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Abstract

Due to their weak interactions, neutrinos can polarize a medium
and acquire an induced charge. We consider the Cherenkov radiation
emitted by neutrinos due to their effective electromagnetic interactions
as they pass through a polarizable medium. The effect exists even
for massless, chiral neutrinos, where no physics beyond the standard
model needs to be assumed.

The study of the electromagnetic properties of neutrinos, in vacuum as
well as in a medium, has been a subject of great interest over the years be-
cause of its intrinsic interest and also because of its potentially important
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consequences in a variety of physical, astrophysical and cosmological con-
texts. Recently, several authors have considered the Cherenkov radiation
emitted by neutrinos as they pass through a medium [1], and also the tran-
sition radiation produced when they cross the interface between two media
with different dielectric properties [2, 3]. In these works, the authors have
assumed that the neutrino has an intrinsic magnetic and/or electric dipole
moment (and hence also a mass), which are responsible for the electromag-
netic interactions with the medium.

In a paper by two of the present authors [4], it was pointed out that
neutrinos acquire an induced charge as they propagate through a medium as
a consequence of their weak interactions with the background particles [5].
That observation was based on the 1-loop calculation of the effective electro-
magnetic vertex of the neutrino, which was performed using the methods of
“Quantum Statistical Field Theory”1 [6]. The effective charge was found to
be nonvanishing even for a massless neutrino, where no physics outside the
standard model needs to be assumed.

Here we point out that, because of the induced electromagnetic inter-
actions of the neutrinos, they can emit Cherenkov radiation (and transition
radiation in the case that they cross the interface between two media), even if
they are massless and do not have intrinsic electromagnetic dipole moments.
In this article we consider these effects, following a method similar to that
of Ref. [4], and using the results of Ref. [6] as the basis of the calculations.

1 Kinematics

Our aim is to calculate the rate for the process

ν(k) → ν(k′) + γ(q) , (1)

where, in the frame where the medium is at rest,

kλ = (ω, ~K), k′λ = (ω′, ~K ′) , (2)

denote the initial and final momenta of the neutrino, and

q ≡ k − k′ = (Ω, ~Q) (3)
1 We prefer this name to the more often used “Finite Temperature Field Theory”, since

the methods apply also for zero temperature but finite density.
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denotes the momentum of the emitted photon. Since we are interested in the
contribution to the Cherenkov radiation due to the effective ννγ interaction,
for our purposes it is sufficient to consider the case in which the neutrinos are
strictly massless in the vacuum. Thus, we assume that the on-shell conditions
for the neutrinos is [7]

k2 = 0, k′2 = 0 . (4)

Using k′ = k − q, the second equation can be rewritten in the form

cos θ ≡
~K · ~Q

KQ
=

2ωΩ− Ω2 + Q2

2KQ
. (5)

Since −1 ≤ cos θ ≤ 1, this implies

ωΩ− KQ ≤ 1

2
(Ω2 − Q2) ≤ ωΩ + KQ . (6)

It is easy to see that these conditions cannot be satisfied for Q < Ω. Thus,
we must have

Q > Ω (7)

in which case the right inequality of Eq. (6) is automatically satisfied, while
the left inequality implies the subsidiary condition

KQ − ωΩ > 0 . (8)

Since we are assuming the vacuum on-shell relation for the neutrino (ω = K),
the second condition is equivalent to the first one.

The condition in Eq. (7) shows that for the photon we cannot take the
vacuum disperstion relation. Rather, it is important that we take into ac-
count that its energy-momentum relation in an isotropic medium is given by
the solutions of

Q2

Ω2
= εt(Ω, Q) ± εp(Ω, Q) (9)

for the transverse modes, and

εl(Ω, Q) = 0 (10)
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for the longitudinal one. The functions εt,l,p are the components of the di-
electric response function of the system, which are related to the components
of the photon self-energy by [8]

1 − εt = πT /Ω2 , 1 − εl = πL/q2 , εp = πP /Ω2 . (11)

πT,L,P are defined by writing the photon self-energy in the form

πµν(q) = πT Rµν + πLQµν + πP Pµν . (12)

with

Rµν = gµν −
qµqν

q2
− Qµν , (13)

Qµν = − q2

Q2

(

vµ − Ωqµ

q2

)(

vν −
Ωqν

q2

)

, (14)

Pµν =
i

Q
ǫµναβqαvβ , (15)

where vµ = (1,~0) is the center-of-mass velocity of the medium. Several useful
properties of the tensors R, Q and P are given explicitly in Ref. [8], to which
we refer the reader. The solutions to Eqs. (9) and (10), which we denote by
Ωs(Q), give the energy-momentum relation for the three possible polarization
modes of the photon. For non-chiral media πP arises only through parity
violation in weak interactions and hence must be small. Therefore, in what
follows, we will neglect its effects, thereby assuming that the two transverse
degrees of freedom of the photon are degenerate [9].

For future purposes, it is useful to recall that the Eqs. (9) and (10) for
the dispersion relations are equivalent to

Ω2
t,l − Q2 = πT,L . (16)

In the literature, it is customary to use the indices of refraction, which is yet
another way of experssing the dispersion relations. Introducing the functions

nT,L(Ω, Q) =

√

1 − πT,L

Ω2
, (17)

solving Eq. (16) is then equivalent to solve

nT,L = Q/Ωt,l . (18)
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The indices of refraction are defined by

nt,l ≡ Q/Ωt,l(Q)

= nT,L(Ωt,l, Q) , (19)

so that the condition of Eq. (7) is expressed as nt,l > 1. Eq. (9) implies the

familiar relation nt =
√

εt(Ωt(Q), Q).

2 The ννγ vertex

In the following we follow closely the arguments and results given in Ref. [4].
We define the ννγ amplitude by

M = −i
√

Nsǫ
(s)∗
µ (q)u(k′)Γµu(k) , (20)

where ǫ(s)
µ (q) is the polarization vector of the emitted photon and the index

s indicates its polarization, with s = 1, 2 for the two (degenerate) transverse
modes and s = 3 for the longitudinal one. The factor

√
Ns is necessary

because the normalization of the photon wavefunction in the medium is not
the same as in the vacuum[10]. Assuming that the polarization vectors are
normalized such that

∑

s=1,2

ǫ(s)
µ ǫ(s)

ν = −Rµν (21)

and2

ǫ(3)
µ ǫ(3)

ν = Qµν , (22)

where Rµν and Qµν have been defined in Eqs. (13) and (14), one obtains [8, 11]

Nt,l =

(

2Ω
∂

∂Ω
(Ω2 − πT,L)

)∣

∣

∣

∣

∣

Ω=Ωt,l

, (23)

which, in terms of the index of refraction nT,L, reads

Nt,l =
n−1

t,l

nt,l + Ωt,l

(

∂nT,L

∂Ω

)∣

∣

∣

Ω=Ωt,l

, (24)

2In Ref. [8], for example, the right hand side of Eq. (22) has an extra minus sign, which
is the correct relation for timelike photons. The present form is appropriate for spacelike
ones.
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In Ref. [4], it has been shown that the vertex function Γµ is given to
leading order in the Fermi constant by

Γµ = −
√

2GF

e
γρL(Aπµρ + Bπ5

µρ) , (25)

where L = 1
2
(1 − γ5) is the projection operator for left chirality, πµν is the

photon self-energy and π5
µν is a similarly defined function. As shown in

Ref. [4], Eq. (25) is valid in all orders of the electromagnetic interactions,
where the most general form for πµν is given in Eq. (12) while for π5

µν it is

π5
µρ = π5Pµρ . (26)

Finally, the constants A and B appearing in Eq. (25) are defined by writing
the four-fermion interaction between the neutrino and the electron in the
form

L(weak)
int = −

√
2GF [ν̄γρLν] [f̄γρ(A + Bγ5)f ] , (27)

where f stands for the electron field. In the standard model of electroweak
interactions,

A =

{

2 sin2 θW + 1
2

for νe

2 sin2 θW − 1
2

for νµ, ντ .
(28)

B =

{

−1
2

for νe

+1
2

for νµ, ντ .
(29)

3 Calculation of the rate

The emission rate for transverse or longitudinal photons in a momentum
range from Q1 to Q2 is given by

Rt,l =
1

16πω2

∫ Q2

Q1

dQ
Q

Ωt,l(Q)

(

∑

s

|M |2
)

(30)

=
1

16πω

∫ ξ2

ξ1

dξ nt,l

(

∑

s

|M |2
)

, (31)

where in the last step, we have defined a new dimensionless variable

ξ ≡ Q

ω
. (32)
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The limits of the integral in Eq. (31) are determined either by our range of
interest (e.g., we may be interested in just the optical range), or by the range
for which propagating photon modes exist. If, however, propagating modes
are available for the entire range of momenta allowed by kinematics, the total
rate will be given by

R
(tot)
t,l =

1

16πω

∫ ξmax

0
dξ nt,l

(

∑

s

|M |2
)

. (33)

Here, the upper limit of the integral should be determined from the left
inequality in Eq. (6), and is given by

ξmax =
2nt,l

nt,l + 1
. (34)

In general nt,l is a function of Q and therefore of ξ, so that Eq. (34) becomes
an implicit equation from which ξmax is determined.

Whether we are interested in the total rate or the rate in any particular
range of momenta, the result will be different for transverse and longitudinal
photons since they have different dispersion relations. Moreover, the polar-
ization sums in

∑ |M |2 will also involve different polarization states. Thus,
we carry out the calculation of the rates for transverse and longitudinal pho-
tons separately.

3.1 Transverse photons

Using the relation in Eq. (21) for the polarization sum, it then follows that

∑

s=1,2

|M |2 =
G2

F

4πα
ω2Nt

(

1 − 1

n2
t

)







(A2|πT |2 + B2|π5|2)




(

2 − ξ

nt

)2

+ ξ2





− 4ABRe π∗

T π5

(

2ξ − ξ2

nt

)}

, (35)

where we have neglected the contribution from πP , as already stated. It must
be remembered that in Eq. (35) the functions πT and π5 are evaluated at the
correct photon dispersion relation, e.g., πT = πT (Ωt(Q), Q). In order to carry
out the integral indicated in Eq. (33) we need the explicit expressions for the
functions πT and π5. We now argue as follows. For an electron gas, the
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1-loop formulas for these two functions can be inferred from the calculations
of Ref. [6]. In particular, it follows that π5(0, 0) = 0, and motivated by this
we neglect the contribution from this function in Eq. (35). Then we use

πT = −ξ2ω2

(

1 − 1

n2
t

)

, (36)

which follows from Eqs. (16) and (19), to obtain finally

Rt =
G2

FA2

64π2α
ω5Ft , (37)

where

Ft ≡
∫ ξ2

ξ1

dξ ξ4ntNt

(

1 − 1

n2
t

)3




(

2 − ξ

nt

)2

+ ξ2



 . (38)

Eq. (37) is useful for making numerical estimates since all the unknown as-
pects are contained in the single function Ft. The evaluation of this function
is involved because, as mentioned above, the refractive index is a function
of Q, and therefore of ξ. However, to obtain a rough estimate of the rates
involved, we can pretend that nt is a constant over the range of integration.
In this case we can perform the integral in Eq. (38) for any given value of nt.

As an illustration, let us consider the case of non-magnetic matter, i.e.,
materials for which the magnetic permeability µ = 1, or equivalently εt =
εl ≡ ε. For large frequencies [12],

ε(Ω) = ε∞ − Ω2
p

Ω2
, (39)

where the asymptotic value ε∞ and the plasma frequency Ωp can be expressed
in terms of the imaginary part of the dielectric function Im ε. An important
point to notice is that the condition Im ε > 0 for Ω > 0, which follows from
fundamental physical requirements [13], implies that ε∞ > 1 and, therefore,
at high frequencies, nt ≈ √

ε∞ > 1. Thus, for example, if we assume that
nt is constant at the value

√
ε∞ within the range of integration for which

ξ2 = 1 and ξ1 ≪ ξ2, Eq. (38) gives Ft = (1 − n−2
t )3 ×

(

33
35nt

− 2
3n2

t

+ 1
7n3

t

)

.

For other values of ξ2 the result can be read from Fig. 1. As can be seen
from that figure, Ft becomes negligibly small for any value of nt if ξ2 is less
than about 0.4. The function increases rapidly as the value of ξ2 increases
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Figure 1: Plot of Ft vs. ξ2 for various values of nt, assuming a constant index
of refraction and ξ1 = 0. Although we have plotted the function over a common
range of values 0 ≤ ξ2 ≤ 1.11, it should be noted that, for a given value of nt,
the allowed range of values of ξ2 is limited by Eq. (34).

and, for values of ξ2 around 1 (which implies photon energies of the order of
the incident neutrino energy), the function increases rapidly as the index of
refraction increases.

3.2 Longitudinal photons

For longitudinal photons, the formulas are analogous to those for transverse
ones, with some obvious substitutions like replacing nt by nl. There is no
polarization sum now, and we use Eq. (22). Then, using instead of Eq. (36)
the relation appropriate for the longitudinal photons,

πL = −ξ2ω2

(

1 − 1

n2
l

)

, (40)

we obtain a formula for the rate which is similar to that in Eq. (37), but with
Ft replaced by

Fl ≡
∫ ξ2

ξ1

dξ ξ4nlNl

(

1 − 1

n2
l

)3




(

2 − ξ

nl

)2

− ξ2



 . (41)
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While the expressions for the longitudinal and transverse photons look
similar, the longitudinal photons behave very different from the transverse
ones. The dependence of the frequency on the wave vector is given by Eq.
(10). It turns out that for values of the momentum of the order, or larger
than, the inverse Debye screening length λD, the real and imaginary parts of
Ωl are comparable[14]. Thus, above those photon momenta, the longitudinal
photon modes do not exist. Since λD is of the order of the Bohr radius, then
for neutrino energies of the order of an MeV we actually have, for longitudinal
photons, ξmax ∼ 10−4. On the scale of Fig. 1, this gives a negligible value of
Fl, of order ξ5

max.

4 Numerical estimates

We now estimate the number of Cherenkov photons that will result from the
formulas above. For a flux I of neutrinos, the number of Cherenkov events
occurring in a time T in a detector of volume V is given by

N =
V TIR

v
, (42)

where R is the rate calculated in the last section and v = c is the velocity of
the neutrino. This gives

Nt,l = 7.6 × 109A2Ft,l ×
(

ω

1 MeV

)5 ( V

1 m3

)

(

T

1 day

)(

I

I⊙

)

, (43)

where I⊙ is the solar neutrino flux, 6 × 1010 cm−2s−1. While it may seem
from Eq. (43) that the number of Cherenkov events increase simply as ω5,
this is not really true since Ft,l are also functions of ω implicitly through ξ.

For optical photons, the formula above predicts a very small rate since
in this range, Q2 ≈ 3 eV. Thus, for example, for a neutrino energy ω ≈
1 MeV, we have ξ2 ≈ 3 × 10−6 so that ξ remains very small over the range
of integration. Assuming that the index of refraction is of order one, Ft ∼
ξ5
2 ∼ 10−28. In general, if the upper range of Q is much smaller than ω, then

Ft,l ∼ (Q2/ω)5, so that the rate in Eq. (43) scales as (Q2/1 MeV)5.
Thus, for optical photons, the effects considered by Grimus and Neufeld

[1] seem to be much larger, at least if the neutrino has a magnetic moment
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anywhere near the present experimental limit. However, this should not be
discouraging because there are two important points to be remembered.

First, the effect considered in Ref. [1] hinges on the assumption that
the neutrinos have an intrinsic magnetic moment of order 10−10µB. On the
contrary, the effect we have discussed in the present paper does not depend
on any assumption about the neutrino properties and/or interactions beyond
those specified by the Standard Model.

Secondly, the rate calculated by us for transverse photons has a very
different dependence on neutrino energy than the rate calculated by Grimus
and Neufeld [1]. In fact, using Eq. (18) of their paper, we can easily deduce
the ratio of the two effects assuming, for illustration, that the refractive index
in roughly constant and that ξ2 ≫ ξ1:

Nt

Nmag

= 1.2

(

nt

n2
t − 1

)2

A2Ft

(

ω

1 MeV

)2
(

µ

10−10µB

)−2

. (44)

If we do not restrict ourselves to look only for photons in the optical range,
but consider instead photons with energies that span all the kinematically
allowed range, then it is easily seen that even at neutrino energies around
1 MeV, the effect we described in this paper is as important as the magnetic
moment effects even if the magnetic moment is close to its present upper
limit. If the magnetic moment is much lower, as indicated by considerations
on the neutrino flux from the supernova SN1987A [15], then of course the
effect we described is much stronger. In any case, as we emphasized before,
the present effect is predicted from the physics of the Standard Model only,
and therefore must be there. In this sense, the results of our calculations
represent a firm prediction if an experiment can be set up. In fact, any
deviation from this prediction can be taken as a serious indication that some
of the neutrino properties and/or interactions are not the ones given by the
Standard Model.
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