in the matrix product
K̂(τ )M̂B. The iterative method and the approximation have a
common first step which is the calculation of JI(τ ) and JQ(τ ).
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They are obtained by solving a modified resonance polarization
problem with the kernel

K̂(τ ) =

(
K11 M22K12

K12 M22K22

)
. (73)

A simple approximation for S can then be set up by using
the Eqs. (70) to (72). In comparison with full PALI-H code, the
errors on the Stokes parameters for the line centre frequency
(x = 0) are not very large (up to 20 %). In the line wings, they
may reach a factor 2. They can be significantly reduced if one
uses this first order approximation as starting solution for the
iterative process described below. Just five perturbative steps
are sufficient to bring them down to a fraction of a percent. In
Sect. 6.6 we show the effect of this approximation on a polar-
ization diagram.

To set up the iterative process, we must calculate the other
harmonic componentsJα,α = ±1,±2. When only the first two
columns of M̂B are kept, they are given by

Jα(τ ) = (1− ε)
∫ T

0
Kα(τ − τ ′)JQ(τ ′) dτ ′, (74)

with the kernel functions

K+1 = 2M23K33, K−1 = −2M24K33, (75)

K+2 = 2M25K44, K−2 = −2M26K44. (76)

These components are thus solutions of four scalar transfer
equations with known source functions. The source function S
can then be obtained by applying Eq. (47) with the “full” ĤB (or
M̂B) matrix. The solution of Eq. (50) combined with Eq. (49)
yields a new value for J and the process can be iterated.

It must be stressed that keeping only the first and second
columns of the matrix K̂(τ )M̂B may be insufficient when one
of the coefficientsM23 toM26 becomes close to zero because the
self and the harmonic cross-coupling terms which have been ne-
glected may then become the dominant ones. For θB = 60◦, the
coefficient M32 = 2M23 is close to zero (see Fig. 6), therefore,
the component J+1 will not be properly evaluated. Similarly,
for θB = 30◦, it is the component J+2 which will not be cor-
rectly evaluated. These errors are however of little importance,
for polarization diagrams in particular, since they affect only
the smallest component of J , but they seem to generate conver-
gence problems in the FS91 iterative method of solution. When
comparing our PALI-H results with non-perturbative solutions
and with the FS91 perturbative ones, we found some discrep-
ancies with the latter solutions actually for the smallest of the
components.

5.4. Dependence of S on the azimuthal angle ϕB

We now letϕB vary between 0 and 2π, assuming thatϕB is inde-
pendent of the optical depth. As shown below, the dependence
on ϕB is then very simple.

Fig. 7. Symmetries of the irreducible source vector components Sα
with respect to θB. Same display and same atmospheric and magnetic
parameters as in Fig. 5. The numbers near the curves refer to the values
of θB. The Eq. (47) relates the components of source vector Sα to the
components of mean intensity Jα, through the M̂B(θB, B) matrix. The
dominant coupling originates from the elements of the second column
Mα2, α = 2, 6, which are plotted in Fig. 6

Eq. (61) and the factorization (48) suggest to introduce an
auxiliary vector

J0(τ ) = R̂(−ϕB)J (τ ). (77)

Using R̂(ϕB)R̂(−ϕB) = 1̂, with 1̂ the (6×6) identity matrix, and
R̂(ϕB)K̂(τ )R̂(−ϕB) = K̂(τ ), it is easy to verify thatJ0 satisfies
the integral equation (61) with ĤB replaced by M̂B. Hence J0

is independent of ϕB and is simply the reduced mean intensity
vector for ϕB = 0. Eq. (77) yields

J (τ ) = R̂(ϕB)J0(τ ), (78)

and

S(τ ) = (1− ε)R̂(ϕB)M̂B(θB, B)J0(τ ) + S∗Ie. (79)
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Fig. 8. Dependence of the irreducible source vector components Sα(τ )
on the magnetic field azimuth ϕB. Same display and same atmospheric
parameters as in Fig. 5. Magnetic field parameters (γB,θB)=(1,60◦).
The numbers near the curves are the values of the azimuthal angle ϕB.
The components SI, and SQ do not depend on ϕB. The dotted line is
drawn only to indicate zero polarization

It is clear that Eqs. (78) and (79) could have been obtained
directly by making a Fourier expansion of the Stokes vector I
in harmonics of (ϕ− ϕB) as in FS91.

Fig. 8 shows the dependence on ϕB of the six components
of S for θB = 60◦ and γB = 1. First we note that SI and SQ are
independent of ϕB. The components S±1(τ ) are 2π–periodic
and change their sign under the transformation ϕB → (π +ϕB).
The components S±2(τ ) are π–periodic and change their sign
under the transformationϕB → (π/2+ϕB). These properties are
straightforward consequences of Eq. (79) and of the symmetry
properties of R̂(ϕB) which can be read in Eq. (42).

5.5. Dependence of S on the field strength parameter γB

We now assume that θB and ϕB are fixed, and let γB vary. Fig. 9
shows the dependence of the 6 components of S on γB for
0 ≤ γB < 3. When γB = 0, only SI and SQ are different from

Fig. 9. Dependence of the irreducible source vector components
Sα on the magnetic field strength parameter γB. Same display and
same atmospheric parameters as in Fig. 5. Magnetic field parameters
(θB,ϕB)=(60◦, 0◦). The numbers near the curves are the values of γB.
The case γB = 0 refers to the non-magnetic resonance scattering polar-
ization. At small optical depths, S±1 reach their maxima for γB ' 0.5,
and S±2 do so for γB ' 1.0. Thus a narrow range γB ∼ 1 represents
the value of peak sensitivity of a line to the Hanle effect. The effects
of γB on emergent polarization at line centre are shown in Fig. 15

zero because of the axial symmetry of the radiation field. For
values of γB > 3, the Hanle effect saturates in the sense that,
on further increase in γB, there is only a small change in the
line polarization. Thus the range 0 < γB < 3 represents the
sensitivity range of the Hanle effect to the changes in magnetic
field strength B.

The properties of S can be analyzed exactly as in Sect. 5.1
with θB replaced γB. The dependence of JI on γB is negligi-
ble and that of JQ is fairly small (variation of 10% when γB

increases from 0 to 3). According to the approximations (70)
to (72) for S, the γB-dependence of Sα is a direct mapping of
the γB-dependence of the elements in the second column of the
matrix M̂B(θB, B) (see Fig. 6 and Eq. (39)).
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Fig. 10. The effect of a depth-dependent azimuth ϕB on the irreducible
source vector componentsSα. The depth-dependence ofϕB is given by
Eq. (80). Same display and same atmospheric parameters as in Fig. 5.
Magnetic field strength parameter γB = 1. The numbers near the curves
are the values of θB. Compare this figure with the corresponding case of
depth-independent azimuth shown in Fig. 7. Notice that the symmetries
of Sα with respect to θB are broken by the depth-dependence of ϕB.

We can check on Fig. 9 that the dependence ofSI on γB is so
weak that it cannot be detected on the graph. We see also that,
for any θB, the surface value of SQ monotonically approaches
the zero level polarization, following indeed the monotonic de-
crease of M22 when γB increases. At the surface SQ decreases
by a factor of 3 when γB increases from 0 to 1. This is the well
known Hanle depolarization effect.

For the other components the situation is more complex
because of the non-monotonicity of other M2α. In the case of
Fig. 9, the first harmonic componentsS±1 exhibit a ‘peak Hanle
sensitivity’ around γB = 0.5, and the second harmonic compo-
nents S±2 have their peak sensitivity for γB ' 1. By taking
the limit γB → 0 or γB → ∞ in Eq. (39), one obtains that the
source function is dominated by S−1 in the former case and by
the two components S+1 and S+2 in the latter case.

5.6. The effect of a depth-dependent azimuth ϕB on S

In this section we assume that ϕB varies with optical depth
according to

ϕB(τ ) = 45◦ [(1− e−5τ )− (1− e−5τ1 )], (80)

where τ1 = 10−2. This profile represents a strong exponential
variation in the range of 0.1 < τ < 1. It gives ϕB(τ ∼ 10−2) =
0◦ and ϕB(τ ∼ 1) = 43◦. With this model we must solve the
transfer equation on the full slab, as there is no symmetry about
the mid-plane.

Fig. 10 shows the components of S for several values of
θB. This figure should be compared to Fig. 7. The approxima-
tion introduced in Sect. 5.3 can also be used here to analyze
the results, provided that we replace the elements M2α by the
elements H2α (α=Q,±1, ±2). As usual SI is essentially inde-
pendent of the magnetic field parameters. SinceH22 = M22, the
component SQ is almost insensitive to a variation of ϕB. For
the other components, the most striking feature is the loss of
symmetry with respect to their dependence on θB. In Sect. 6.3
we shall discuss the effect of a depth-dependent azimuthal angle
on the emergent polarization.

6. The polarization diagrams

Useful tools for extracting magnetic field parameters from the
observed Stokes parameters are plots of (Q/I) versus (U/I).
There are different ways of constructing them (see for instance
Bommier et al. 1991; FS91; Stenflo 1994). They have been suc-
cessfully used for the determination of weak magnetic fields
in prominences and in the upper solar atmosphere (references
can be found in Stenflo (1994) or Faurobert-Scholl (1996)).
Throughout this paper, we show the polarization diagrams for
depth τ = 0, line center (x = 0), and selected values of µ. Each
diagram is obtained by letting the radiation field azimuth ϕ (or
the magnetic field azimuth ϕB when it is depth-independent)
vary in the range (0◦, 360◦). In practice, only Q and U are de-
pendent on ϕ. For the resonance scattering problem (γB = 0),
polarization is represented by a point on the (U/I) = 0 axis.
For the Hanle effect (γB 6= 0), we get closed loops which are
Lissajous curves since the azimuthal Fourier expansion of the
radiation field is limited to second order terms.

These diagrams are easy to construct since Eqs. (29) and
(45) and (46) allow us to explicitly express I , Q and U in terms
of the 6 components of the irreducible intensity vector I . We
thus find

I = II +

√
W

8
(1− 3µ2) IQ +

√
3W
2

µ
√

1− µ2 [I+1 cos ϕ + I−1 sin ϕ] +
√

3W
4

(1− µ2) [I+2 cos 2ϕ− I−2 sin 2ϕ], (81)

Q =

√
W

8
3(1− µ2) IQ +
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√
3W
2

µ
√

1− µ2 [I+1 cos ϕ + I−1 sin ϕ] −
√

3W
4

(1 + µ2) [I+2 cos 2ϕ− I−2 sin 2ϕ]. (82)

U =

√
3W
2

√
1− µ2 [I−1 cos ϕ− I+1 sin ϕ] +

√
3W
2

µ [I−2 cos 2ϕ + I+2 sin 2ϕ]. (83)

The Stokes parameters depend on W through the factor
√
W

but also through the components of I since W enters in the
expression of the kernel K̂ of the integral equation for S (see
Eqs. (50), (51), (56) to (60)). For optically thick lines, there
is no simple dependence of U and Q on W . A simple scaling
withW holds only for optically thin lines or when using the last
scattering approximation as in Stenflo (1982). In these cases the
components Iα, α=Q,±1,±2 are proportionnal to

√
W .

We note here that we could have chosen the negative root of
W when introducing the vectors Zi, i = 1, . . . , 5 (see Eqs. (9)
to (13)). The components Iα, α=Q,±1,±2, would have had op-
posite signs which would have compensate for the minus sign
in front of

√
W .

Eq. (81) shows that Stokes I depends on all the six compo-
nents of I . The dominant contribution by far comes from the
first term II , whatever the line of sight (LOS) and the magnetic
field vector. StokesQ depends on the last five components of I .
For small values of γB and a LOS close to the horizontal plane
(µ small), the dominant contribution to Q comes from the term
proportional to IQ. StokesU depends only on the last four com-
ponents of I . It is zero when the radiation field is axisymmetric.
Equations (81) to (83) hold also for the components SI, SQ, SU

of the Stokes source vector S provided the components of I
are replaced by the six irreducible source vector components
(SI, SQ, S±1, S±2).

The polarization diagrams are generated as follows. We first
solve the transfer equation for the axially symmetric irreducible
intensity vector I with our PALI-H transfer code. We then cal-
culate (I,Q, U )T on a mesh of radiation field azimuths ϕ, using
Eqs. (81) to (83). The points ((U/I), (Q/I)) move in the anti-
clockwise direction whenϕ is increased from 0◦ to 360◦. When
ϕB is constant, the polarization diagrams can be constructed by
keepingϕ constant and lettingϕB vary. Further, for CRD, Stokes
Q and Stokes U show similar variation with frequency x : both
have a single maxima at line centre and smoothly approach
zero, or a constant value at the near wings (x ∼ 3), depending
on the values of ε and T (see Faurobert 1987; FS91). Hence, the
polarization diagrams using the frequency averaged Stokes pa-
rameters exhibit similar shapes as the diagrams presented here
for the line centre, except for a proportional decrease in the
size of the diagrams, due to averaging. For all the polarization
diagrams shown on Figs. 11-16, the slab model with the param-
eters T = 2 102, ε = 10−4, a = 10−3 and Bν = 1 is used. Other
parameters are noted in the figure captions, and on the figures.

Fig. 11. θ-dependence of polarization diagrams at line centre. The
numbers near the curves refer to the co-latitude θ of the LOS.
The symbols on the curves correspond to different values of ϕ.
The symbols : plus, asterik, triangle and square correspond respec-
tively to ϕ = 0◦, 90◦, 180◦ and 270◦. Atmospheric parame-
ters (T, a, ε, Bν ) = (2 102, 10−3, 10−4, 1) and magnetic parameters
(γB, θB, ϕB) = (1, 30◦, 0◦). Notice the expected limb-to-centre de-
crease in magnitude of the emergent linear polarization

6.1. Dependence on the radiation field co-latitude θ

In Fig. 11 we show the polarization diagrams for different val-
ues of θ. The magnetic field parameters are (γB, θB, ϕB) =
(1, 30◦, 0◦). As θ varies from the tangential (θ = 87◦) to the
vertical direction (θ = 18◦), the amplitude of variation of U
decreases and so does the absolute value of Q. This leads
to a decrease in the degree of linear polarization defined as
p =

√
Q2 + U 2/I . Note also the variation in the shape of the

diagrams. It is due to the relative decrease of the first term in
Eq. (82) with respect to the third one. In the extreme case of
vertical LOS (µ = 1), the polarization is non-zero, although it
is very small as long as γB /= 0 because of the contribution from
the second harmonic in Q and U . This finite polarization in the
vertical direction is known as “Hanle repolarization” (see Bom-
mier et al. 1991) because it is strictly zero when γB = 0. For
ϕ = 0◦,

p(θ = 0◦, ϕ = 0◦) =
1
2

√
3W (I2

+2 + I2
−2)

II −
√

W
2 IQ

. (84)

We also note that for a given value of (Q/I), there can be
2 or 4 possible values of (U/I), and vice versa. Thus different
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Fig. 12. θB-dependence of polarization diagrams at the line centre.
The numbers near the curves refer to different co-latitudes θB of the
magnetic field. Meaning of symbols and atmospheric parameters as in
Fig. 11; magnetic field parameters (γB, ϕB) = (1, 0◦). The co-latitude
of the LOS is θ = 87◦. Notice the symmetry of the diagram about
(U/I) = 0 axis for the particular case θB = 90◦

LOS or different values of ϕB may lead to the same degree of
linear polarization and also the same angle of rotation of the
plane of polarization χ = (1/2) tan−1(U/Q).

6.2. Dependence on the magnetic field co-latitude θB

In Fig. 12 we show the polarization diagrams for three different
values of θB. The other two magnetic field parameters are held
fixed : (γB, ϕB) = (1, 0◦). The co-latitude of the LOS is θ = 87◦.
The values of θB are chosen between 0◦ and 90◦. The diagrams
for θB between 90◦ and 180◦ can be obtained by symmetry with
respect to the axis (U/I) = 0. Indeed, when θB → (π− θB) and
ϕ→ (π−ϕ),Q does not change butU changes its sign. Hence,
when θB = 90◦, i.e. when the magnetic field vector is horizontal
(see Fig. 1), the polarization diagrams are symmetric about the
(U/I) = 0 axis. When the LOS is also in the horizontal plane the
diagram becomes infinitely thin and looks like an open ended
line.

6.3. Polarization diagram for a depth dependent azimuth ϕB(τ )

In Fig. 13 we compare the polarization diagrams for the cases
of constant azimuth (ϕB = 0◦), and a depth dependent azimuth
ϕB(τ ) given by Eq. (80). The other magnetic field parameters

Fig. 13. Polarization diagrams at line center, for a uniformϕB (=0◦) and
a depth dependentϕB(τ ) given by Eq. (80). Atmospheric parameters as
in Fig. 11 and magnetic field parameters (γB, θB) = (1, 90◦). Constant
azimuth : full lines with bigger symbols. Depth dependent azimuth :
dotted lines with smaller symbols. The numbers near the curves refer
to co-latitude θ of the LOS. Notice the loss of symmetry about the
(U/I) = 0 axis when the magnetic field azimuth is depth dependent

are (γB, θB) = (1, 90◦). When ϕB = 0◦, the diagrams are sym-
metric about the (U/I) = 0 axis since we have chosen θB = 90◦.
This symmetry is broken by a depth dependent ϕB(τ ). Fig. 13
shows clearly, that the polarization diagrams are almost insen-
sitive to the ϕB(τ ) law used in our model. The sensitivity to
the depth variation of ϕB(τ ) strongly depends on the gradient
of ϕB(τ ) in the region of formation of the line core. We have
noticed that the effects of a variable ϕB can become significant
with a variation ∆ϕB(τ ) of 90◦ or more within narrow layers
near the surface of the slab (τ � 1). The diagrams become very
asymmetric about the (U/I) = 0 axis, and reduce drastically in
size. So unless one has good reasons to suspect a strong varia-
tion of ϕB(τ ) within the line core formation region, assuming a
uniform ϕB(τ ) is a reasonable hypothesis, in modelling efforts.

6.4. Dependence on the magnetic field strength parameter γB

In Fig. 14 we present the polarization diagrams for different
values of γB, the strength parameter of the magnetic field. The
field direction is fixed at (θB, ϕB) = (60◦, 0◦). The models are the
same as those used for Fig. 9. The co-latitude of the LOS is 87◦.
The non-magnetic resonance scattering polarization (γB = 0)
yields the point (U/I) = 0, (Q/I) = −5.61 %. For small values
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Fig. 14. The effect of magnetic field strength on the polarization di-
agrams at line center and θ = 87◦ of the LOS. Meaning of symbols
and atmospheric parameters as in Fig. 11; magnetic field parameters
(θB, ϕB) = (60◦, 0◦). The different values of γB are indicated near the
diagrams. Notice the strong increase in U/I between γB = 0.1 and
γB = 0.3 and the saturation of the depolarizing efficiency for large
values of γB

ofγB (∼ 0.1), the component IQ is the dominant one (see Fig. 9),
hence U is small and the diagrams are quite flat. When γB ∼ 1,
the last five components are more or less of the same order,
which explains the butterfly shape of the diagrams. Fig. 14
also shows clearly that for large values of γB (� 3), the Hanle
effect becomes negligible.

6.5. The two-parameter polarization diagrams

As suggested in Bommier et al. (1991), the determination of
magnetic field parameters from observational data can be at-
tempted with the help of two-parameter diagrams showing a
network of iso-strength and iso-azimuth curves. For a given
LOS, determined by the values of θ and ϕ, one chooses a value
of θB and vary the two other parameters of the magnetic field,
γB and ϕB. Then in the plots of Q/I versus U/I , one draws
not only the iso-strength curves as in Fig. 14 but also the iso-
azimuth curves. Fig. 15 shows such a diagram for a LOS with
θ = 90◦ and ϕ = 0◦ and a magnetic field with θB = 90◦. To
draw this figure we have used the slab model (T = 2 102) and
varied γB in the range 0–100. Similar two-parameter diagrams
for different choices of θ and θB are shown in Bommier et al.
(1991).

Fig. 15. The two–parameter polarization diagrams for Hanle effect.
Same atmospheric parameters as in Fig. 11. Magnetic field parame-
ters θB = 90◦, γB in the range (0–100) and ϕB in the range (0–180◦).
The iso-azimuth curves (solid lines) are drawn by fixing ϕB and vary-
ing γB. The iso-strength curves (dotted lines) are drawn by fixing γB

and varying ϕB. All the curves in the figure are symmetric about the
(U/I) = 0 axis. The LOS is fixed at (θ, ϕ) = (90◦, 0◦). The results are
presented for the line centre. The iso-strength curves show the Hanle
depolarization and saturation effects clearly. The iso-azimuth curves
show the effect of rotation of the plane of polarization when γB varies

When both the LOS and the magnetic field are lying in the
horizontal plane, as in Fig. 15, the iso-strength loops become in-
finitely thin and look like open ended curves. Also it is sufficient
to let ϕB vary in the range 0–180◦ to cover a whole iso-strength
curve (dotted line). When γB is small the iso-strength curves are
almost horizontal for the reason given in Sect. 6.4. When γB is
large the two prongs of the curve become almost vertical. When
γB → ∞, the ordinate of the lowest point reaches a limiting
value given by Q/I = (3/2

√
2)
√
WIQ/I .

The iso-azimuth curves (solid lines) are open ended lines
which start at γB = 0 and end at γB = 100. All the iso-azimuth
curves merge at the point γB = 0 where U/I = 0 and Q/I =
−7.4%. The iso-azimuth curves for ϕB = 90◦ (and ϕB = 270◦)
are straight lines which coincide with the U/I = 0 axis.

When an observational data point (U/I, Q/I) falls within
an approximate interval defined by [∆γB,∆ϕB], we get upper
and lower limits on the possible values of γB andϕB, which may
further be used for modelling. This approach is reasonable when
an independent estimate of θB is available. It is worthwhile to
note that in order to construct a series of such two-parameter



K.N. Nagendra et al.: An operator perturbation method for polarized line transfer. III 627

polarization diagrams corresponding to different values of the
fixed magnetic field parameter, a fast method for the computa-
tion of emergent Stokes parameters is required. The approxi-
mation introduced in Sect. 5.3 can serve that purpose.

6.6. A fast method of generating the polarization diagrams

The method is very simple. One first solves a two-component
polarized transfer problem with the kernel given in Eq. (73) to
calculate JI and JQ. The approximations (70)–(72) then yield
all the components ofS. The only remaining task is the solution
of six scalar transfer equations with known source functions.

When ϕB /= 0, the coefficients M2α in (70)–(72) should be
replaced by the coefficients H2α. This amounts to making the
changes,

M23 → (c1M23 + s1M24), M24 → (c1M24 − s1M23), (85)

M25 → (c2M25 − s2M26), M26 → (c2M26 + s2M25), (86)

where the ci and si, i = 1, 2 are defined in Eqs. (43) and (44).
In Fig. 16 we compare polarization diagrams obtained with

this approximation and with a full PALI-H iterative method. It is
clear that the differences fall within the error bars of a standard
measurement. The calculation of the approximate solution is a
factor of 10 faster than the full PALI-H code. It is so fast that
one can think of using it as part of an inversion code to set up
estimates of the vector magnetic field.

For the purpose of estimating the magnetic field, it is possi-
ble to use an even cruder version of the above approximation,
already suggested in FS91. The components JI and JQ and the
components of S are calculated as above. The surface polariza-
tion is then estimated with the Eddington-Barbier approxima-
tion, I(0, x, µ) ' S(τx), with τx ' µ/φ(x). For ϕB = 0 and ε
negligible compared to unity, this approximation yields for the
surface value of the Stokes parameters :

I(x, µ, ϕ) ' JI (τx) + S∗I (τx), (87)

Q(x, µ, ϕ) '
{√

W

2
√

2
3(1− µ2)M22 +

√
3W µ

√
1− µ2 [M23 cosϕ−M24 sinϕ] −√

3W
2

(1 + µ2) [M25 cos 2ϕ + M26 sin 2ϕ]

}
JQ(τx), (88)

U (x, µ, ϕ) '
{
−
√

3W
√

1− µ2 [M24 cos ϕ + M23 sinϕ] +
√

3W µ [M26 cos 2ϕ−M25 sin 2ϕ]
}
JQ(τx). (89)

An approximation for the three components of the Stokes source
vector constructed with the same method is given in FS91 (it
contains however some misprints).

Fig. 16. Polarization diagrams showing the relative accuracy of the
approximation defined in Sect. 5.3. Same atmospheric model as in
Fig. 11 with magnetic field parameters (γB, ϕB) = (1, 0◦) and different
values of θB. The diagrams refer to line centre and the LOS co-latitude
θ = 87◦. The solid lines show the results of full PALI-H computations,
and the dotted lines the approximate solutions. The relative errors are
20 %, or less

7. Concluding remarks

The Approximate Lambda Iteration method presented in this
paper, has several advantages over the perturbation method in-
troduced in FS91. Since it is an operator perturbation method, it
does not explicitly make use of the smallness of the degree of po-
larization and is able to handle situations where the polarization
is arbitrarily large. Also the speed of convergence is entirely
independent of the vector magnetic field. By using a Fourier
decomposition with respect to ϕ instead of ∆ϕ = ϕ − ϕB, it
offers the possibility to calculate the Hanle effect produced by a
magnetic field with a depth-dependent co-latitude, strength and
also azimuthal angle. The numerical accuracy of the PALI-H
method is also somewhat superior to that of the FS91 perturba-
tion method. It is accurate up to the 6th significant digit, when
compared to a direct numerical solution obtained by a Feautrier
method. The main advantage is the gain in CPU time, as the
PALI-H method is 50 times faster than Feautrier method for
most of the practical problems of interest in Solar Physics.

Introducing an irreducible radiation field, we are able to
write a six-component vector radiative transfer equation with a
vector source function depending only on the optical depth and
we could thus give a very simple derivation, significantly sim-
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pler than in FS91, of the integral equation which is the starting
point for the PALI-H method.

It should be stressed that the perturbation method developed
in FS91 can handle both complete and partial frequency redis-
tribution problems whereas here only complete frequency re-
distribution has been considered. A few preliminary tests have
shown that the PALI-H method can be adapted to partial fre-
quency redistribution. That such a generalization is feasible has
already been shown for resonance polarization in zero magnetic
field by Paletou & Faurobert-Scholl (1997).

It is needless to say that the PALI-H method can handle any
radiative transfer problems involving a non-axisymmetric radi-
ation field, as for example the scattering of a non-axisymmetric
incident radiation field in a non-magnetic atmosphere. In this
case ĤB reduces to the (6× 6) identity matrix.

Here the PALI-H method has been presented and applied
with the assumption that the absorption profile φ is independent
of optical depth. It works equally well for real atmospheres
where this assumption would not be correct. The depth depen-
dence of the profile need only to be taken into account when
calculating the formal solution of the transfer equation (50) and
the mean irreducible intensity J (τ ) with the expression given in
Eq. (49). Naturally, when φ is depth-dependent, the kernel K̂ of
the integral equation (51) depends separately on both the argu-
ments τ and τ ′, but the iterative method never makes explicitly
use of this equation.

Considering the inherent uncertainties in the observed data,
the simple perturbative approximation for the Hanle effect in-
troduced in this paper should prove very useful for preliminary
analyses. This approximation enables one to reduce the six-
dimensional vector transfer problem for the irreducible radiation
field into a two-dimensional modified resonance polarization
problem which yields the azimuthal average of the irreducible
radiation field. The azimuth dependent components can then be
calculated by solving four scalar transfer problems with known
source functions or simply by using an Eddington-Barbier ap-
proximation, when only the surface polarization is of interest.
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Faurobert-Scholl M., 1996, in Solar Polarization, Stenflo J.O., Nagen-
dra K.N. (eds), Kluwer Academic Publishers, Dordrecht, p. 79 (see
also Solar Phys. 164, 79)

Faurobert-Scholl M., Frisch H., Nagendra K.N., 1997, A&A 322, 896
(Paper I)

Frisch H., 1988, in Radiation in Moving Gaseous Media, 18th Ad-
vanced Course, Swiss Society of Astronomy and Astrophysics,
Chmielewsky Y., Lanz T. (eds), Publication de l’Observatoire de
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