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ABSTRACT
General relativistic spectra from accretion disks around rotating neutron stars in the appropriate

spacetime geometry for several di†erent equations of state, spin rates, and masses of the compact object
have been computed. The analysis involves the computation of the relativistically corrected radial tem-
perature proÐles and the e†ect of Doppler and gravitational redshifts on the spectra. Light-bending
e†ects have been omitted for simplicity. The relativistic spectrum is compared with the Newtonian one,
and it is shown that the di†erence between the two is primarily a result of the di†erent radial tem-
perature proÐles for the relativistic and Newtonian disk solutions. To facilitate direct comparison with
observations, a simple empirical function has been presented which describes the numerically computed
relativistic spectra well. This empirical function (which has three parameters including normalization)
also describes the Newtonian spectrum adequately. Thus, the function can in principle be used to dis-
tinguish between the two. In particular, the best-Ðt value of one of the parameters (b-parameter) B0.4
for the Newtonian case, while it ranges from 0.1 to 0.35 for the relativistic case depending upon the
inclination angle, equation of state (EOS), spin rate, and mass of the neutron star. Constraining this
parameter by Ðts to future observational data of X-ray binaries will indicate the e†ect of strong gravity
in the observed spectrum.
Subject headings : relativity È stars : neutron È stars : rotation È X-rays : binaries

1. INTRODUCTION

X-ray binaries are believed to harbor black holes or
weakly magnetized neutron stars with an accretion disk.
The X-ray emission arises from the hot (B107 K) innermost
region of the disk. In the case of a neutron star there will be
emission, in addition, from a boundary layer between the
accretion disk and neutron star surface. Since the observed
emission arises from regions close to a compact object,
these sources are possible candidates for studying strong
Ðeld gravity.

In the standard theory (Shakura & Sunyaev 1973), the
accretion disk is assumed to be an optically thick Newto-
nian one. In this model, the local emergent Ñux (assumed to
be a blackbody) is equated to the energy dissipation at a
particular radial point in the disk. The observed spectrum is
then a sum of blackbody components arising from di†erent
radial positions in the disk. General relativistic e†ects
modify this Newtonian spectrum in two separate ways.
First, the local energy dissipation at a radial point is di†er-
ent from the Newtonian disk, giving rise to a modiÐed tem-
perature proÐle. Second, the observed spectrum is no longer
a sum of local spectra because of e†ects like Doppler
broadening, gravitational redshifts, and light bending.
ModiÐed spectra, incorporating these e†ects, but with dif-
ferent approximations, have been computed by several
authors (e.g., Novikov & Thorne 1973 ; Asaoka 1989) for
accretion disks around rotating (Kerr) black holes. These
computations conÐrm the expected result, that the rela-
tivistic spectral shape di†ers from the Newtonian one by
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around 10%. Thus, for comparison with observed data with
systematic and statistical errors larger than 10%, the New-
tonian approximation is adequate. Ebisawa, Mitsuda, &
Hanawa (1991) showed that for typical data from Ginga, the
relativistic spectrum cannot be di†erentiated from the New-
tonian disk spectrum. They also found that the relativistic
spectrum is similar in shape (at the sensitivity level of Ginga)
to the Comptonized model spectrum. Although, Ginga was
not sensitive enough to distinguish between the di†erent
spectra, better estimates of Ðt parameters like accretion rate
and mass of the compact object were obtained when the
data was compared to relativistic spectra rather than the
standard Newtonian one.

The present and next generation of satellites (e.g., ASCA,
RXT E, Chandra, XMM, Constellation-X), with their higher
sensitivity and/or larger e†ective area than Ginga, are
expected to di†erentiate between relativistic and Newtonian
spectra from low-mass X-ray binaries (LMXBs) and black
hole systems. However, as pointed out by Ebisawa et al.
(1991), the presence of additional components (e.g., bound-
ary layer emission from the neutron star surface) and smear-
ing e†ects due to Comptonization may make the detection
ambiguous. Nevertheless, the detection of strong gravity
e†ects on the spectra from these sources will be limited by
the accuracy of theoretical modeling of accretion disk
spectra rather than by limitations on the quality of the
observed data. Thus, it is timely to develop accurate rela-
tivistically corrected spectra for comparison with present
and future observations. Apart from the importance of
detecting strong gravity e†ects in the spectra of these
sources, such an analysis may also shed light on the
geometry and dynamics of innermost regions of accretion
disks.

Novikov & Thorne (1973) and Page & Thorne (1974)
computed the spectra of accretion disks around rotating
(Kerr) black holes. This formalism, when directly applied to
rotating neutron stars, provides only a Ðrst-order estimate :
the absence of an internal solution in the case of Kerr
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geometry makes it difficult to obtain, in a straightforward
manner, the coupling between the mass and the angular
momentum of the central accretor. On one hand, this coup-
ling depends on the equation of state of neutron star matter,
and on the other hand, it depends on the proper treatment
of rotation within general relativity. Equilibrium conÐgu-
rations of rapidly rotating neutron stars for realistic equa-
tions of state have been computed by several authors
(Bonazzola & Schneider 1974 ; Friedman, Ipser, & Parker
1986 ; Cook, Shapiro, & Teukolsky 1994 ; Stergioulas &
Friedman 1994 ; Salgado et al. 1994a, 1994b ; Datta,
Thampan, & Bombaci 1998). One crucial feature in all these
calculations is that the spacetime geometry is obtained by
numerically and self-consistently solving the Einstein equa-
tions and the equations for hydrodynamic equilibrium for a
general axisymmetric metric. With the aim of modeling
spectra of LMXBs, we attempt, in this paper, to compute
the spectrum of accretion disks around rotating neutron
stars within such a spacetime geometry. This is particularly
important since LMXBs are old (Population I) systems and
the central accretor in these systems are expected to have
large rotation rates (Bhattacharya & van den Heuvel 1993
and references therein).

Computation of the spectra is numerically time consum-
ing and, hence, direct Ðtting to the observed data is imprac-
tical. For the sake of ease in modeling, we also present in
this paper a simple empirical analytical expression that
describes the numerically computed spectra. As shown
later, the same expression (which has three parameters,
including normalization) can also describe the Newtonian
spectra. In particular, the value of one of the parameters
(called the b-parameter here) determines whether the spec-
trum is relativistically corrected or not. This will facilitate
comparison with observational data since only this b-
parameter has to be constrained to indicate the e†ect of
strong gravity in the observed spectrum.

The next section describes the method used to compute
the spectra. In ° 3 the results of the computation and the
empirical Ðts are shown. Section 4 is devoted to discussion
and summary.

2. SPECTRAL COMPUTATION

The disk spectrum is expressed as

F(Eob)\ (1/Eob)
P

Iob(Eob)d)ob , (1)

where the subscript ““ ob ÏÏ denotes the quantity in the obser-
verÏs frame, the Ñux F is expressed in photons s~1 cm~2
keV~1, E is photon energy in keV, I is speciÐc intensity, and
) is the solid angle subtended by the source at the observer.

As I/E3 remains unchanged along the path of a photon
(see, e.g., Misner et al. 1973), one can calculate if isIob, Iemknown (hereafter the subscript ““ em ÏÏ denotes the quantity
in the emitterÏs frame). We assume the disk to emit like a
diluted blackbody, so is given byIem

Iem \ (1/f 4)B(Eem, Tc) , (2)

where f is the color factor of the disk assumed to be inde-
pendent of radius (e.g., Shimura & Takahara 1995), B is the
Planck function, and (the temperature in the centralTcplane of the disk) is related to the e†ective temperature Teffthrough the relation The e†ective temperature,Tc \ f Teff.is a function of the radial coordinate r and for a rotat-Teff,

ing accretor and is given by (Page & Thorne 1974)

Teff \ (F/p)1@4 , (3)

where

F(r) \ [ M0
4nr

)K,r(E3 [ )K l8)~2
P
rin

r
(E3 [ )K l8)l8,r dr , (4)

is the Ñux of energy from the disk in an orbiting particleÏs
frame. The factor p is the Stephan-Boltzmann constant, rinis the disk inner edge radius, are the speciÐc energyE3 , l8
and speciÐc angular momentum of a test particle in a
Keplerian orbit, and is the Keplerian angular velocity at)Kradial distance r. In our notation, a comma followed by a
variable as subscript to a quantity represents a derivative of
the quantity with respect to the variable. Also, in this paper,
we use the geometric units c\ G\ 1.

The quantities and are related through theEob Eemexpression where (1 ] z) contains theEem \ Eob(1 ] z),
e†ects of both gravitational redshift and Doppler shift. For
a general axisymmetric metric (representing the spacetime
geometry around a rotating neutron star), the factor (1 ] z)
is expressed as (see, e.g., Luminet 1979)

1 ] z\ (1] )K b sin a sin i)

]([g
tt
[ 2)K g

tÕ [ )K2 gÕÕ)~1@2 , (5)

where the terms are the metric coefficients, and t and /gklare the time and azimuthal coordinates. In the above
expression (which includes light-bending e†ects), i is the
inclination angle of the source, b the impact parameter of
the photon relative to the line joining the source and the
observer, and a the polar angle of the position of the photon
on the observerÏs photographic plate. For the sake of illus-
tration and simplicity in calculations, we neglect light
bending. We thus write b sin a \ r sin / and

d)ob \ rdrd/ cos i
D2 , (6)

where D is the distance of the source from the observer.
The spacetime geometry around a rotating neutron star

can be described by a general axisymmetric, stationary
metric (see, e.g., Komatsu, Eriguchi, & Hachisu 1989).
Assuming the matter to be a perfect Ñuid and the metric to
be asymptotically Ñat, the Einstein Ðeld equations reduce to
three nonhomogeneous, second-order, coupled di†erential
equations and one ordinary di†erential equation in terms of
the energy density and the pressure of the high-density
neutron star matter (Cook, Shapiro, & Teukolsky 1994). An
important input in solving these equations is the equation
of state (EOS) of high-density matter comprising the
neutron star. Assuming rigid rotation, we solve these equa-
tions numerically and self-consistently for four representa-
tive EOS models : (1) Pandharipande (1979) (hyperons), (2)
Baldo, Bombaci, & Burgio (1997) (AV14]3bf ), (3) Walecka
(1974), and (4) Sahu, Basu, & Datta (1993). The values of
sti†ness parameters for each of these EOS models are
widely di†erent and increases from model 1 to model 4. We,
therefore, expect the results of our computations to be of
sufficient generality.

The solution of the Ðeld equations yield the metric coeffi-
cients, numerically, as functions of r and h. Using these
metric coefficients, it is straightforward to calculate the
structure parameters of rapidly rotating neutron stars. The
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details of these calculations are given in Datta, Thampan, &
Bombaci (1998) and references therein. The quantities rin, E3 ,and are obtained by solving the equation of motion ofl8, )Kmaterial particles within the spacetime geometry given by
the above metric (Thampan & Datta 1998 ; Bhattacharyya
et al. 2000). For our purpose here we compute constant
gravitational mass sequences whose rotation rates vary
from zero to the centrifugal mass shed limit (where gravita-
tional forces balance centrifugal forces). For realistic
neutron stars, the inner radius may be located at eitherrinthe marginally stable orbit or the surface of the neutron
star depending on its central density and rotation rate
(Thampan & Datta 1998 ; Bhattacharyya et al. 2000),
having important implications for the gravitational energy
release as well as the temperature proÐles of accretion disks.
For the procedure of calculating for rapidly rotatingTeff,neutron stars, considering the full e†ect of general relativity,
we refer to Bhattacharyya et al. (2000). These authors have
also shown (in their Fig. 2) that the di†erence between New-
tonian temperature proÐle and general relativistic tem-
perature proÐle is substantial at the inner portion of the
disk. As will be shown herein, it turns out that this is the
major reason for the di†erence between Newtonian and
general relativistic spectra at high energies.

To summarize this section, we calculate the accretion
disk spectrum using equation (1), taking the radial integra-
tion limits as and and the azimuthal integrationrin routlimits as 0 and 2n. We choose a very large value (B105
Schwarzschild radius) for rout.

3. RESULTS

To illustrate the di†erences between the relativistic and
Newtonian spectra, we show in Figure 1 the computed rela-
tivistic spectrum (solid line) and the Newtonian spectrum
(dashed line) for the same parameters. The Newtonian spec-
trum is the spectrum expected from a standard nonrelativis-
tic disk (Shakura & Sunyaev 1973), but with the intensity
and the e†ective temperature modiÐed by the color factor
(eqs. [2] and [3]). In order to isolate the di†erent contribu-

FIG. 1.ÈGeneral relativistic spectrum (solid line) for a neutron star
conÐguration with mass M \ 1.4 spin rate distance to theM

_
, )

*
\ 0,

source D\ 5 kpc, inclination angle i\ 30¡, accretion rate g s~1,M0 \ 1018
and color factor f\ 2. Dashed line : The spectrum expected from a source
with the same disk parameters but without the relativistic e†ects
(Newtonian spectrum). Dotted line : The spectrum for the same disk param-
eters but without the e†ect of Doppler and gravitational redshifts (i.e., z is
set to zero). The EOS model (2) is used here.

tions, we have also plotted in Figure 1 the theoretical spec-
trum arising from relativistic temperature proÐle, but
without the e†ect of Doppler/gravitational redshift (dotted
line). The relativistic spectrum is underluminous compared
to the Newtonian one at high energiesÈthis is primarily
because of the the di†erence in the radial temperature
proÐle (Bhattacharyya et al. 2000). The di†erence between
the two spectra is nearly 50% at 2 keV. We emphasize here
that such a high di†erence is true only when both the
spectra are calculated for the same disk parameters. If the
Newtonian spectra is calculated for slightly di†erent values
of disk parameters (e.g., accretion rate, inclination angle,
distance to the source), the average discrepancy between the
two spectra will be less (Ebisawa, Mitsuda, & Hanawa
1991).

In order to facilitate comparison with observations, we
introduce a simple analytical expression which empirically
describes the computed relativistic (and Newtonian)
spectra,

S
f
(E) \ S

o
E

a
~2@3

AE
E

a

Bc
exp
A
[ E

E
a

B
, (7)

where b, and are parameters,c\ [(2/3)(1 ] Eb/E
a
), E

a
, S

oand E is the energy of the photons in keV; is in unitsS
f
(E)

of photons s~1 cm~2 keV~1. To compare this empirical
function with the computed spectra, we use a reduced s2
technique. In particular, we deÐne a function

s2\ 1
N

;
i/1

N CS
c
(E

i
) [ S

f
(E

i
)

0.1S
c
(E

i
)
D2

, (8)

where is the computed spectra. The spectra areS
c
(E)

divided into N logarithmic energy bins. We have chosen the
range of energy used in calculating s2 to be dependent on
the location of the maximum of the energy spectrum

which is typically at 2 keV. The minimum energy(ES
c
[E]),

is set to be one-hundredth of this value (typically 0.02 keV)
while the maximum is set at 10 times (typically 20 keV). The
value of s2 is fairly insensitive to the number of energy bins ;
we take N \ 200. For each the best-Ðt parametersS

c
(E) (E

a
,

b, and are obtained by minimizing s2. Figure 2 showsS
o
)

the relativistic spectra for three di†erent inclination angles

FIG. 2.ÈRelativistic spectra for three di†erent inclination angles
(i\ 0¡, 30¡, 60¡) with rest of the parameters same as in Fig. 1 (solid lines).
Dashed lines : Empirical Ðt to the relativistic spectra using eq. (7). The
minimum s2\ 0.073, 0.049, and 0.026 for i\ 0¡, 30¡, and 60¡, respectively.
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FIG. 3.ÈVariation of minimum s2 (i.e., minimized with respect to pa-
rameters and with parameter b. Curves marked 2, 3, and 4 corre-E

a
S
o
)

spond to the spectra shown in Fig. 3 for i\ 0¡, 30¡, and 60¡, respectively.
Curve marked 1 is for the Newtonian spectra shown in Fig. 1.

FIG. 4.ÈVariation of the best-Ðt b-parameter with inclination angle for
di†erent equation of states. Curve 1 : Pandharipande(Y) (softest) ; curve 2 :
Bombaci ; curve 3 : Walecka ; curve 4 : SBD (sti†est). The values of the other
parameters are as in Fig. 1.

FIG. 5.ÈVariation of the best-Ðt b-parameter with inclination angle for
di†erent neutron star masses. Curve 1 : curve 2 :M \ 1.0M

_
, M \ 1.4M

_
,

curve 3 : M \ 1.788 The values of the other parameters are as inM
_

.
Fig. 1.

FIG. 6.ÈVariation of the best-Ðt b-parameter with inclination angle for
di†erent neutron star spin rates. Curve 1 : radians s~1 ; curve 2 :)

*
\ 0

radians s~1 ; curve 3 : radians s~1 (mass-shed limit).)
*

\ 2044 )
*

\ 7001
The values of the other parameters are as in Fig. 1.

(solid lines) and the corresponding empirical Ðts using equa-
tion (7) (dotted lines). The minimum s2 obtained while
Ðtting these spectra was less than 0.1, which means that the
average discrepancy is less than 3%. This is also true for
other disk parameters and EOS considered in this work.
Thus the empirical function (eq. [7]) is a reasonable approx-
imation to the computed relativistic spectra. It also
describes the Newtonian spectra to a similar degree of accu-
racy.

The parameter in equation (7) is the normalizationS
ofactor and is independent of the relativistic e†ects. It

depends only on the mass of the star (M), accretion rate (M0 ),
distance to the source (D), color factor ( f ), and inclination
angle (i), i.e., The param-S

o
PM0 2@3f ~4@3M1@2D~2 cos i. E

aeter (which is in units of keV) describes the high-energy
cuto† of the spectrum. Its dependence on the spacetime
metric and inclination angle is complicated, but it scales as

The b-parameter depends only on the space-E
a
PM0 1@4f.

time metric and not on accretion rate, distance to the
source, or color factor. This makes the b-parameter useful
as a probe into the underlying spacetime metric. We show

FIG. 7.ÈVariation of the best-Ðt with inclination angleE
a
-parameter

for di†erent equation of states. The curve numbers correspond to the same
equations of state as listed in Fig. 4. The values of the other parameters are
as in Fig. 1.
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in Figure 3 the variation of minimum s2 (i.e., minimized
with respect to parameters and only) as a function ofE

a
S
othe b-parameter for the three spectra shown in Figure 2 and

for the Newtonian one. For the Newtonian case the
minimum s2 occurs for b B 0.4 while it is lower for the
relativistic cases. For example, consider the relativistic spec-
trum for parameters listed in Figure 1 and for i\ 30¡ (line
marked as 3 in Fig. 3). If this spectrum is Ðtted with the
empirical function the minimum s2\ 0.05 (corresponding
to an average discrepancy of 2%) and the best-Ðt b-
parameter is b B 0.25. For a Newtonian b-parameter value
of B0.4, the minimum s2 increases to 0.1, corresponding to
an average discrepancy of more than 3%. Thus, the empiri-
cal function can resolve the di†erence between the Newto-
nian and the relativistic one at the 10% level. For an
observed spectrum Ðtted using the empirical function, if the
best-Ðt range of b-parameter excludes the Newtonian value
of 0.4, that would strongly indicate that the spectrum has
been modiÐed by strong gravitational e†ects. Since the b-
parameter deviation from 0.4 increases with inclination
angle, nearly edge-on disks are more promising candidates
for detecting the presence of strong gravity. To show the
robustness of this result, we show in Figures 4, 5, and 6 the
variation of the best-Ðt b-parameter with i for di†erent
EOSs, masses of the central object, and spin rates, respec-
tively. For all these cases the best-Ðt b-parameter is less
than 0.4. Parameter is useful to determine the accretionE

arate. However, it also depends on the metric and inclination
angle. We show this dependence in Figure 7.

4. SUMMARY AND DISCUSSION

In this paper, we have computed relativistic spectra from
accretion disks around rotating neutron stars for the appro-
priate spacetime geometry. Several di†erent EOS, spin
rates, and masses of the compact object have been con-
sidered. The Doppler and gravitational e†ects on the
spectra have been taken into account, while light-bending
e†ects have been omitted for simplicity. The spectrum
di†ers from the Newtonian one, with the main di†erence
being due to the di†erent radial temperature proÐle for the
relativistic and Newtonian disk solutions.

A simple empirical function has been presented which
describes the numerically computed relativistic spectra well.
This will facilitate direct comparison with observations. The
empirical function (eq. [7]) has three parameters, including
normalization. Another important advantage of this func-

tion is that it also describes the Newtonian spectrum ade-
quately, and the value of one of the parameters (b-
parameter) distinguishes between the two. In particular, the
best-Ðt b-parameter B0.4 for the Newtonian case, while it
ranges from 0.1 to 0.35 for the relativistic case depending
upon the inclination angle, EOS, spin rate, and mass of the
neutron stars.

In principle, for sufficiently high-quality data, the e†ects
of strong gravity on the disk spectrum can be detected using
this empirical function as a Ðtting routine and constraining
the b-parameter. However, it must be emphasized that there
are several reasons why this may not be possible. There
could be systems which have additional components in the
X-ray spectra, for example, boundary layer emission from
the neutron star surface. Uncertainties in modeling these
additional components may lead to a wider range in the
best-Ðt b-parameter. Thus, accurate spectra of the bound-
ary layer (with relativistic corrections) is also needed for
modeling these systems. Moreover, X-rays could be emitted
from hotter regions (e.g., an innermost hot disk or a corona)
giving rise to a Comptonized spectra instead of the sum of
local emission assumed here. In this case, the empirical Ðt
will probably not describe the observed data well. It has
been assumed here that the color factor is independent of
radius. Shimura & Takahara (1995) have shown from
numerical computation that this could be the case for an
accretion disk in a Schwarzschild metric. Apart from the
fact that this was done for a Schwarzschild metric, their
numerical computation depends on the vertical structure of
the disk, which in turn depends on the unknown viscosity
mechanism in the disk. If the color factor has a radial
dependence, the spectral shape might change, which may be
confused with a relativistic e†ect.

Despite these caveats the method described in this paper
will be a step forward in the detection of strong gravity
e†ects in the spectra of X-ray binaries. Future comparison
with high-quality observational data will highlight the theo-
retical requirements that have to be met before concrete
evidence for strong gravity are detected in these systems
and the enigmatic region around compact objects is probed.
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