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Abstract. We study the relaxation of a compressible plasma to an equili�

brium with flow. The constraints of conservation of mass, energy, angular

momentum, cross�helicity and relative magnetic helicity are imposed.

Equilibria corresponding to the energy extrema while conserving these

invariants for parallel flows yield three classes of solutions and one of

them with an increasing radial density profile, relevant to solar flux tubes

is presented.
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1. Invariants of the system

There is a remarkable concentration of the magnetic field of the Sun into isolated

flux tubes at the visible surface, and also in the form of coronal loops, where the field

strengths are of the order of 1500 G. It is our aim to seek equilibrium structures

appropriate to these flux tubes, using principles of plasma relaxation. The subject of

turbulent relaxation of a plasma has been examined by several workers with the aim

of predicting a set of equilibria after the plasma has passed through a disruptive phase

(e.g. Woltjer 1960; Taylor 1974; Rieman 1980). The results have been applied to

fusion devices as well as to astrophysical plasmas (krishan 1996; Finn & Antonsen

1983). For a review of the utility of the helicity concept see Brown et al. (1999).

Taylor (1974) hypothesized the existence of a global helicity invariant while the

system would resistively relax to a state of minimum energy which would be topo�

logically inaccessible in perfect MHD. Berger & Field (1984) allowed for open field

lines in the volume and constructed a relative helicity invariant which has the

equivalent form (Kusano et al. 1985)

HR=H(Bc,Bc)+2H(P,Bc),    (1)

where Bc is the closed field in the volume under consideration and P  represents the

open field lines in the volume, whose self�helicity is taken to be zero. By taking a

variation of this expression, we find, using δH(B) = 2 ∫d3
xδB . A, that

(2)
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where we have employed the fact that δAp = 0 and δP = 0 as Ρ is determined

completely by the fixed boundary conditions (there is an alternate route in the

Appendix A of Berger (1984)). We emphasize the result that the variation of the

relative helicity is equal to the variation of the helicity itself.

Here, we investigate a three dimensional model of relaxed states, drawing on the

framework of Finn & Antonsen (1983), who assume ideal MHD, but with large

thermal conductivity. This has two consequences; the cross�helicity, · B,

an invariant in ideal MHD remains conserved in the limit of large thermal conduc�

tivity and it turns out, under the same assumptions, that the entropy functional,

is also an invariant. Note however that adiabaticity is not

assumed to allow for entropy change during the relaxation process.

We consider the usual system of MHD equations with the energy equation suitably

modified to include large parallel thermal conductivity. It can be shown, in spite of

parallel heat flux, due to the boundary condition Β · n  = 0, that the total energy,

is conserved. In all H
R
, K, S, and the total mass,

xr, and Ε are the' global invariants of the system. The entropy functional

increases for finite thermal conductivity and is invariant, if it is infinite. The standard

variational method of extremizing E* = Ε — ½ µΗ
R
 — αK—nS'— δM yields the follow�

ing equations

where In n
0
 = m δ/Τ + (In (Τ/mγ)–γ)/(  γ�1)

2. Analysis of the parallel flow

We study the parallel flows by introducing the parameters, ν = n /no, v
1
 = 4πα

2
/

(mn
0
), b = B/Bmax, ε0 = v1B2

max / (8πn
0
Τ) and µ

0
 = µR, where R is the length scale

in the problem and Bmax is the maximum field strength. The system then reduces to

s × [(l–v 1/v)b] = µ0b,

v2ln ν = –ε0b
2
.

There are two branches evident from the above equations: for ε0 > 1/ (2e), there are

no solutions and for ε
0
 < l/(2e), two solutions exist. The solution with ν < 1/√ e

has ν monotonically decreasing with b
2
 and vice�versa for ν > 1/√ e. The Taylor

state, s × B  = µB  is found in the limit v1→ 0. For a fixed µο, the equilibria exist

only in the restricted part of the ε0 – v1 plane, where solutions with ν < l/√ e called

class I solutions and solutions with ν > l/√ e can be distinguished as class II and

class III by the sign of dB
2
/dp. So, there are three classes of solutions possible; class I

(7)

(8)

(3)

(4)

(5)

(6)
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with radially decreasing density and magnetic energy, class II with radially increasing

magnetic energy but a decreasing density profile and finally, class III with increasing

density and decreasing magnetic energy profile.

In cylindrical symmetry, the equations reduce to

(9)

(10)

where σ = 1 — v1/v. The solutions were obtained by solving the coupled non�linear

equations (9�10) with the constraint, (8), and the boundary conditions, bφ (0) = 0 and

b
2
= 1 at the appropriate boundary (r/R = 0 or 1) decided by the solution class. A

point to note is that by forcing bφ (1) = 0 , one can ensure that no net current, I z, is

carried by the flux tube and B
max

 can then be consistently determined. However, this

solution can also be obtained by enforcing b
2
 = 1 at 1 or 0 (depending on the solution

class, whether it is increasing or decreasing) and truncating the solution at the point

where bφ = 0, with the value of µ scaled appropriately. Zero net current flux tubes are

qualitatively similar to the flux tube with carrying finite current.

3. Application to solar flux tubes

Class III solutions (see Fig. 1) with hollow profiles, holds for ν < 1/√ e, or if the

condition ν In (ev
2
)> v1 holds. Therefore, n < 0·6n

0
 or the Mach number of the

flow, Μ > 0·5. Typical solar flux tubes (ρ ~ 3 × 10-7 g/cc, β ~ 1, p ~ 1·4 × 105

dyn/cm-2) with an underlying ultra subsonic flow, satisfy the condition for class III
solution. For stable flux tubes of Β ~ 1500 G and v  ~ 3 km/sec, the parameters are of

the order, v
1
 ~ 0·16, ε0 ~ 0·1, indicating that the flow is of class III. The restricted

types of equilibria, taking into account open field boundary conditions, which may be

present in a plasma immediately after disruptive or turbulent process, have been

discussed here. The parameter range for the solar flux tubes (in the photosphere)

indicate that the radial density need not be peaked but can have a hollow (increasing

density) profile which pertains to class III solutions. The validity of this analysis

depends upon the thermal conductivity being dominant in the turbulent process.

Figure 1. Class III  solution with decreasing Β and increasing density for the choice of
parameters, v

1
 = 0·16, µ = 3 and ε

0
 = 0·1.
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The second variation of E* indicates that the flows are stable if τ > 0. Further, we

plan to include other invariants like angular momentum and explore axisymmetric

systems and other geometries. The predictions can be tested by numerical simulations

and future observations.
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