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Abstract. Two equally massive primaries are assumed to be moving in circular 
orbits in Cartesian x-y plane. A planetoid is assumed to be on the z-axis. This is a 
particular case of the restricted three body problem with mass ratio J,l.=1I2, known 
as the circular Sitnikov problem. Motion of the planetoid is calculated using LindStedt
Poincare' perturbation and Green's function method. It is found that the planetoid 
oscillates nonlinearly along the z-axis. We present analytic solutions up to 2nd order 
of approximation and compare the solutions with earlier results of other authors. A 
solution of the exact problem is also discussed. 
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1. Introduction 

In celestial mechanics, one of the most prestigious problems is the problem of three bodies. 
One special case of the problem of three bodies is the restricted problem of three bodies 
(RTBP) which can be enunciated as follows: Two bodies, called primaries, revolve round their 
centre of mass in circular orbits while a third body, generally called a planetoid, of mass 
infinitesimally small so that it does not have gravitational influence on the motion of the 
primaries, moves in their field; the restricted problem of three bodies is to determine the 
motion of the planetoid (Whittaker 1988). Since the conception for the first time in 1772 by 
Euler, RTBP has been studied extensively within the framework of Newtonian mechanics in 
connection with the motions of satellites, comets, asteroids and recently, fictitious planets in 
binary star systems. Recently, RTBP is also being studied in the framework of the general 
theory of relativity (Maindl et al. 1994). As such, the stage for RTBP encompasses systems 
in the solar system through galaxies to the cosmos. In a previous paper (Faruque 2(02), we 
have discussed a special problem in RTBP, namely, linear motion of a planetoid. In this special 
problem. we assume that two equally massive primaries are in circular motion around their 
centre of mass. Then, the mass ratio (mass of the smaller primary divided by the total mass 
of the system) is J,l.=112 and the centre of mass lies halfway between the primaries. We fix the 
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~oordinate system in such a way that the centre uf mass is the origin of a Cartesian coordinate 
system while th~ primaries lie on the .'hlXis. The s)stem is rotating with the primaries, 
i.e., the ~'oordinate system is The pbnetoid is along the z-axis with no 
\ clo.:ity component along either the x-or the With z-component of velocity, the 
planetoid remains along this 'lxis. This is because there is no centrifugal or Coriolis force on 
the pi:.metoid though these forces usuaily appear in a rotating coordinate system. This can be 
proved "Il1c problem thus reduces to finding the linear and axial motion of the body 
along the z-axis. 

In literature thi,; problem is known as the circular Sitnikov problem or the MacMillan 
problem which is the special Ic=O) case of the Sitnikov (1960) problem. In the Sitnikov 
problem one assumes that the planetoid movcs on the axis perpendicular to the orbital plane 
of the equal mass primaries, which move on Kepleri:m ellipses with eccentricity e between 0 
and I, around their centre of mass. The circular Sitnikov problem, known more as the MacMillan 
problem. was originally discussed by Macr-.1il1an (l911) who showed that this problem is 
integrable using elliptic integrals. Later on this problem is revisited in Belbruno et al. (1994) 
where periodic orbits of the MacMillan problem are regard as particular orbits of the Circular 
Spatial RTBP in order to generate families of periodic orbits of the RTBP_ From a similar point 
of view, Olle and Pacha (1999) studied the Sitnikov and MacMillan problem as well as Planar 
Isosceles RTBP in order to get families of periodic orbits of the more general Spatial Elliptic 
RTBP. On the other hand, the problem known as the Sitnikov problem was initiated by Sitnikov 
(1960) who gave the first qualitative results for some oscillatory motions along the z-axis. 
Subsequently, many authors reanal) zed them. Perdios et al (1988) studied stability and 
bifurcations of straight line motions of the infinitesimal body. Dvorak (1993) studied, by 
numerical means, motion of !he planetoid limited to a small region around the barycentre of 
the primaries and found that invariant curves exist for very small oscillations centering the 
barycentre. Jie Liu & Yi-Sui Sun (1990) replaced the differential equations by mapping and 
derived the existence of an hyperbolic invariant set. Hagel (1992) and Hagel & TrenkJer 
(1993) carried out analytical approach for bounded small amplitude solutions. Our aim in this 
paper is similar, but we consider the circular Sitnikov probJem and try to shed more light on 
this problem considering motion of the planetoid limited to amplitudes much less than the 
distance between the primaries. This condition puts the problem in a fashion that is more 
suitable for analytical study. Analytic solution to such restricted case is also important because 
the exact solution derived by MacMillan (1911) using quadrature involving elliptic integral of 
the third kind and discussed also by Szebehely (1967) cannot be put as z=z(t) in a closed form. 
This is one of the reasons MacMillan (1911) presented also a series solution for z(t). It is this 
solution by MacMillan to which we refer the reader for a critical assessment of our study of 
circular Sitnikov problem presented in this article. The way we present the problem is more 
like a physical problem than a mathematical one and this is evident in the content of section 
II. The procedure we follow in this paper is close to that of MacMillan (1911) with the marked 
difference in the expansion parameter of perturbation method. While MacMillan used a certain 
parameter constructed out of the amplitude of motion as the expansion parameter we use a 
parameter that is constructed out of the angular frequency of orbit of the primaries and invariant 
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distance between the primaries. Moreover, we use Lindstedt-Poincare' perturbation theory to 
arrive at our solution at the 2nd order approximation. The differences in the formulation of the 
problem resulted in a nominal difference of the solution. This will be indicated 
in the text in due course. As mentioned above, this work is a continuation of our earlier work 
(Faruque 2002) where we have presented solution up to 2nd order approximation using 
Green's function technique. This method furnishes a Fourier series for the position of the 
planetoid. However, this series suffers limitation which incited us to use Lindstedt-Poincare' 
perturbation theory. Nevertheless, we present the results of Green's function technique to show 
the power of this method and its applicability in solving such celestial methanical problems. 
Moreover, the way we proceed to solve the problem using Green's function has merits over 
the same method used in other analogous problems by other authors. This shall be indicated 
in due course. The paper is organized as follows: In section II, we put the equations of 
motion and analyze them graphically. In section III, we present the solution up to 2nd 
order of approximation using Lindstedt-Poincare' method and compare the solution with 
existing ones. Results of Green's function method and compare the solution with existing 
ones. Results of Green's function method are included in section IV. In section V, we 
present a brief note on a solution of the exact problem. Finally, section VI contains discussion 
and conclusion. 

2. Equations of motion 

As mentioned in the introduction, the x-axis is the line containing the primaries and z-axis is 
perpendicular to their place of motion. The origin of the coordinate system is located at the 
centre of mass. The frame rotates with angular velocity 

-+ co= (1) 

where ml = ~ = M, the mass of primary and 'a' is the distance between the primaries. The 
planetoid has coordinate 

-+ A 

Z = zk 

The equation of motion of the planetoid is 

with 

2GM 
V(z)=----

~: +z2 

(2) 

(3) 

(4) 
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as the potential. In this special case, there is no Coriolis or centrifugal force on the planetoid. 
We assume that the planetoid, initially. has no velocity component along either x- or y-axis. 
The planetoid moves along the z-axis with the Jacobian integral (Szebehely 1967) as its total 
energy, which is 

I (dZ .. )" 20M _ - - - -E 
2 ,dE ~: ., 

-+z-
4 

(5) 

In Figure I, we plot the potential. To draw this graph, we have put G = 1, a = 1, and 
M = 112. The potential is symmetric and in the region close to z=O, it resembles the potential 
of a harmonic oscillator. Motion of the planetoid will be bounded for E in the range -2<E<0. 
Note that E = -2 corresponds to E = - (4GM) ! a. Clearly, the motion is governed by the value 
of E. As E increases, the planetoid moves periodically in greater portion of the z-axis centering 
.: = O. However, as larger z is covered by the planetoid, motion would appear not to be simple 
harmonic. 

·1 

Figure 1. The potential V(z) 

V(z) 
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Figure 2 is the phase portrait of motion. We have drawn this graph using Eq.(5). As is seen 
from the graphs, the motion is unbounded for E;::: O. For E < 0, there are two turning points 
(t = ?). At E = -2, the two turning points merge at z :::: o. The planetoid is forced, then, to 
remam stationary at the centre of mass. 



Axial oscillation of a planetoid in Restricted Three Body Problem : The circular Simikov problem 899 

E=O 

-z 

Figure :z. The phase portrait. i: vs z graph. The plots are drawn using Eq. (5). 

For periodic motion with energy E < 0, the time period is given by 

~ = J dz' 

, HE+~,}r (6) 

where T is the period and Zmax is the positive root of the radical in the denominator of the 
integral. The integral can not be evaluated completely in analytic form. 

To know the coordinate 'z' of the planetoid as a function of time, we have to solve Eq. (3) 
analytically. Exact analytic solution ofEq. (3) cannot be found except the solution by quadrature 
in the form ofEq. (6). We, therefore, look for approximate solutions. In the first approximation, 
we assume that the energy of the planetoid is such that it is bound to remain near the origin. 
This happens when E is chosen as close to - (4GM) I a. 
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In this case, zma~ is much smaller than a I 2 and Eq. (3) approximates to 

tf~ 

-~ =+(~;:=O 
dt= r 

(7) 

where 

(J)r =~8w (8) 

Equation (7) has the well known simple hannonic solution 

;:(1) = A exp(i{J),t) (9) 

wher A, the amplitude is determined by the energy E. which, in this case, is 

(10) 

Hence. once E is fixed, the motion is predicted according to Eq. (9). In the 2nd approximation, 
E is chosen such that Zmax is comparable to a I 2 but still a I 2 is larger. In this case, the 
equation of motion reads 

tPz " • .2 ..3 
-+(fJ:.Z-CJT..d"" =0 df- r 

(11) 

\\>ith 

(12) 

Solution of Eq. (11) can only be found through the use of perturbation technique. The use 
perturbation methods, we take Eq. (7) as the unperturbed system with the solution (9) as the 
unperturbed motion of the planetoid. Then, the term (-% I) appears as the perturbation. The 
effect of this nonlinear term is to shift the frequency as a function of the amplitude and to 
distort the trajectory z(t), introducing harmonics of the shifted linear oscillator frequency. In 
the next section we proceed to solve Eq. (11) using Lindstedt-Poincare' perturbation theory. 

3. Solution using Lindstedt-Poincare' perturbation theory 

The equation of motion in the 2nd approximation, Eq. (11), is very similar to the equation of 
Duffing oscillator (The difference lies in the Sign of the nonlinear term). We write Eq. (11) as 

(13) 

where e = w} is the strength of the perturbation. Standard method of expansion of z(t) in 
powers of the strength e can be followed and we, therefore, assume 
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00 

Z(t) = Zo(t) + ezl(t) + 82z,.(t) + .... = L eizi(t) (14) 
i= 0 

Insertion of this expansion into Eq. (13) and equating the different terms containing the 
same power of e results in an infinite set of coupled differential equations. The subsequent 
equations can be solved using Green's function technique. However, the resulting solution 
contains trigonometric terms with one secular term (i.e., term proportional to time t). Since the 
solution should be periodic, the secular term cannot be allowed in the solution. Here, the 
Green's function technique fails to give us a periodic solution of Eq. (13). In the next section, 
we shall show that a general method of applying Green's function exists in quantum mechanics 
that leads to a solution free of secular terms. For now, we proceed with the method due to 
Lindstedt and Poincare'. This method con,sists in making a change of independent variable at 
the same time as the power series expansion of the solution (Hand et al. 1998). We take an 
independent variable • s' defined by 

(15) 

and 

(16) 

Once again 

co 

z(s) = L eizi(s) (17) 
i=O 

This defines the series for the solution we anticipate for. Wtih the freedom we get from the 
constants COl' co2 etc. we can remove all secular terms from the equations for the Zj. 

With Z" == % now, the equation of motion (13) becomes 
ds2 

ro2z" + ai. z - fl.3 = 0 r 
(18) 

or 

(cor + eco! + 82co2 + ... )2 :::2 (Zo+ fl.! + 8'-z,. + .. ) (19) 

+ m;(zo+ fl.! + 8'-Z2 + .. ) - e {Zo+ fl., + 8'-; + .. )3 = 0 

Equating coefficients of same power of e in Eq. (19), we get the following set of 

equations: 

(20) 
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Now, we assume for simplicity. the initial conditions 

z(O) = A. 
Z(O) = 0 

Solution of (20) satisfying the above initial conditions is 

to = A cos s 

Putting this into Eq. (21), we get 

.. [ 3A3 2w\A ] A3 
Zl + ZI = P + - cos $ + 4W2 cos 3$ 

<+W; w, r 

(21) 

(22) 

(23) 

(24) 

(25) 

It can be shown that the first term on the right hand side of Sq. (25), namely, the cos s term 
acts as a "resonant" driving term that leads to a secular term in Zl' Therefore, we must set the 
coefficient of cos $ to be zero and thereby eliminating' the' secular term. Hence, we get 

3A2 
W = - - (26) 

1 SWr 

Equation (25) then reduces to 

Solution of Eq. (27) is 

A3 'I = ~ (cos .s - cos 3$) 
r 

(27) 

(28) 

That this is true can be checked easily. Now 41 (0) = 0, and (~ + 41) at t = 0 is 'A'. satisfying 
our initial condition. Insertion of (24). (26) and (28) into (22) leads to 

" (2m:z 15 AS) 3As 3AS '2 + ~ = a> A - 128 7 cos S + 16w4 cos 3$ -'i:2'P cos 5$ 
r r r cor (29) 

Again. we set the coefficient of COS s to be zero to eliminate secular term in la. This leads to 
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The result abo .. c [Eq.(34)] agrees well with literature (MacMillan 1911). To compare with 
~1ac~1illan's result [the first unnumbered equation in page 13 of MacMillan's paper1, we note 
that the solution in this paper is first written in terms of a function ~ = 1 - z I a, where z in 
that paper is the same as our z and a is his amplitude which in our work is A. We note also 
that a in Eq.(34) is equal to 2 in MacMillan's paper. When these conversions are made and 
the pammeter Jl = a2 I (1 + a~) in MacMillan's paper is replaced by a2 ( = A2 in our work), 
since \\'e impose small amplitude condition (see the discussion below Eq. (10) in this paper), 
we get good agreement. The differences lie in the weight of 3rd coefficient of cos Wt, 2nd 

coefficient of cos 3 Wt, and in that of cos 5 wt. Considering the magnitudes of these terms, 
\\'e note that the difference is insignificant quantitiatively. In the qualitative part, appearance 
of only cosines of odd multiples of (J)t Cr, in MacMillan's paper) and sign of the different 
trigonometric terms are exactly same in both works. The minor difference is caused by our 
approximation of the equation of motion which. under the conditions we impose, can be safely 
done. In conclusion, we observe that for most purposes an accurate enough description of the 
position of the planetoid can be obtained from 2nd order approximation we have demonstrated 
in this section. The angular frequency [Eq.(35)] will be compared with that of MacMillan's 
(1911) in section '.J: 

In the next section, we shall present the solution using Green's function technique. We shall 
show that the solution comes out as a series like (34). 

4. Solution using Green's function 

To solve the equation of motion (11) using Green's function method, we write Eq, (11) as 
follows 

z + aJ,.z = (~?) z = - P(z(!» 

We assume the solution as 

z = A exp (iw,t) + Zs (t). 

The first term satisfies the homogeneous equation (7). Hence, we have 

tFz,. 
dt2 + W; z, = wi Z1 = - p(z(t» 

Now, we define the Green's function G through 

tFG 
(jj'!'" + w; G = - S(r - () 

which yields, for zl' the integral equation 

4S(t) = JG(t/)P«()df. 

The fonnal solution of Sq. (39), the Green's function, can be written as 

(36) 

(37) 

(38) 

(39) 

(40) 
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G( ') __ 1_ COs exp{ iUJ(t - t')} (4 J) 
t, t - 2n ([J2 _ w2 _ iO dw 

-00 r 

Since, the Dirac delta function, 8 (t - t'), can be represented by 

1 
8(t - t') ="'"2'n S exp{ icv{t - t') }dw (42) 

the function (41) is the required Green's function. This can be verified easily using (41) and 
(42) in Eq. (39). Now, we can visualize an interaction picture and consider the term (%Z2) in 
Eq. (36) as the interaction. Then, the first iterated solution of Eq. (36), using 

p(t) = S 8(t - l)fXt')dt' (43) 

is 

z(t) = A exp(iw!) - % S G(t, t')(z(t'))3 dt' 

+( - w~) Sf G(t, t')(Z(t'»2 G(t', t'')(z(t''))2 z(t")dt" dl 
(44) 

The interpretation of the terms ,in Eq. (44) are as follows: There is an interaction which 
brings the planetoid, whose position is given in the first approximation by a simple harmonic 
term (Eq. (9», from z(t") to z(t') and then to z(t). And at the instant I' and I, the interactions 
are as % z2(1'), % ~(t') and the propagators are G(t', t''), G(t, n. All such single interactions 
and double interactions and ad infinitum, combined with the initial position (Eq.(9» gives the 
position of the planetoid at time t. 

Now, the Green's function can be found using the standard method of residue theorem. We 
find the Green's function as 

G ') iexp{iw/t - t')} 
(t, t = 2w (45) 

r 

At this stage we need to know the functions z(t') and zet') to be put on the right side of (44). 
To the first approximation, we can use the solution (9) of the homogeneous equation (7), i.e., 

z(t') = A exp(iw/) (46) 

etc. Finally, substitution of (45) and (46) in (44) gives, after integration, the analytic solution 
in the 2nd approximation : 

( 3A3 9A5) (3A3 9A5) 9A5 
z(t) = A + 2ai+ 8a4 exp(iw!) - 2ai + 4a4 exp(3iw!) + 8a4 exp(5iw,t) + ... (47) 

The real part of Eq. (47) furnishes the solution that automatically gives z(O) = A and 
z(O) = O. We note that solution (47) has the same appearance as solution (34) found using 
Lindstedt-Poincare method. The difference lies in the frequency and coefficients of the terms. 
Otherwise, number of terms and nature of variation of the terms with A and a are exactly the 
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same. Also, we did not impose initial conditions to arrive at (47); the initial conditions are 
outcome of the solution once we fix the unperturbed solution. However, validity of (47) is 
limited: It applies to motion for which Ala is small. This is learned from Eq.(35) where it is 
seen that W '" wr when Ala is small. 

The reason we presented the solution (47) found through the Green's function technique 
is to show that Green's function method can be applied to this type of problem in a way that 
does not give rise to secular terms in contrast to the way shown, for example, by Hand et al 
(1998) 

5. Note on solution of the exact problem 

In this section. we use a = 1, G = 1 and M = 112. The integral of the problem is then 

c 1 (dZ)2 1 
"2 di - i ~ 1 =-2 

VZ-+"4 
(48) 

where C = - 2E, a positive number (see Eq.(5) and Fig.!). The distance between either of the 
primaries and the planetoid is 

r = ~Z2 + ! 
When we put this expression in Eq.(48), we get 

We now define a function 

u= ...L 
r 

as the dependent variable. Using this in Eq. (50), we get 

(dii)2 "" _ ( uZ) di = U (2U - C) 1-7 
We now change the scale introducing u = lf2u and c = Cf4. 
quadrature from Eq. (52) : 
/I du t 

J = J dt 
1 4u2 [(u - ext - ul)J'n 0 

(49) 

(50) 

(51) 

(52) 

In this notation, we get a 

(53) 

where the lower limit is chosen in such a way that at t = 0, U = 1 or it = 2 and r = Vi 
Con~uently. at t = 0, i = "4 - C. The planetoid begins its motion at the origin of the 
~uate system. If C> 4, motion is not possible at the origin (Compare this with E < -2 
m Pig. I). The quadrature of Eq.(53) can be reduced to Legendre form by putting 
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l-u l-c 
v2 =--, k,2 =--

1 - c 2 (54) 

whence, we get 

(55) 

The period is given by 

1 d 

r (1 - 2k2v2)2[(l ~ v2)(1 - k2v2)]lIz (56) 

where T is the period. To evaluate this integral, we put v = sine. Then the integral reduces to 

Tr/ 

2\ ~ = t dO (57) 
4 0 (1 - 2k2 sin2 ( 2) (1 - k2 sin2 e) liz 

Employing binomial theorem, we can write this integral as 

rtl 

23, T J2 (1 9 k2 . 2 £) 115 • .1' 4 £) ) dl'l 2 _ = + _ sm (7 + __ K.' sm (7 +.... (7 

4 0 2 8 
(58) 

TrJ 

Using t sinP Od8 = l.3.5 ... (p - 1) !:..' if p is even positive integer, we get 
o 2.4.6 ... p 2 

T = ~ ( 1 + : k2 + 3: J;4 + ..... .) (59) 

The general solution is obtained by inverting the quardature given in Eq. (55) as an elliptic 
integral of the third kind. However, complete analytic inversion is not possible. Hence, 
approximation is needed in this solution, too. This is one of the reasons we have presented 
approximate solutions in the previous sections. Now, the period (59) should be multiplied by 
-{8 to arrive at the period [Eq.(8)] in MacMillan's (1911) work. This is due to the definition 
of the terms we use in calculation. What remains is to show the relation between the period 
given in (59) and the period corresponding to the frequency in Eq.(35). We note that they are 
identical up to the 2nd term. This follows since in the period (59), frequency of the frame is 
unity and distance between the primaries is also unity. When we put the same in Eq.(35). we 
get 

T= ~ (1 + ~ A2 + ....... ) (60) 
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:-';0\\1, AJ in cun be identified as k~ in (59). This is true since, from Eq.(lO), we can write 
(puning z::: 0, ;:; = A. (ur= \8, CI = 1, E::: -C J 2) 

and 

(61) 

Hence. the period of the exact problem and that of the 2nd order approximation are identical 
Up!C 2nd order terms. This completes our discussion of the exact solution. 

6. Discussion and conclusion 

In this article, we have discussed the motion of an infinitesimal body called a planetoid within 
the fmmework of the restricted three body problem, known particularly as the circular Sitnikov 
problem. The geometry of this problem is as follows: Two equally massive primary bodies 
move in circular orbits around their centre of mass in a Cartesian x-y plane and a third body 
of infinitesimal mass is on the line perpendicular to the plane of motion of the primaries that 
passes through the centre of mass. We have analyzed the motion of the planetoid using phase 
portrait (Fig. 2), which shows that the body would oscillate in simple harmonic fashion if the 
body is placed near the centroid with only z-component of velocity. The amplitude of this 
oscillation is determined by the value of the Jacobian integral which, in this case, is simply 
the total energy of the planetoid. Figure 2 shows also that the planetoid would move periodically 
for all values of the total energy below zero. 

We have presented the position of the planetoid as a function of time up to 2nd order of 
approximation. In the first approximation, the energy of the planetoid is such that the body 
remains very close to the centroid and oscillates in simple harmonic motion. The angular 
frequency of this oscillation is ..J8 times the angular velocity of the primaries. In the 2nd 

approximation, a nonlinear perturbing force appears in the equation of motion. The equation 
is solved using the Lindstedt-Poincare' perturbation theory. The coordinate of the planetoid is 
found to be represented by a Fourier series. The oscillation of the planetoid is thus nonlinear 
with a frequency that depends on the amplitude of oscillation. This amplitude dependence of 
frequency is outcome of the method we employed to avoid secular terms in the solution. The 
solution we found satisfies two specified initial conditions. However, to incorporate the initial 
conditions we had to put coefficient of one trigonometric term by hand, which otherwise is 
arbitrary. We solved the equation of motion in the 2nd approximation using also the Green's 
function metOOd. The solution that follows is free of secular terms whereas other authors (see, 
for example,. Hand et all998) found secular teons in solution of similar problems (say Duffing 
oscillator). 'The way we employed Green's function method (namely, an interaction picture) 
thus deserves special attention. Moreover, the solution found through the Green's function 
method is very similar to the one found through the Lindstedt-Poincare' method. However, the 
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solution found through the latter method is preferable. Solution found by Green's function is 
applicable when the ratio of amplitude (A) and distance between the primaries (a) is small. In 
this case, the frequency of oscillation found through the Lindstedt-Poincare theory (Eq.(35)) 
becomes equal to the frequency found through the Green's function method. We have presented 
solutions through the two methods to show power of the methods and to get better understanding 
of the system. Both methods predict nonlinear oscillation of the planetoid along polar axis. The 
solutions are compared with existing ones and good agreement is found. This indicates that the 
position of the planetoid can be obtained by 2nd order approximation of the equation of motion 
when energy of the planetoid is small enough so that the amplitude remains well below the 
distance between the primaries. 

We have also presented a note on a solution, due to MacMillan (1911), of the exact 
problem for the sake of completeness. The exact problem is solved by quadrature that involves 
elliptic integral of the third kind. Since, the quadrature can not be fully inverted analytically, 
approximations are necessary here too. In fact, the period of the exact problem is an indefinite 
series. However, the period found by the Lindstedt-Poincare' theory in the 2nd approximation 
is identical to the period of the exact problem up to 2nd order terms. This is shown in the text. 
In conclusion, we have revisited an old problem and gained helpful insights. 
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