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Black holes in nonflat backgrounds: The Schwarzschild black hole in the Einstein universe
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As an example of a black hole in a non-flat background a composite static spacetime is constructed. It
comprises a vacuum Schwarzschild spacetime for the interior of the black hole across whose horizon it is
matched onto the spacetime of Vaidya representing a black hole in the background of the Einstein universe.
The scale length of the exterior sets a maximum to the black hole mass. To obtain a non-singular exterior, the
Vaidya metric is matched to an Einstein universe. The behavior of scalar waves is studied in this composite
model.
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I. INTRODUCTION Schwarzschild black hole in the background of the Einstein

universe, which we may call the Vaidya-Einstein-
For more than three decades now, black holes have begyy, arzschildVES) spacetime. This allows us fo study this

investigated in great depth and detail. However, almost alkpacetime in considerable detail as well as investigate a typi-
these studies have focused on isolated black holes possessigl physical phenomenon, namely the behavior of scalar
two basic properties: namely, time independence charactewaves in this spacetime as the background.

ized by the existence of a timelike Killing vector field and  The rest of this paper is organized as follows. In Sec. I,

asymptotic flatness. On the other hand, one cannot rule ome consider the line element of the VES spacetime and the
the important and, perhaps, realistic situation in which theenergy-momentum tensor. In Sec. lll, we match the metric of
black hole is associated with a non-flat background. Thighe VES spacetime to the Schwarzschild vacuum metric

would be the case if one takes into account the fact that th8cross the black hole surface. Similarly we match the VES
black hole may actually be embedded in the cosmologicafPacetime to the Einstein universe at large distances. In Sec.

spacetime or surrounded by local mass distributions. In suc Y, we investigate the behavior of scalar waves propagating

situations one or both of the two basic properties may hav natrhk': spacetime. Section V' comprises the concluding re-

to be given up. If so, the properties of isolated black holes '

may be modified, Completely Changed or retained unaltered. II. LINE ELEMENT AND THE ENERGY-MOMENTUM

Black holes in non-flat backgrounds form, therefore, an im- TENSOR

portant topic. Very little has been done in this direction. ) ) )

Some of the issues involved here have been outlined in a AS mentioned earlier, an account of Vaidya’s black hole

recent article by Vishveshwaf]. As has been mentioned in SPacetimes in cosmological spacetimes may be found in

that article, there may be fundamental questions of concepf@efS-[2] and[3]. By setting the angular momentum to zero

and definitions involved here. Nevertheless, considerable if? the Kerr metric we obtain the line element of the

sight may be gained by studying specific examples even i§c_hwarz.schlld spacetime in the background of the Einstein

they are not entirely realistic. In this regard the family of universe-

spacetimes derived by Vaidya], which is a special case of 2m 2m -1

Whittaker's solutiong4], representing in a way black holes ~ ds’=[ 1— T dt?— [ 1- 7 dr?

in cosmological backgrounds have been found to be helpful. Rtar(— Rtar(—

Nayak and Vishveshwaia] have studied these spacetimes, R R

concentrating on the geometry of the Kerr black hole in the

background of the Einstein universe, which dispenses with —R? sir?

asymptotic flatness while preserving time symmetry. In the

present paper, we specialize to the simpler case of th@here m is the mass and the coordinates range from 0
<r/R<, O<f=<m and O< ¢=<2. In the limitsm=0 and
R=00, we recover respectively the Einstein universe and the

rﬁ)[da%r sirf e d¢?] (2.2

*Email address: nayak@iiap.ernet.in Schwarzschild spacetime. The paramd®es a measure of
"Email address: m.a.h.maccallum@qmw.ac.uk the cosmological influence on the spacetime. As the space-
*Email address: vishu@iiap.ernet.in time is static, the black hole is identified as the surface on
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which the time-like Killing vector becomes null, i.eggg

=0 above, which is the static limit and the Killing event

horizon. The black hole is therefore given by

r
2m=Rtar{—

=1k (2.2
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Ill. MATCHING TO THE SCHWARZSCHILD VACUUM
AND THE EINSTEIN UNIVERSE

In this section we shall match the VES spacetime to the
Schwarzschild vacuum spacetime on one side and to the Ein-
stein universe on the other. The possibility of matching to the
Schwarzschild vacuum at the black hole surface, without a

We shall now work out the energy-momentum tensor for thisSurface layer or shell, is strongly indicated by the fact that
metric. The components of the Einstein tensor are given byne Einstein tensor of the VES spacetime goes to zero on the

2m

B Rtar{r/R))' 2.3

1 1
G}=G§=G§=§Gg=§<1

The Einstein field equations, including the cosmological
term A for generality, although it could equally well be con-

sidered to be included ip andp below, are given by
1
Rap— Egasz KTapT AQap, (2.9

wherex=8mG/c? and the Latin indicea,b range from 0 to
3 (Greek indicesu,v=1-3).

The energy-momentum tensor is taken to be that of a

perfect fluid,

Tap=(p+P)Ualp= PYap, (2.9
u? being the static four velocity:
il 2.6
U =——= 0" .
V900
Then densityp and pressure are given by
_3 1 —Zm Al 2
P= R2\ " Rtan(r/R)) 2.7
e P LU I 2.8
P= R\ "7 Rtanr/R) < 28

surface. We shall show that this is indeed possible. In order
to do this, we will first write the line element in Kruskal-like
coordinates, among which we will find admissible coordi-
nates in which the matching can be carried out, so that the
requirement$5] become simply the continuity of the metric
and its first derivative.

The Kruskal form of the VES line element is arrived at by
the following transformations:

2 r r
* — — inl —
4m2+R2:r+2m|n 2mcos(R +Rsm(R)”,
(3.1
u=t—r*, ov=t+r*, (3.2
0= u 4m?+R? a3
=—€X am R? ) (3.3
I v Am?+R? 2z
=eX m R2 ( )
Then we obtain
ds?= 4mRe \:_ 1 e~ "2mgJdv
am?+R?/ Rsin(r/R)
—[Rsin(r/R)]?d02. (3.5

The Kruskal line element for the Schwarzschild vacuum

The behavior ofp andp can be easily ascertained from the spacetime,

above equations.

A>0. We find thatp,p<0 in some region outside the

black hole, violating the weak energy condition.

A=<0. In this casep>0 butp<0 everywhere outside the
black hole and tends to zero on it. Howeverip=0
thereby satisfying the weak energy condition.

For convenience, we také=0. Then

p+3p=0. 2.9

1 PN
ds?= 1an§r—e*fs’2msdu dv—r2dQ?, (3.6

S

may be recovered from E¢B.5) by the limitR=c. As usual

the Kruskal coordinates for the Schwarzschild space cover
the whole maximally extended spacetime and not only the
region where the coordinatésr are valid. Now we proceed

to carry out the matching at the horizons.

This suggests that the spacetime is a special case of the so- e horizon of the VES metric is at=ro where 2

lutions obeying the conditiop+ 3p=constantdiscussed by
Whittaker[4], and it is easy to check that this is 6bis the
caseB=G=\=0, c=-2m, «=1/R, with the time coordi-
nate scaled so that=1, in Whittaker's notation

Thus the behavior of the energy-momentum tensor is reametrics

sonable, since in the Einstein universe itself we hpveD,
while p andp satisfy the weak energy condition.

=Rtan(ry/R). To match to the Schwarzschild metric at the
horizon the angular variable part requiresi= R sin(r/R).
Let us user’' =Rsin(/R) as the radial variable in the VES
region. We can rescale both thé and V of each of the
by constant factors /e and
4mRe "M/ (4m?+ R?) respectively, giving new coordi-
natesU, V, to reduce the metrics to the forms
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ds?= i,e“o*f)’ZmdUdv—(r')ZdQZ, (3.7 30 10
r 25}
ds?= rise@ms—'s)/zf"sdu dv—rZdn?. (3.9 20} R
15}

Then we see the metric is continuous if we identifyandr’
at the future horizonU=0, r’'=rs=2m;=Rsin(y/R), r 10}
=ro. To deal with derivatives, start with

Vacuum

amp \* AR 59 o
=|———=] e exp 2————r . : ]
4m?+R? AmR? 0 2 4 6 8 10
on the VES side. so that. there FIG. 1. Plot ofm as a function ofm, for different values oR.
AmR? | Am?+R? | dr* 1 dr 1
=2| ———|e "Mexpg 2————r* ——= == 3.12
Am2+ R2 AmMR2 du 2mgrr 2mcogrg/R)  Rsin(rg/R)
(3.10
and therefore because at the horizom2= R tan(ry/R). This completes the
matching at the future horizon. Clearly a similar matching
a’ dr dr ar* with the roles ofU andV reversed applies at the past horizon
— in a Kruskal picture.
du dr dr* du We may note that matching the metric componggj
APt B2 yields the relation between the Schwarzschild vacuum mass
m*+ .
_ _ ro/2m mg and the VES mass:
cogr/R) (1 —Rtar(r/R)> Ve “emR
2m 21-1/2
4m?+R? m=mg 1—( Rs> (3.13
Xexp —2 r*

AmR2
This clearly exhibits the influence of the cosmological matter

As r—r the product distribution on the bare black hole mass. Figure 1 shows
S plots of m as a function oing for different values oR. We
(1_ 2m exp( _24m +R r*) note that In,<R, so the length scale in the exterior puts a
Rtanr/R) AmR2 bound on the black hole mass, in a way which may be analo-
gous with the bound found i[6] for the mass of a black hole
approacheg ™ "92"/2m, and we get in an Einstein space.

It is also worth emphasizing that a consequence of this
dr’ 4m2+ R2 matching is that all the horizon properties, such as the sur-
au- cogrqy/R)V 5 face gravity, are necessarily the same as those of the usual

16mmR Schwarzschild black hole. Whether this is reassuring or dis-
appointing is a matter of opinion. It does not imply, however,
R 4m?+R? that properties which depend on the behavior in the exterior
=V JAm?+ R? 16m mR2 region, such as the behavior of waves, will be the same.

To investigate such behaviors we need a well-behaved
non-vacuum exterior. Unfortunately, formulés?7) and(2.8)

/ 2 2
_ 4m°+R i _ v show that the energy density and pressure of the VES space-
2mR  8ms  16m? time blow up asr/R— 1 and this is in fact a naked singu-

larity. To remove it we try to match to the Einstein universe
which is obviously the same as forddU in the Schwarzs- [which, remember, is a limit of E¢2.1)]. It is easy to see
child metric. Now the derivatives of the metric coefficients that the best hope of doing so without a surface layer is at
will match if r/R= /2, where we could match both the angular part of the
metric and its derivative. In fact, at this radius the VES line
1 dr 1 1 element reduces to
T — == (3.1)
2mgrr  2mg  Rsin(ry/R)
2_ 42 2 2ai r 2
at the horizon, butiddr’=1/cos(/R) and consequently ds"=dt"—dr"=R sz( R)dﬂ (319

024020-3



NAYAK, MacCALLUM, AND VISHVESHWARA PHYSICAL REVIEW D 63 024020

which is the line element of the Einstein universe. The metric

components of the two spacetimes automatically match, \

without any change of coordinates, and the first derivative of 0.02 ~

the angular parts on both sides vanishes. But the first deriva ~ Zemn

tive of thett parts is discontinuous, thereby giving rise to a 0 —

surface distribution of matter. The components of the corre-

sponding energy-momentum tensor may be computed fol-o.02

lowing Mars and Senovilld5]. We find that this leads to a VES

trace free tensor. ~0 .04

More specifically, the jump in the fundamental form of

ther =const surfaces is 0 06 Einstein

[Ktt]I—m/RZ (3.19 0 2 4 6 8 10

) FIG. 2. Plot of effective potentia¥/(r) of VES spacetime for
and the non-zero components of thdunction parts of the  r/m=4 andI=0. For comparison the effective potentials of the

curvature and Ricci tensor are given by vacuum Schwarzschild spacetinjdashed ling and the Einstein
universe(dotted ling are also shown.

Qi,=—mR?, R;=R,=m/R% (3.1
2
Such a layer might be interpreted as a domain wall. d uz +[w?=V(r)Ju=0. (4.4
We now have a composite model consisting of a vacuum dr*
Schwarzschild black hole matched onto the VES spacetime ] ) .
which is itself matched to the Einstein universe. The effective potential that controls the propagation of the

scalar waves is given by

IV. SCALAR WAVES
2m I(1+1)
L the last section we constr_ucteq a model for a black hole V(") ={ 1~ Rtan(r/R)/| R2sir?(r/R)
in a non-flat background. The interior of the black hole con-
sists of the Schwarzschild vacuum. The exterior is the VES om 1 om
spacetime matched onto the Einstein universe. One can ex- + == - —2( 1- m) .
plore black hole physics in the exterior and compare it with Risir’(r/R)tan(r/R) R
the effects one encounters in the case of the usual isolated (4.5

black holes. As an example of such possible studies, we shall
consider some properties of scalar waves propagating in this We shall now discuss a few aspects of the behavior of the
spacetime. Other phenomena occurring in this spacetimecalar waves as reflected by the nature of the effective po-
such as the classical tests of general relativity and the gedential.
desics, have been investigated by Ramachandra and Vish- We have drawV/(r) in Fig. 2 forl =0. The figure shows
veshward7]. the corresponding effective potential for the vacuum
Because of the time and spherical symmetries of thé&schwarzschild exterior also which can be obtained by setting
spacetime, the scalar wave function may be decomposed @&=. Both curves start from zero at the black hole and go
_ through a maximum. Thus both potentials possess potential
b=e"“"R(r)Y,M(6,¢). (4.2 barriers. As in the case of the Schwarzschild vacuum, now
too waves can be reflected at the barrier while the transmitted
The limits of the radial coordinate are given by part is absorbed by the black hole. On the other hand,
Rtan(r/R)=2m to (r/R)= with the VES spacetime ex- whereas the vacuum potential goes asymptotically to zero, in
tending fromRtan(r/R)=2m to r/R= #/2 and the Einstein the present case the potential becomes negative/Rit

universe fromr/R= /2 to 7. We set the radial function = /2 and continues as a constant, i.e.]1/R?, in the Ein-
stein universe up to/R= 7. The fact that the effective po-
u(r) tential is negative as above raises the possibilitw®being
R(H)==———=- (4.2 : : . S :
Rsin(r/R) negative as well. This would be equivalentddeing imagi-
nary, thereby giving rise to exponential growth with time of
and define the scalar wave function. This would mean instability of the
model spacetime against scalar perturbations. However, one
. dr can see that negative values of are ruled out by the
dr T om (4.3 boundary condition at/R= 7. In the Einstein universe sec-

1- Rtan(r/R) tor the Schrdinger equation reduces to
2
Then we obtain the Schdinger equation governing the ra- d’u w2t 1 U=0. 4.6
dial function ar*2 R2
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H comparison and contrast to isolated black holes. A compre-

0.25} Einktein hensive investigation of this problem would be a formidable
,’ task indeed. We have confined ourselves in this paper to a

0.2} ! specific example that relaxes the condition of asymptotic
/ flatness while preserving time-symmetry. The starting point

0.15 3 here is the static black hole in the Einstein universe which
belongs to the family of solutions presented by Vaidya. In

0.1 this spacetime the black hole is well defined as the Killing
horizon. However, the nature of the interior of the black hole

0.05

is not entirely clear. Furthermore, it is not obvioagriori
am whether the exterior can be matched smoothly to the
Schwarzschild vacuum across the black hole surface. We
have shown that this is possible by carrying out this match-
FIG. 3. Plot of effective potentia¥(r) for R/m=4 andl=1. ing using Kruskal coordinates in the two regions. Similarly
we have matched the spacetime to the Einstein universe at
We note that in the Einstein universe, we have=r. Fur-  the other end. This provides a composite model of a black
thermore, since R=u(r)/Rsin(/R), the function u hole in a non-flat background.
~ sir[(w2+1/R2)1f2r] has to go to zero faster than sii) In the spacetime considered above, different phenomena
at 2”52 . This boundary condition requires  that may pe studied and compared to their counterparts in the
|(2R w”+1)"9 be an integer greater than 1, and thence thaf 4y itational field of an isolated Schwarzschild black hole.
” be positive. Therefore the spacetime is stable against SCs an example, we have briefly discussed the behavior of

lar perturbations. scalar waves. The spacetime being considered proves to be

This is true in the case of vacuum Schwarzschild SPaCeaple against scalar perturbations as is the Schwarzschild

time as well as the Einstein universe. However, the stability . . : . .
vacuum exterior. This is true of the Einstein universe as well.

against gravitational perturbations is a different matter alto-

gether. Whereas the Schwarzschild vacuum exterior is Stablg!ovyever, whergas the Schwgrzschlld s'pacejume s staple
the Einstein universe is n¢8]. Whether the combination of against gravitational perturbations, the Einstein universe is

the two spacetimes is stable, unstable or conditionally stablBCL- [t would be quite interesting to see whether the space-
is an intriguing open question. time we have considered, which involves both of the above

For >0, the equivalent potential has the additional term®N€S, is gravitationally stable or not. Even if the model pre-
|(1+ 1)/Rsin(r/R). sented here is unrealistic, it should provide a testing ground
We sketchV(r) for =1 in Fig. 3. Once again the poten- for investigating external influences on the otherwise isolated

tial goes to zero at the black hole and possesses a barriBlack holes.

region. The additional term goes to infinity at/R)= 1,

thereby behaving like a centrifugal barrier commonly en-

countered in the scattering phenomenon. The radial function ACKNOWLEDGMENTS
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V. CONCLUDING REMARKS
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