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Abstract. The work done on propagation of waves in magnetic tubes is
reviewed. It is seen that majority of the results obtained so far are based on
the thin tube approximation. It is shown that estimates of the mechanical
energy flux based on such an approximation could be grossly in error. The
need for studying the propagation of waves in finite tubes is emphasised. The
possibility of non-linear effects altering the propagation characteristics of these
waves is pointed out.
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1. Imtroduction

The solar magnetic field outside spots and active regions is concentrated into
magnetic knots or flux tubes in the photosphere. The ratio of the fraction of the
atmospheric volume enclosed within these tubes increases with height above the
photosphere, approaching values close to unity in the solar corona (e.g. Gokhale &
Venkatakrishnan 1978). Such hydrostatic considerations alone are sufficient to
underline the necessity of incorporating these tubes as a major ingredient in atmos-
pheric modelling. However, a fresh look at the problem of mechanical energy
transport in the sun reveals compelling reasons to assign these tubes a more dynamic
role.

One such reason is that the dominant power in photospheric motions exists at
frequencies just below the acoustic cut-off frequency of the photosphere. Sound
waves at higher frequencies where propagation is possible carry negligible power.
In fact, an order of magnitude estimate by Athay & White (1978) based on recent
0S0-8 data on microturbulence clearly rules out the possibility of even high frequency
sound waves heating regions higher than 2000 km above the photosphere.

A second reason is that it is now becoming increasingly evident that magnetic
tubes can support new kinds of wave modes which can propagate at those
frequencies at which photospheric motions dominate. The study of these modes is
still in its infancy. Considerable theoretical and observational efforts are needed
before one can answer the question whether these modes do deliver sufficient
energy at various heights to maintain the chromosphere and the corona. However,
since each step forward in answering this question is bound to need substantial
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Wave propagation in solar magnetic tubes 215

involvement of additional computational and experimental resources, it is imperative
to consolidate our position at this stage by reviewing the work that has already gone
into the study of waves in magnetic flux tubes, to draw, if possible, general conclu-
sions about the behaviour of such waves and to identify gaps, if any, in the
understanding of these new modes.

2. Historical development of the subject

The study of wave propagation in a magnetoplasma dates backs to the pioneering
work of Alfven (for a comprehensive review see Alfven 1950). The effect of
compressibility on the Alfven modes was first studied by Herlofson (1950). All these
results are valid for a uniform plasma with homogeneous magnetic field and infinite
conductivity. In this case we have what is known as the “pure” MHD modes,
namely the incompressible Alfven mode and the compressible fast and slow
magnetosonic modes. In the presence of gravity all these modes become modified.
The characteristics of the resulting magneto-acoustic gravity waves (MAG waves)
are described by Stein & Leibacher (1974). The presence of gravity introduces the
complication of a complex wavenumber. The dispersion relation can be conveniently
depicted in the space of the frequency » and horizontal wavenumber £z as a
diagnostic diagram. Regions in w — kx space are labelled as vertically propagating
or evanescent depending or whether the vertical component of the wavenumber is
real or imaginary for a given frequency « and horizontal wavenumber k..

The presence of radiative losses introduces further complications. Waves which
were progressive in the absence of radiation are now spatially damped; and evanes-
cent waves leak out with small group velocities and enormous phase velocities
whenever radiative losses are included. Strictly speaking all these studies are the
WKB limits of realistic situations. A more realistic approach, including finite
radiative diffusivity and electrical resistivity, was followed by Antia (1979). He
isolated several cases of overstability of the magneto-acoustic modes in the presence
of thermal conductivity. The case of atmospheres with zero magnetic field has
been the subject of intense study (Eckart 1950) and some very powerful methods
exist in the fluid dynamical literature to tackle a variety of wave phenomena (see
e.g. Whitham 1974).

3. Waves in magnetic flux sheaths

Before considering the problem of tubes (cylindrical geometry) one can consider a
magnetic flux sheath which will include all the effects of lateral boundaries with the
added advantage that one can use Cartesian coordinates. This was done by Cram
& Wilson (1975). They considered the complementary aspects of examining the
transmission of a given incident sound wave through the sheath and of investigating
the modes of vibration of the sheath. The latter aspect is more interesting for the
purposes of this study. Since the basic method of appreoach is the same for finite
tubes, whether cylindrical or rectangular, the method will be described in detail. The

- basic equations used in this case are the linearised equations of continuity,

momentum and magnetic induction:
0p1 —
Py + v. (V) = 0, ...(3.1a)
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v ,
oo 2 = — VP + (¥ X i) X By, --(3.1b)
aaL? =y X (V; X By), ...(3.1¢c)

where p, and B, are the equilibrium density and magnetic field; and p,, V; and b,
are the perturbed density, velocity and magnetic field respectively. The solutions of
these equations are subject to the following boundary conditions at the interface:

[V,.n]=0 ...(3.2a)
and
[p1 + (by - By)/d=n] = O, .. (3.2b)

where the parantheses indicate the jump in the enclosed quantities as one crosses the
interface. Equations (3.1a) through (3.1c) can be reduced to a second order
differential equation with coefficients that are constant on each side of the interface.
This has in general two linearly independent solutions with two arbitrary constants
of integration. There are three such regions separated by the two magnetic field
discontinuities that make up the flux sheath. Hence there will be in general six
constants of integration. The two boundary conditions at each interface along with
two boundary conditions at infinity yield six linear homogeneous equations involving
the six constants of integration. The condition that not all these constants are zero
yields the ¢“dispersion relation” between the frequency « and the components of the
wave vector parallel to the interface. For the particular case of equal temperatures

inside and outside the tubes, Cram & Wilson (1975) obtained the dispersion
relation:

csc?

Q[ @+ 389 (55,) e — 1R | 281 + 3RY @ 1 R =0,

..(3.3)

where Q = w/k,S, R = A[S, csc? k,a is for the ‘taut wire’ mode (see Piddington
1973), sec* kja is for the contraction/dilation mode, 4 is the Alfven speed in the
sheath, S the sound speed, k, the component of wave vector normal to the
interface and k; the component parallel to the interface. The dispersion relation

for magneto-acoustic waves in a homogeneous magnetic field yields the auxillary
relation

k2 (Q— RY(Q—1)
Eg— == Qz(_Rz + l) —_Rz" ...(3.4)

It must be noted that when Q% - R?/(R? + 1), then — oo- The condition

K1
kg
Q? = R*/(R®+ 1) is equivalent to w?¥/k3 = c% , wherec, = SA/(S? + 4% is the

phase velocity of the so called tube waves which we shall encounter quite frequently
in what follows. More about this aspect later. Stability considerations led Cram
& Wilson to conclude that only slow modes are allowed within the sheath. However,
a recent extension of this work to the case of unequal temperature inside and
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outside the sheath by Roberts (1980) yields a richer variety of allowed modes in the
sheath.

Cram & Wilson, however, did not recognise the fact that their dispersion relation
contained the relation for surface waves as well. Surface waves are waves which
are confined close to the interface and are quite distinct from volume waves or bulk
waves in that their propagation characteristics are a function of the discontinuities
in the state variables like temperature, density and magnetic field intensity. As a
matter of fact, they cease to exist when the discontinuities vanish. The subject of
surface waves is well developed in non-astrophysical contexts. For the sun, only
work of a limited nature exists. Wentzel (1979a) has attempted to examine the
properties of surface waves relevant to the solar atmosphere. He lists those
properties of surface waves which are of maximum interest:

(i) The dispersion relation.
(ii) The extent of the wave from the surface of discontinuity.
(iii) The degree by which the surface wave may be coupled to ordinary body
MHD waves when the discontinuity is thin but finite.
(iv) The degree by which the gas is compressed.
To these one might add the following:
(v) The stability considerations that allow certain modes and forbid certain others.

Wentzel discusses results for a restricted range of the parameters and that too for

fluids which are not stratified along the direction of the interface.

4. Wave propagation in cylindrical flux tubes

The analysis of a flux sheath can be extended to a flux tube of cylindrical cross-
section. This was done by Roberts & Webb (1978) as part of a scheme to check
their slender tube approximation. They obtained a dispersion relation of the form

1/2
(K2C2 — o?) (k2V2 — w?) (C3 + V)

Iy(myto)
o #CT — o) L(moro)
Cz 1/2
_ b © | Kolmero) o (41)
kzcz — Kl(me"o)

where m},, = (k*C] , — «¥)/Ct,,, Co, Ce are the sound speed within and exterior to

the tube respectively, r, is the radius of the tube, Cr = CyVa/(C2 + VzA)ll2 is the so

called tube velocity and I and K are the cylindrical Bessel functions of the first and
second kind respectively. If we put Ce = C,, we get

2 2 CZ 2 2 VZ
. o + VA. _ peKOI]_ ‘2 . . ( T + VA) (CO + A.) kz
“I\NT ¢ poK1lo ¢ C3
+ k* Vj; =0 ...(4.2)
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in a form which is strikingly similar to the dispersion relation (3.1) for a flux sheath.
A conscious effort at understanding surface waves on cylindrical surfaces was
made by Wentzel (1979b). The cylindrical geometry introduces some new features,
for example, the presence of nodes in the variation of pressure perturbation with r,
the radial distance from the axis of the tube. Moreover, in the case when the phase
velocity of the surface wave exceeds the larger of the sound and the Alfven speeds in
the exterior of the tube, Wentzel obtains an energy per unit length of the cylinder
that diverges logarithmically when integrated towards r — oo. However such
solutions cannot be excluded, since they are valid solutions of the differential
equations for surface waves. Wentzel expects physical considerations like the
swamping of surface wave pressure fluctuations at large distances by turbulence
pressure in the background fluid to invalidate the integration beyond some finite r.

Wilson (1980) has obtained a general dispersion relation for the vibration
modes of magnetic flux tubes.. The relation is

OV — R?) @y(my) = (1 + }YRY) V2@y(me), +(4:3)

where
my = k(L — V%) (R — VH(T* — V) (1 + RY),
m? = k(0 — V1/Qr,
$1(me) = In(mo)[mol (mo)l, m§ > 0
= Jo (ko)/lkoT, (ko)l, m3 = — k3 <0,
$o(me) = Kn(me)[[meK;, (me)l, m} >0

[AneJa(ke) + BueYa(ke)]
= - nen’e~ nenle~ ,m2=—ki<0
ke [Ane J;, (ke) + BneX, (ke)]

and Ane and By. are arbitrary constants, in terms of the dimensionless variables
k = kry, ;”'o = MyFy,
R = A[Cy, Q = Cy/Ci, V = w/kCiand T? = R¥/(1 + R?) = C2 /Cf ,

ro being the radius of the tube.

However, Wilson (1980) confined his study to the case of standing wave modes in
the exterior where one can set Bpe = 0. He obtained the dispersion relation for
some specific values of the parameters Q, R and 7. For outwardly propagating
waves, however, he expects complex w. One can then think of the outwardly
propagating waves acting as a source of damping for the surface wave.

Tonson (1978) and Wentzel (1979c) have examined the possibility of heating the
solar atmosphere by resonant absorption of surface Alfven waves. In their model,
the magnetic field is not discontinuous but changes over a finite thickness. In such
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a case, the surface Alfven waves (which would have been confined to the boundaries
of the tubes if the field were discontinuous) excite kinetic Alfven waves which could
be easily dissipated. In fact, they find that the surface wave is indeed damped once
its phase velocity equals the local Alfven velocity. They interpret this damping as
evidence of plasma heating. However, as demonstrated by Lee (1980), the ideal
MHD equations used by both Ionson (1978) and Wentzel (1979c) do not provide
any information on dissipation that might result from a kinetic treatment. Lee
(1980) has pointed out that the decay rate of the surface Alfven wave may not,
therefore, be interpreted directly as a plasma heating rate. In the presence of a
twisted magnetic field, however, the spatial resonance of the surface Alfven wave
takes place over a finite width (Krishan 1981) as opposed to the zero absorption
width for an untwisted field. The width of this resonance was found by Krishan
(1981) to depend on the amount of twist in the field.

A detailed exposition of the properties of Alfven surface waves can be obtained
from the monograph of Hasegawa & Uberoi (1981). Applications to the sun
specially in the context of coronal heating are indicated in this monograph and an
extensive bibliography is given. One can see that even in the case of simple non-
stratified tubes the characteristics of surface waves are extremely complicated.
Eventually of course one would have to include radiative losses and finite electrical
resistivity in stratified tubes if one wished to answer in a realistic manner the
questions of energy transport and dissipation.

On the other hand considerable simplification of the equations can be achieved if
one carries out a perturbation analysis by expanding the equations in ascending
powers of r,/L, where r, is the radius of the tube and L is the scale length of
variation of tube radius. This ‘‘slender flux tube approximation’’ had been the
subject of numerous recent investigations and the quantity of results alone, if not
their applicability to the sun, warrants a separate discussion:

5. The slender flux tube approximation

From purely intuitive considerations, Defouw (1976) obtained the following
dispersion relation for waves propagating along tubes of slender dimensions :

A+ V= (C2 +pC2+ C2YVE4+ C2CE =0. (5.1
Here

C2 = C*C2[(C?* + C%), C® = Bf4mp,

OpPe

c: L[ C
Pty %\ ¢t

I‘:

where C2 is the sound speed inside the tube, C2 is the sound speed outside the
tube and o and o, are the cross sections of the tube and its surroundings respectively.
Asp—> 0, weget V2= C?,C, andas u— oo we get P2 = C2%0. Thus it is
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clearly seen that C2 is purely a result of the tube and the corresponding mode

resembles surface waves (cf. section 2).

For a stratified tube with isothermal stratification Defouw obtains the analogue of
the acoustic cut-off frequency of a homogeneous atmosphere. This tube cut-off
frequency turns out to be

2
N R e

i R e ~(52)
A

which tends to C%. /16H? as y - 1. Defouw sees a close analogy for this cut-off

frequency in the case of acoustic wave propagation in a uniform gas confined by a
rigid tube of exponentially varying cross-section with the critical frequency given by
C/4H. Thus, a knowledge of the local scale height of variation of the tube radius is
essential before one can determine local cut-off frequencies.

A more rigorous approach was followed by Roberts & Webb (1978) where they
formally expanded the equations as powers of ro/H and equated terms of formal
order in ro/H. By this procedure they were able to retain magnetic fields, compres-
sibility and stratification of density and temperature. For a general variation of
temperature and density with height they obtain the critical cut-off frequency as

vt = G20

3 _ 1 (‘r——l)
A { 5@ + 18 x T G

1 Ao(@) C 3}, (53)

Va

which reduces to Defouw’s equation for the critical cut-off frequency in the limit of
constant A,. Here A, is the scale height of temperature variation, and C§, ¥? and

C2 are the speeds of acoustic waves, Alfven waves and tube waves respectively.

In the general case of variable A,, Roberts & Webb find a singularity at »? = N3,
where N, is the Brunt-Vaisala frequency. They associate this with critical levels in
wave propagation as has been discussed in fluid mechanics (e.g. Lin 1955) magneto-
hydrodynamics (Acheson 1972; Rudraiah & Venkatachalappa 1972) and in solar
physics (e.g. Adam 1977; Thomas 1976). However they find the functions to be
well behaved at this ‘“‘singular point™ contrary to the results of Acheson (1972) and
Adam (1977). This is not so puzzling since their ‘‘singular point” is a spurious
singularity. In reality it is that point where the solution for p, the pressure perturba-
tion, has a turning point in p — v space (phase diagram). Such a phenomenon is
quite normal in wave propagation along stratified fluids (see Eckart 1950).

Roberts & Webb have, as an application to the sun, calculated the values of the
cut-off frequency as a function of height in the solar atmosphere. They find that
this frequency has a peak at a depth of 9.2 km corresponding to a period of 62 s.
These results are in contrast to the results obtained for an isothermal atmosphere
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which differ by a factor of 3. Roberts & Webb therefore advocate caution while
applying isothermal models to the non-isothermal atmosphere of the sun.

Inclusion of radiative relaxation (in the optically thin approximation) makes the
evanescent waves propagate and damp the progressive waves (Roberts & Webb
1980b). If =4 and t, are the acoustic and radiative relaxation times respectively,

then in the limit ©g /r, << 1, Roberts & Webb (1980a) obtain five modes for a

homogeneous magneto-plasma. These can be represented as

miV: — o
] T —1 A #
W1,2,3,4 = Wy, + ’21— kCo i (Y ) ...(5.43,)
TR Y / m*(C2 -+ V.i) — 27

*

and
w; = % kCo(q [7g), -..(5.4b)
where w, satisfies the relati;)n
Wl = 4m[(CS + V3) & {(CF + V2)F — 4C3 V2 cost 1),

...(5.4¢)
In the limit =, [y <1,

i(y — Dl (m? V: — @2) mC, 1y [7g
W1,2,3,4 = w,. + ...(S.Sa)
2m? V2 [m¥(Ciy* + V%) — 2w?]cos b

and
w; = kCy(tg [tg ), ...(5.5b)
where
C2 2 2 2 o 1/2
w? — Jz-mz[(J 4 Vi) i {(& 4 Vi.) 4y cosze} ]
Y Y Y
...(5.5¢c)

Here k and m are the wavenumbers parallel and normal to the magnetic field
respectively and 0 is the angle between the direction of wave propagation and
magnetic field. In the case of a slender tube the dispersion relation becomes

(C%—I—V?‘)ws———i g—l—Vz w?
A TR Y A
KeC3 V2
2 .
—_— kzcg VA w + Z'TE = 0. ...(5.6)
Thus the equation is of third degree in w now as compared to the fifth degree for a
homogeneous fluid. The disappearance of two modes is reminiscent of the

disappearance of modes in a flux sheath (see discussion in Cram & Wilson 1975).
Maximum damping occurs at those wavelengths Ax where
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...(57
Am = TR CO
Roberts & Webb (1980b) extended this analysis to a stratified tube. As in the case
of homogeneous media the modes which were progressive in the absence of dissipa-
tion are now attenuated and waves which were formerly evanescent now propagate.
Roberts & Webb classify these mixed modes as mainly damped or mainly progressive

according as w® < wi, or w? > w?, respectively where 2, is the root of the

equation

C2 CZ
2,2 2 1 2 v — 12 * *
o¥w? — wj) + . 2((» +Y—lwﬁ—m' =0, ...(5.8)
Y TR
and @y is the cut-off frequency in the absence of radiation. By a ‘local’ calculation
Roberts & Webb show that radiative dissipation considerably modifies the waves for
the first few scale heights above 7,4, = 1, but thereafter has negligible effect on the
wave propagation.

The work of Roberts & Webb dealt mainly with longitudinal waves. However,
the longitudinal waves have cut-off frequencies close to the acoustic cut-off
frequency and therefore suffer from the same limitation as sound waves. This prevents
them from being potential candidates for heating the chromosphere and corona
(Spruit 1981a). However, a similar analysis by Spruit (1981a) for transversal waves
yields cut-off frequencies well below the acoustic cut-off. To obtain this result
Spruit (1981a) first writes down the equation of motion normal to the surface of a
flux tube which has arbitrary shape as

dav A B2 A B2 A A
9(;)l=—[lxv(p+m)] X 1+§k+p(1><g)><1,
...(5.9)

where 1 is a unit vector along the axis of the tube, k is the curvature vector which
is normal to the tube and possesses a magnitude equal to R-! (where R is the local
radius of curvature of the tube), g is the acceleration due to gravity and p and B are
the pressure and magnetic field inside the tube. For an isothermal atmosphere in a
vertical flux tube Spruit (1981a) obtains the dispersion relation

w? = (16k*H?* + 1) wz . ...(5.10a)
Here

2
w

ol =& (2B:L 1) - (%ﬂr 1), ...(5.10b)

where w, is the acoustic cut-off frequency and B is the ratio of gas to magnetic
pressure of the equilibrium state. Thus it is seen that we can be much less than w,
for moderate fields. A further extension of this work can be seen in Spruit (1981b)
where one more wave, viz. the torsional Alfven wave, is described. The torsional
Alfven waves cannot be excited by motions in the fluid surrounding the tube. If
they are indeed present, they represent unwinding of twists stored in the field before
its emergence. The transversal waves are easily excited. These would be damped
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by MHD radiation emanating from the tube, if the tube were less dense than the
surroundings, but not if it were denser.

The transversal waves of Spruit (1981a, b) may also have their counterparts in
surface waves, for example the Alfven surface waves of Uberoi and Somasundaram
(1980). Hence a study of such waves is all the more important if indeed the cut-off
frequency is well below the acoustic cut-off frequency. However, Spruit’s estimates
of the energy delivered to the chromosphere and the corona must await the results of
calculations based on wave propagation in finite tubes before they can be accepted.
The reason is that finite tube analysis for longitudinal waves shows that the tube
waves correspond to a limiting case of interface waves confined to the rim of finite
tubes [Wilson 1980; see also equation (3.4) of this article]. In this case the energy
is delivered only at a vanishingly small fraction of the tubes’ cross-section. The
same kind of behaviour may hold true for transversal tube waves as well. Thus the
estimates based on the thin tube approximation may be grossly in error.

For the sake of completeness, mention must be made here of the possibility of
convective instability in thin flux tubes leading to either intensification of the field or
it dispersal. This was independently arrived at by Webb & Roberts (1978) and
Spruit (1979). Spruit & Zweibel (1979) have some numerical calculations of the
growth rates. Even here the criteria for onset of instability in finite tubes may be
different from that for a thin tube.

6. Non-linear calculations

The work described so far was based on linear analysis. The quantitative estima-
tion of power delivered can be obtained only through non-linear calculations. In
the case of stratified fluid without discontinuities, several such calculations are
available (see e.g. Ulmschneider 1971; Ulmschneider et al. 1977, 1978) and are
in good agreement with the gross structure of the solar atmosphere. However,
the effect of discrete magnetic inhomogeneities on these calculations is still
unknown. From a totally different angle, Hasan & Venkatakrishnan (1980,
1981) and Venkatakrishnan & Hasan (1981) have considered the non-linear effects
of tube motions on the gas within the tubes. They have essentially studied the flow
of gas along tubes whose shape is a given function of time. One result that emerges
from these calculations is that a steady flow is generated along the field in the
direction of increasing amplitude of the lateral motions. Such a flow is induced
because of the centrifugal acceleration on the gas associated with the field line when
it is constrained to move on a curved path. The curvature depends on the gradient,
along the field, in the amplitude of motions normal to the field. Such an accelera-
tion is a purely non-linear effect. The unidirectional nature of the force even in
the case of oscillatory motion of the tube walls makes it important dynamically
since even a small acceleration can produce significant flows if it persists long
enough. The effect of such forces on wave propagation in and stability of the tubes
is yet to be considered.

7. Observations

Observations of waves on the sun date back to the observations of “wiggly line”
spectra (Richardson & Schwarzschild 1950). However, direct observations of waves
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within magnetic elements are extremely demanding of instrumental stability and
resolution. Since magnetic elements cannot be resolved spatially at present their
oscillation properties may provide a valuable diagnostic to physical conditions
within the elements. One such diagnostic technique to measure the size of unresolved
magnetic elements was suggested by Venkatakrishnan (1979). For this method to
work, one requires a large abundance of high frequency sound waves to be incident

on the tubes for large times (~ 30 min). The ‘seeing” must also be excellent
during these 30 min.

A method to measure gas velocities within tubes has been devised (Giovanelli &
Ramsay 1976) which was used by Giovanelli & Brown (1977) and subsequently by
Giovanelli et al. (1978) to study motions in isolated magnetic elements as well as in
plage region magnetic points. This method is based on the Zeeman splitting of a
spectral line into two circularly polarised components in a longitudinal magnetic
field. The separation depends on the field strength but there is one wavelength in
the line profile where the intensities of the tWwo components are identical viz. the
centre of the Zeeman pattern. The latter will be displaced by a Doppler shift if
there happens to be a longitudinal motion of the gases in the tube. If we can
locate this wavelength, we have a measure of the gas velocity averaged over the
magnetic elements. The main results of such observations were as follows:

1. Magnetic elements in each window studied within plage regions and in quiet
non-plage regions exhibited velocity oscillations. The general pattern was the same
as that of the well known oscillations in non-magnetic regions. In all the spectral
lines observed, stronger oscillations occurred in pulses between which the amplitude
was smaller. The period of the oscillation in all lines except He was 5 min. In He
the period was 3 min. No similar oscillations in magnetic field strength were seen.

2. All the waves observed seemed to be propagating with a widely scattered
range of time delays. There was even a time delay between a disturbance within
the tube and exterior to the tube at approximately similar heights. There was a

systematic increase of amplitude with height but this amplitude did not reach shock
strengths.

3. There was no precise one-to-one relation between motions within and exterior
to the tube. However, the motions behaved more or less in the same way.
Giovanelli et al. (1979) attribute this to either strong interaction of tubes with their
environment or to a common mechanism for the excitation of these waves.

The absence of magnetic oscillations around 5 min period is contrary to the
observations of Severny (1971). The absence of observations of shocks might be
due to either radiative damping or presence of surface shocks in thin rims near the
boundary of the tube which cannot be detected in the data averaged out over the
cross-section. '

In a different observation, Giovanelli (1975) saw two kinds of wave patterns along
fibrils. One consisted of velocity disturbances accompanied by intensity changes
propagating at a phase speed of 70 km s~1. The other consisted of a drift at sonic
speeds of intensity patterns unaccompanied by line-of-sight velocity variations. It
would be tempting to identify the first mode with transversal tube waves and the other
with longitudinal tube waves. However, it would be premature to contemplate such
identifications before one understands wave propagation along finite tubes.
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An indirect way of estimating unresolved velocity fluctuations within tubes is to
study the broadening of spectral lines. In fact, the width of the Can K line seen
within network regions was found to be narrower than that seen outside the network
(Bappu & Sivaraman 1971). Though one cannot infer anything about the dynamical
state of the gas within these regions until line formation mechanisms are fully
understood, spectroscopy of these tubes may well open a promising line of enquiry.

8. Summary

It is seen that tubes—or more precisely discontinuties in magnetic field—can support
various new wave modes that may be able to propagate at frequencies at which
sound waves cannot. However, the majority of work reported in the literature is
based on the thin tube approximation which may give results that are misleading
both qualitatively and quantitatively. There is great scope for further study of wave
propagation within tubes, especially within finite tubes. To understand the signatures
of such waves more attention must be paid to line formation within tubes.
Observationally, spectroscopy of these tubes would greatly aid the construction of
realistic thermodynamic models. Needless to say, more observations of the type

- attempted by Giovanelli et al. (1978) are necessary.
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