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Abstract. We calculate the accretion disc temperature profiles, disc luminosities and boundary layer luminosities
for rapidly rotating neutron stars considering the full effect of general relativity. We compare the theoretical values
of these quantities with their values inferred from EXOSAT data for four low mass X–ray binary sources: XB 1820-
30, GX 17+2, GX 9+1 and GX 349+2 and constrain the values of several properties of these sources. According
to our calculations, the neutron stars in GX 9+1 and GX 349+2 are rapidly rotating and stiffer equations of state
are unfavoured.
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1. Introduction

A low mass X–ray binary (LMXB) is believed to contain
either a weakly magnetised neutron star or a black hole as
the central accretor. The X–ray emission arises from the
innermost region of the accretion disc around the compact
star. In the case of a neutron star, there is an additional
X–ray component coming from the boundary layer of the
star. Mitsuda et al. (1984) showed that the spectrum of a
luminous LMXB can be fitted by the sum of a single tem-
perature blackbody spectrum (believed to come from the
boundary layer) and a multicolour blackbody spectrum
(may originate from the accretion disc). However these
authors used Newtonian models to fit the observed spec-
tra. Near the surface of a neutron star, the accretion flow
is expected to be governed by the laws of general relativ-
ity due to the presence of strong gravity. Therefore gen-
eral relativistic models should be used to get the correct
best-fit values of the parameters. Besides, the principal
motivation behind the study of the spectral and tempo-
ral behaviours of neutron star LMXBs is to understand
the properties of very high (∼1015 g cm−3) density mat-
ter at the neutron star core (van der Klis 2000). This is
a fundamental problem of physics, which cannot be ad-
dressed by any kind of laboratory experiment. The only
way to answer this question is to assume an equation of
state (EOS) model for the neutron star core, to calculate
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the structure parameters of the neutron star and hence to
calculate an appropriate spectral model. By fitting such
models (for different chosen EOSs) to the observed data,
one can hope to constrain the existing EOS models and
hence to understand the properties of high density mat-
ter. However, general relativistic calculation is essential to
calculate the structure parameters of a neutron star and
therefore to constrain the EOS models.

It is expected that the neutron stars in LMXBs are
rapidly rotating due to accretion-induced angular mo-
mentum transfer. LMXBs are thought to be the progen-
itors of milli-second (ms) radio pulsars (Bhattacharya &
van den Heuvel 1991) like PSR 1937+21 with P ∼ 1.56 ms
(Backer et al. 1982). The recent discovery of ms (P ∼
2.49 ms) X–ray pulsations in XTE J1808-369 (Wijnands
& van der Klis 1998) has strengthened this hypothesis.
Therefore it is necessary to calculate the structure of a
rotating neutron star considering the full effect of general
relativity. This was done by Cook et al. (1994) and the
same procedure was used by Thampan & Datta (1998),
to calculate the luminosities of the disc and the boundary
layer.

The disc temperature profile for a rapidly rotating
neutron star was first calculated by Bhattacharyya et al.
(2000). These authors also compared their theoretical re-
sults with the EXOSAT data (analysed by White et al.
1988) to constrain different properties of the LMXB source
Cygnus X-2. The present work is a continuation of theirs,



Sudip Bhattacharyya: Accretion discs around rapidly rotating neutron stars 525

in which we constrain several properties of four LMXB
sources: XB 1820-30, GX 17+2, GX 9+1 and GX 349+2,
using the same procedure. These sources were also ob-
served by EXOSAT and the data were analysed by White
et al. (1988).

XB 1820-30 is an atoll source which shows type I
X–ray bursts. GX 17+2 and GX 349+2 are Z sources, of
which the former shows X–ray bursts. GX 9+1 is an atoll
source. As all of them are LMXBs (van Paradijs 1995),
the magnetic field of the neutron stars are believed to
be decayed to lower values (∼108 G; see Bhattacharya &
Datta 1996 and Bhattacharya & van den Heuvel 1991).
Therefore, we ignore the effect of the magnetic field on
the accretion disc structure in our calculations.

In Sect. 2, we give the formalism of the work. We
present the results and discussion in Sect. 3 and give a
summary in Sect. 4.

2. Formalism

2.1. Theoretical formulae

In order to calculate the disc temperature profile, the disc
luminosity and the boundary layer luminosity for a rapidly
rotating neutron star considering the full effect of general
relativity, we need to compute the structure of the ro-
tating star. To do this, following Cook et al. (1994), we
choose a stationary, axisymmetric, asymptotically flat and
reflection-symmetric (about the equatorial plane) metric,
given by

dS2 = gµνdxµdxν(µ, ν = 0, 1, 2, 3)
= −eγ+ρdt2 + e2α(dr̄2 + r̄2dθ2)

+eγ−ρr̄2 sin2 θ(dφ− ωdt)2
, (1)

where the metric coefficients γ, ρ, α and the angular speed
(ω) of zero-angular-momentum-observer (ZAMO) with re-
spect to infinity, are all functions of the quasi-isotropic
radial coordinate (r̄) and polar angle (θ). The quantity r̄
is related to the Schwarzschild-like radial coordinate (r)
by the equation r = r̄e(γ−ρ)/2. We use the geometric units
c = G = 1 in this paper.

With the assumption that the star is rigidly rotating
and a perfect fluid, we solve Einstein’s field equations and
the equation of hydrostatic equilibrium (the equations are
given in the appendix) self-consistently and numerically
from the centre of the star upto infinity to obtain the
metric coefficients and Ω∗ (angular speed of neutron star
with respect to infinity) as functions of r̄ and θ. The inputs
of this calculation are a chosen EOS and assumed values
of the central density and the ratio of polar to equatorial
radii. The outputs are bulk structure parameters, such
as gravitational mass (M), equatorial radius (R), angular
momentum (J), moment of inertia (I) etc. of the neutron
star. We can also calculate the specific disc luminosity
(ED), the specific boundary layer luminosity (EBL), the
radius (rorb) of the innermost stable circular orbit (ISCO)
and specific energy (Ẽ), specific angular momentum (l̃)

& angular speed (ΩK) of a test particle in a Keplerian
orbit (see Thampan & Datta 1998 for a description of the
method of calculation).

Then we calculate the effective temperature of a geo-
metrically thin blackbody disc, which is given by

Teff(r) = (F (r)/σ)1/4 (2)

where σ is the Stefan-Boltzmann constant and F is the
X–ray energy flux (due to viscous dissipation) per unit
surface area. We calculate F using the expression of Page
& Thorne (1974):

F (r) =
Ṁ

4πr
q(r) (3)

where

q(r) = −ΩK,r(Ẽ − ΩK l̃)−2

∫ r

rin

(Ẽ − ΩK l̃)l̃,rdr. (4)

Here rin is the disc inner edge radius and a comma fol-
lowed by a variable as subscript to a quantity represents a
derivative of the quantity with respect to the variable. The
values for Ẽ and l̃ are given by the two conditions (cir-
cularity and extremum) for orbits (see Thampan & Datta
1998; Bhattacharyya et al. 2000):

Ẽ − ωl̃ =
e(γ+ρ)/2

√
1− v2

(5)

l̃ =
vr̄e(γ−ρ)/2
√

1− v2
(6)

where v = (Ω−ω)r̄e−ρ sin θ is the physical velocity of the
matter. The equation of motion in the azimuthal direction
and that in the time direction yield the Keplerian angular
speed as

ΩK = e2ρ(r̄) l̃/r̄2

(Ẽ − ωl̃)
+ ω(r̄). (7)

Equation (4), that is exactly valid for a black hole accretor,
is also valid for a neutron star accretor, if the disc does
not touch the star. But, for a disc that extends up to
the surface of the neutron star, the torque at the disc
inner edge will not vanish, and Eq. (4) will not be strictly
valid for such a case. However, for a very rapidly rotating
neutron star, the angular speed of a particle at the disc
inner edge will be close to the spin rate of the star, and
hence the torque is expected to be negligible. According
to Bhattacharyya et al. (2000), even when the spin rate
is not large, Eq. (4) should give approximately correct
results. This is because, Page & Thorne (1974) argued that
the error in the calculation of Teff will not be substantial
outside a radial distance 1.1rin. In our calculation, we find
that almost whole of the disc X–ray flux comes from well-
outside this radial distance.

Equation (2) gives the effective disc temperature
Teff(r) with respect to an observer comoving with the disc.
For our purpose, this expression of the temperature must
be changed to that in the observer’s frame, taking into ac-
count the gravitational redshift and the rotational Doppler
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effect. In order to keep our analysis tractable, we use the
expression given in Hanawa (1989) for this modification:

1 + z =
(

1− 3M
r

)−1/2

. (8)

With this correction for (1 + z), we define a temperature
relevant for observations (Tmax

obs ) as:

Tmax
obs =

1
1 + z

Tmax
eff (9)

where the superscript “max” denotes the maximum tem-
perature value in the profile. Tmax

obs is related to the colour
temperature (Tmax

col ) by Tmax
obs = Tmax

col /f , where f is
the colour factor (Shimura & Takahara 1995; see also
Bhattacharyya et al. 2000 for details). We compare the
observationally inferred value of the maximum tempera-
ture with Tmax

col . It is to be remembered that Eq. (8) is
valid for a non-rotating neutron star and a “face-on” (i.e.,
inclination angle i = 0) observation. However, the error in-
volved by these assumptions is expected to be well within
the error bars considered in Sect. 2.3.

The structure of a neutron star for a given EOS is
described uniquely by two parameters: the gravitational
mass (M) and the angular speed (Ω∗). For each adopted
EOS, we construct constantM equilibrium sequences with
Ω∗ varying from the non-rotating case (static limit) up to
the centrifugal mass shed limit (rotation rate at which in-
wardly directed gravitational forces are balanced by out-
wardly directed centrifugal forces). So we are able to cal-
culate Tmax

eff , ED and EBL as functions of M and Ω∗ for a
chosen EOS model.

2.2. Equations of state

The neutron star structure parameters are quite sensitive
to the chosen EOS models. For the purpose of a general
study, we have used the same four EOSs as considered in
Bhattacharyya et al. (2000), namely, (A) Pandharipande
(1971), (B) Baldo et al. (1997), (C) Walecka (1974) and
(D) Sahu et al. (1993). EOS model (A) is for hyperonic
matter. It is assumed that hyperonic potentials are similar
to the nucleon–nucleon potentials, but altered suitably to
represent the different isospin states. Model (B) is a micro-
scopic EOS for asymmetric nuclear matter, derived from
the Brueckner–Bethe–Goldstone many–body theory with
explicit three–body terms. The three–body force param-
eters are adjusted to give a reasonable saturation point
for nuclear matter. EOS model (C) corresponds to pure
neutron matter and is based on a mean–field theory with
exchange of scaler and (isoscalar) vector mesons represent-
ing the nuclear interaction. Model (D) is a field theoretical
EOS for neutron–rich matter in beta equilibrium based on
the chiral sigma model. The model includes an isoscalar
vector field generated dynamically and reproduces the em-
pirical values of the nuclear matter saturation density and
binding energy and also the isospin symmetry coefficient
for asymmetric nuclear matter. Of these, model (A) is soft,

Table 1. Best-fit values of the parameters (see text) for four
LMXBs.

Source name Tmax
col LD LBL

(107 K) (1038 ergs s−1) (1038 ergs s−1)
cos i = 0.2 cos i = 0.8

XB 1820-30 1.59 1.49 0.37 0.26
GX 17+2 1.76 6.49 1.62 0.71
GX 9+1 2.25 6.01 1.50 0.25

GX 349+2 2.07 8.54 2.14 0.48

(B) is intermediate in stiffness and (C) & (D) are stiff
EOSs, with (D) as the stiffest.

2.3. Constraining procedure

We choose four LMXB sources observed by EXOSAT
(data analysed by White et al. 1988). For each source,
we take the best-fit values of the parameters Tmax

col , LD

and LBL, where L denotes the luminosity. On the other
hand, for the chosen values of f , the accretion rate (Ṁ)
and M , we theoretically calculate the values of Tmax

col ,
LD and LBL as functions of Ω∗, for an assumed EOS
model. Then comparing these theoretical values with the
observed ones, we constrain different parameters of the
chosen source (see Bhattacharyya et al. 2000 for detailed
description). However, to take into account the uncertain-
ties in the fitting procedure and in the value of z, and also
those arising due to the simplicity of the model, we con-
sider a range of acceptable values for Tmax

col , LD and LBL.
We take two combinations of deviations around the best-
fit values, namely, (10%, 25%) and (20%, 50%), where
the first number in parentheses corresponds to the er-
ror in Tmax

col and the second to the error in the best-fit
luminosities.

3. Results and discussion

In this paper, we calculate gravitational mass sequences
for different EOS models and constrain several properties
of four LMXB sources. For the neutron star in each of
the sources, we assume M = 1.4 M� (i.e., the canonical
mass value for neutron stars). We take two values for cos i
(i is the inclination angle of the source) for each source,
namely, 0.2 and 0.8. These two widely different values en-
sure the sufficient generality of our results. For the four
sources, the best-fit values (White et al. 1988) of the pa-
rameters Tmax

col , LD and LBL are given in Table 1.
We take the distance (D) of the source XB 1820-30

as 6.4 kpc (Bloser et al. 2000). We assume D = 8 kpc
for both GX 17+2 and GX 9+1, as their locations are
believed to be near the galactic centre (Deutsch et al. 1999;
Hertz et al. 1990) and distance of the galactic centre is
7.9 ± 0.3 kpc, as concluded by McNamara et al. (2000).
For GX 349+2, we take D = 9 kpc (Deutsch et al. 1999).

We display the constrained values with the help of four
tables. It is to be noted that here Ṁ is presented in unit
of Ṁe = 1.4 × 1017M/M� g s−1. The Eddington rate is
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Ṁe/η, with η = EBL +ED. Therefore, as the actual value
of η is much lesser than 1.0 (generally not greater than 0.3
and for rapidly rotating neutron star, typically less than
0.2), the value of Eddington accretion rate is much higher
than Ṁe. For all the sources, as the stiffness of the EOS
models increases, the absolute values of the allowed spin
frequencies (ν∗) and rotational frequencies in the ISCO
(νin) decreases. This is because, for a stiffer EOS model,
neutron star radius is higher and it can support lesser
amount of rotation. The energy conversion efficiency is
also lesser for a stiffer EOS model (as the neutron star
for this case is less compact) and therefore higher accre-
tion rate is needed to generate the observed luminosity
(as seen from the tables). In the following, we describe
the results for four sources in four subsections and give a
general discussion in the last subsection.

3.1. XB 1820-30

We display the allowed ranges of different parameters for
the source XB 1820-30 in Table 2. It is seen that for
cos i = 0.2, the spin frequency (ν∗) of the neutron star
comes out to be very high. But in the case of cos i = 0.8,
it is not possible to constrain ν∗ for (20%, 50%) uncer-
tainty set (for all EOS models) and for both the uncer-
tainty sets (for EOS model D). The ranges of the colour
factor are in general consistent with the results of Shimura
& Takahara (f ∼ 1.7−2.0) and Borozdin et al. (1999)
(f = 2.6). However, some discrepancy can be noted with
the latter one for softer EOS models & cos i = 0.2. The
value of the rotational frequency in the ISCO (νin) comes
out to be ∼1 kHz for all the cases. The values of the
stellar equatorial radius are in the range 8–21 km. The
peak of the disk effective temperature occurs in the radial
range 18–30 km, and always well-outside (by several kilo-
meters) the neutron star’s surface. This shows the validity
of Eq. (4), as discussed in Sect. 2. The overall range of the
accretion rate comes out to be 0.5−31.4 Ṁe.

3.2. GX 17+2

Table 3 shows the results for the source GX 17+2. Here the
ranges of ν∗ are similar to those for XB 1820-30. But for
GX 17+2, the value of i is expected to be moderately high
(Titarchuk et al. 2001) and therefore cos i is not possibly
as high as 0.8. It is, therefore, quite likely that the neutron
star in this source is rapidly rotating, although no deci-
sive statement can be made. The allowed values for f for
GX 17+2 is systematically lower than those for XB 1820-
30, and in the case of softer EOS models & cos i = 0.2
they do not tally with the result of Borozdin et al. (1999).
The allowed values of νin coms out to be ∼1 kHz, but for
EOS model (A) & cos i = 0.8, 2 kHz value is also pos-
sible. The ranges of R and rmax

eff are similar to those for
XB 1820-30 and the allowed values of the accretion rate
are in the range 2.0−131.0 Ṁe.

3.3. GX 9+1

The results for the source GX 9+1 are given in Table 4.
For this source, ν∗-value comes out to be very high for all
the EOS models and for both the cos i-values. Here, the
allowed values for f are inconsistent with Borozdin et al.
(1999) for softer EOS models & cos i = 0.2. The allowed
values of νin are ∼1 kHz and the allowed ranges of R and
rmax
eff are 10–21 km and 18–30 km respectively. The allowed

values of accretion rate for this source come out to be in
the range 3.8−116.7 Ṁe.

3.4. GX 349+2

The allowed ranges of different parameters for the source
GX 349+2 are given in Table 5. As is the case for GX 9+1,
here also the value of ν∗ comes out to be very high for
all the chosen EOS models and cos i-values. The allowed
values for f in general tally with the results of Shimura &
Takahara (1995), but like other three sources do not match
with the result of Borozdin et al. (1999) for softer EOS
models & cos i = 0.2. Here νin comes out to be ∼1 kHz,
and R & rmax

eff are in the ranges 10–21 km and 18–30 km
respectively (like GX 9+1). The accretion rate for this
source is in the range 4.5−168.5 Ṁe.

3.5. General discussion

Here we have constrained the values of several properties
of four LMXB sources. For all of them, the accretion rates
come out to be very high (always ≥0.5 Ṁe). This is in
accord with the fact that these are very luminous sources.

The rotation rate of neutron star in each of the sources
is very high (close to the mass shed limit) for cos i = 0.2.
This is because, the values of LBL/LD are very low for
these cases (see Thampan & Datta 1998; Bhattacharyya
et al. 2000). But, for cos i = 0.8, rotation rate cannot
be constrained effectively for the sources XB 1820-30 and
GX 17+2. Therefore, for these two sources, no general con-
clusion (about the values of Ω∗) can be drawn. However,
the allowed ranges (combined for all the cases considered
in a table) of Ω∗/Ω∗,ms are 0.93–1.00 and 0.75–1.00 for
the other two sources GX 9+1 and GX 349+2 respec-
tively (here Ω∗,ms is the Ω∗ at the mass shed limit; see
Bhattacharyya et al. 2000 for the mass shed limit values).
Therefore the neutron stars in these two sources can be
concluded to be rapidly rotating in general.

Our calculated allowed ranges for f are in accord
with the results obtained by Shimura & Takahara (1995).
However, if we take the value f = 2.6 (obtained by
Borozdin et al. 1999), one would require a very stiff EOS
model or a mass greater than M = 1.4 M� for most of
the cases with cos i = 0.2.

High frequency quasi–periodic–oscillations (kHz QPO)
have been observed for three (XB 1820-30, GX 17+2 and
GX 349+2) of the chosen sources. The observed max-
imum kHz QPO frequencies are 1.100 kHz (XB 1820-
30), 1.080 kHz (GX 17+2) and 1.020 kHz (GX 349+2)
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Table 2. Observational constraints for various EOS models: (A), (B), (C), (D) for the source XB 1820-30. L and U stand
for lower and upper limits. The parameters are f (colour factor), ν∗ (rotational frequency of the neutron star), νin (rotational
frequency in the ISCO), R (equatorial radius of the neutron star), rmax

eff (radius where the effective temperature of the disc is
maximum) and Ṁ (the accretion rate). The limits are for 25% uncertainty in luminosities and 10% uncertainty in the colour
temperature. Values in brackets are for 50% uncertainty in luminosities and 20% uncertainty in the colour temperature. i is
the inclination angle of the source with respect to the observer. The mass of the neutron star is assumed to be 1.4 M�. The
accretion rate is given in unit of Ṁe = 1.4× 1017M/M� g s−1, where M is the neutron star mass.

EOS cos i f ν∗ νin R rmax
eff Ṁ

kHz kHz km km Ṁe

(A) 0.2 L 1.31[1.10] 1.751[1.726] 1.756[1.756] 11.2[10.2] 18.6[18.1] 7.7[3.8]

U 1.91[2.41] 1.755[1.755] 1.819[2.078] 11.4[11.4] 18.7[18.7] 16.1[20.3]

(B) 0.2 L 1.45[1.30] 1.103[1.059] 1.137[1.126] 15.0[13.7] 23.0[21.6] 9.7[4.5]

U 2.07[2.61] 1.112[1.113] 1.197[1.372] 15.5[15.6] 23.5[23.6] 19.4[24.4]

(C) 0.2 L 1.49[1.30] 0.961[0.913] 0.979[0.973] 16.5[15.0] 24.8[23.1] 10.4[4.9]

U 2.12[2.71] 0.968[0.968] 1.042[1.206] 17.2[17.2] 25.5[25.6] 21.2[26.7]

(D) 0.2 L 1.59[1.40] 0.735[0.687] 0.748[0.743] 19.9[17.7] 29.1[26.5] 12.2[5.6]

U 2.25[2.81] 0.740[0.740] 0.795[0.941] 20.6[20.7] 30.0[30.1] 25.0[31.4]

(A) 0.8 L 1.79[1.50] 1.463[0.000] 1.822[1.571] 9.9[7.5] 18.1[18.1] 1.2[0.5]

U 3.06[4.70] 1.751[1.754] 2.165[2.165] 11.2[11.4] 20.4[22.3] 4.5[6.4]

(B) 0.8 L 1.94[1.71] 0.498[0.000] 1.207[1.152] 11.3[11.0] 20.2[20.2] 1.4[0.9]

U 3.22[4.20] 1.102[1.110] 1.782[1.782] 14.9[15.4] 22.9[23.4] 5.6[7.9]

(C) 0.8 L 1.99[1.70] 0.175[0.000] 1.046[0.991] 12.3[12.3] 21.5[21.0] 1.5[1.0]

U 3.36[4.02] 0.960[0.966] 1.573[1.573] 16.5[17.0] 24.7[25.4] 6.1[8.5]

(D) 0.8 L 2.11[1.80] 0.000[0.000] 0.806[0.758] 14.7[14.7] 23.1[23.1] 1.8[1.2]

U 3.30[3.90] 0.733[0.739] 1.212[1.212] 19.7[20.5] 28.9[29.8] 7.2[9.9]

Table 3. Observational constraints for various EOS models: (A), (B), (C), (D) for the source GX 17+2. Other specifications
are same as in Table 2.

EOS cos i f ν∗ νin R rmax
eff Ṁ

kHz kHz km km Ṁe

(A) 0.2 L 1.01[1.00] 1.754[1.748] 1.756[1.756] 11.4[11.0] 18.7[18.5] 36.1[19.8]

U 1.43[1.82] 1.755[1.755] 1.773[1.869] 11.4[11.4] 18.7[18.7] 68.7[82.6]

(B) 0.2 L 1.12[1.00] 1.108[1.097] 1.128[1.122] 15.3[14.7] 23.3[22.6] 44.4[24.4]

U 1.57[1.96] 1.113[1.113] 1.163[1.236] 15.6[15.7] 23.6[23.6] 82.6[101.7]

(C) 0.2 L 1.15[1.00] 0.966[0.954] 0.974[0.971] 16.9[16.0] 25.2[24.2] 47.5[26.1]

U 1.62[2.01] 0.968[0.968] 1.000[1.091] 17.2[17.2] 25.5[25.6] 88.5[111.5]

(D) 0.2 L 1.22[1.03] 0.738[0.728] 0.744[0.742] 20.3[19.2] 29.7[28.3] 55.9[30.7]

U 1.72[2.13] 0.740[0.740] 0.766[0.849] 20.7[20.7] 30.1[30.1] 106.4[131.0]

(A) 0.8 L 1.39[1.20] 1.702[0.000] 1.782[1.571] 9.9[7.5] 18.1[18.1] 6.6[2.0]

U 2.20[3.72] 1.754[1.755] 2.166[2.166] 11.3[11.4] 18.6[22.3] 18.5[25.5]

(B) 0.8 L 1.53[1.31] 1.009[0.000] 1.172[1.141] 13.1[11.0] 21.1[20.2] 7.7[3.2]

U 2.31[3.35] 1.107[1.111] 1.463[1.782] 15.2[15.5] 23.2[23.5] 22.8[30.7]

(C) 0.8 L 1.61[1.30] 0.858[0.000] 1.010[0.983] 14.3[12.3] 22.4[21.0] 8.3[3.6]

U 2.33[3.20] 0.965[0.967] 1.289[1.568] 16.8[17.1] 25.1[25.4] 25.0[32.9]

(D) 0.8 L 1.66[1.41] 0.631[0.000] 0.775[0.750] 16.8[14.7] 25.4[23.1] 9.5[4.4]

U 2.47[3.10] 0.737[0.740] 1.011[1.212] 20.2[20.6] 29.5[30.0] 29.3[38.6]

(van der Klis 2000). Now, as pointed out in Bhattacharyya
et al. (2000), the maximum possible frequency (i.e., the
shortest time scale) of the system should be given by
the rotational frequency in ISCO (νin; Col. 5 of the ta-
bles). Therefore, the stiffest EOS model D is unfavoured
for cos i = 0.2 for the source XB 1820-30, as the

maximum value of νin (=0.941 kHz, Table 2) is less than
the observed maximum kHz QPO frequency. For the same
reason, EOS model D is unfavoured for cos i = 0.2 for the
source GX 17+2. It can also be seen from Table 3 that if
we use only the narrower limits on the luminosities and
colour temperature, EOS model D (for cos i = 0.8) and
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Table 4. Observational constraints for various EOS models: (A), (B), (C), (D) for the source GX 9+1. Other specifications are
same as in Table 2.

EOS cos i f ν∗ νin R rmax
eff Ṁ

kHz kHz km km Ṁe

(A) 0.2 L 1.33[1.13] 1.755[1.755] 1.756[1.756] 11.4[11.4] 18.7[18.7] 36.9[22.8]

U 1.85[2.25] 1.755[1.755] 1.756[1.761] 11.4[11.4] 18.7[18.7] 59.9[72.0]

(B) 0.2 L 1.47[1.24] 1.112[1.110] 1.120[1.117] 15.6[15.4] 23.6[23.4] 43.4[27.4]

U 2.04[2.49] 1.114[1.114] 1.130[1.147] 15.7[15.7] 23.6[23.7] 73.6[90.6]

(C) 0.2 L 1.51[1.28] 0.968[0.967] 0.970[0.970] 17.2[17.1] 25.5[25.4] 47.5[29.3]

U 2.09[2.56] 0.968[0.968] 0.975[0.986] 17.3[17.3] 25.6[25.6] 80.7[99.3]

(D) 0.2 L 1.61[1.36] 0.740[0.739] 0.742[0.741] 20.7[20.5] 30.1[29.9] 55.9[34.4]

U 2.24[2.74] 0.740[0.740] 0.745[0.754] 20.7[20.7] 30.1[30.1] 94.9[116.7]

(A) 0.8 L 1.84[1.61] 1.752[1.728] 1.756[1.756] 11.2[10.3] 18.6[18.1] 7.9[3.8]

U 2.69[3.52] 1.755[1.755] 1.815[2.064] 11.4[11.4] 18.7[18.7] 16.5[20.3]

(B) 0.8 L 2.05[1.80] 1.103[1.064] 1.136[1.126] 15.0[13.8] 22.9[21.7] 9.7[4.6]

U 2.92[3.72] 1.112[1.113] 1.200[1.361] 15.5[15.6] 23.5[23.6] 19.4[24.4]

(C) 0.8 L 2.10[1.80] 0.961[0.919] 0.978[0.972] 16.5[15.0] 24.8[23.2] 10.4[5.0]

U 3.00[3.81] 0.968[0.968] 1.041[1.195] 17.2[17.2] 25.5[25.6] 21.2[26.7]

(D) 0.8 L 2.24[1.92] 0.734[0.692] 0.748[0.743] 19.8[17.8] 29.0[26.7] 12.2[5.7]

U 3.19[4.00] 0.740[0.740] 0.802[0.932] 20.6[20.7] 30.0[30.1] 25.0[31.4]

Table 5. Observational constraints for various EOS models: (A), (B), (C), (D) for the source GX 349+2. Other specifications
are same as in Table 2.

EOS cos i f ν∗ νin R rmax
eff Ṁ

kHz kHz km km Ṁe

(A) 0.2 L 1.12[1.00] 1.755[1.754] 1.756[1.756] 11.4[11.4] 18.7[18.7] 50.9[30.7]

U 1.55[1.92] 1.755[1.755] 1.756[1.771] 11.4[11.4] 18.7[18.7] 86.4[103.9]

(B) 0.2 L 1.24[1.04] 1.112[1.109] 1.122[1.119] 15.5[15.3] 23.5[23.3] 61.2[37.7]

U 1.72[2.11] 1.113[1.114] 1.137[1.159] 15.7[15.7] 23.6[23.7] 106.3[130.8]

(C) 0.2 L 1.27[1.08] 0.968[0.966] 0.971[0.970] 17.2[17.0] 25.5[25.3] 67.1[40.4]

U 1.76[2.17] 0.968[0.968] 0.979[1.000] 17.2[17.3] 25.6[25.6] 116.6[140.1]

(D) 0.2 L 1.35[1.14] 0.740[0.738] 0.742[0.741] 20.6[20.4] 30.0[29.7] 78.8[47.5]

U 1.88[2.31] 0.740[0.740] 0.748[0.765] 20.7[20.7] 30.1[30.1] 136.9[168.5]

(A) 0.8 L 1.55[1.34] 1.748[1.678] 1.760[1.756] 11.0[9.7] 18.4[18.1] 10.6[4.5]

U 2.29[3.10] 1.755[1.755] 1.879[2.147] 11.4[11.4] 18.7[18.7] 23.3[30.0]

(B) 0.8 L 1.71[1.50] 1.096[0.955] 1.148[1.129] 14.6[12.7] 22.6[20.7] 13.1[5.2]

U 2.47[3.22] 1.110[1.112] 1.244[1.532] 15.4[15.6] 23.4[23.6] 28.0[36.0]

(C) 0.8 L 1.76[1.53] 0.953[0.798] 0.984[0.974] 16.0[13.8] 24.2[21.9] 14.0[5.6]

U 2.54[3.30] 0.967[0.968] 1.093[1.350] 17.1[17.2] 25.4[25.5] 30.7[38.6]

(D) 0.8 L 1.87[1.61] 0.727[0.557] 0.753[0.744] 19.1[16.2] 28.2[24.6] 16.5[6.3]

U 2.69[3.40] 0.739[0.740] 0.845[1.069] 20.6[20.7] 29.9[30.1] 36.0[46.4]

EOS model C (for cos i = 0.2) are unfavoured for the
same source. Same is true for EOS model D for the source
GX 349+2. As we also see from Table 5, EOS model C is
unfavoured for cos i = 0.2 for this source. Therefore, we
may conclude that the stiffer EOS models are unfavoured
by our results.

We have ignored the magnetic fields of the neutron
stars in our calculations. Therefore, the necessary condi-
tion for the validity of our results is that the Alfvén radius

(rA) be less than the radius of the inner edge of the disc.
This condition will always be valid if R > rA holds. Here
rA is given by (Shapiro & Teukolsky 1983),

rA = 2.9× 108(
Ṁ

Ṁe

)
−2/7

µ
4/7
30 (

M

M�
)−3/7 (10)

where M is the mass of the neutron star, µ30 is the mag-
netic moment in units of 1030 G cm3 and rA is in cm. With
typical values of the parameters for the chosen sources



530 Sudip Bhattacharyya: Accretion discs around rapidly rotating neutron stars

(R = 10 km, M = 1.4 M� and Ṁ = 10 Ṁe), the upper
limit of the neutron star surface magnetic field comes out
to be about 2×108 G. Therefore, our results are in general
valid for the neutron star magnetic field upto of the order
of 108 G. This is a reasonable value for the magnetic field
of neutron stars in LMXBs, as mentioned in Sect. 1.

It is also to be noted that our results are valid for a
thin blackbody disc. However, as the spectra of the sources
were well-fitted by a multicolour blackbody (plus a black-
body, presumably coming from the boundary layer; White
et al. 1988), the assumption of thin blackbody disc may
be correct.

4. Summary

In this paper, we have constrained the values of two neu-
tron star parameters (spin frequency and equatorial ra-
dius) for the four LMXBs: XB 1820-30, GX 17+2, GX 9+1
and GX 349+2. We have also calculated the allowed ranges
of the colour factor (for accretion disc), rotational fre-
quency (νin) of a particle in the ISCO, the radius (rmax

eff )
where the effective disc temperature is maximum and the
accretion rate for these sources. These have been done
for a chosen mass 1.4 M� (canonical mass) of the neutron
stars and two values of inclination angles (cos i = 0.2, 0.8).
The whole work has been repeated for four EOS models
(from very soft to very stiff).

We have drawn the following main conclusions from
our study. A comparison between the kHz QPO frequen-
cies (observed from the sources) and our calculated val-
ues of νin has shown that the stiffer EOS models are un-
favoured. By the constraining procedure, we have got very
high accretion rates for all the sources, which is in ac-
cordance with their high luminosities. The neutron stars
in the sources GX 9+1 and GX 349+2 have been found
to be very rapidly rotating, and those in the other two
sources may also be rapidly rotating (although we can
not say decisively). This is in accordance with the belief
that LMXBs are the progenitors of millisecond pulsars.
It also shows that while calculating the spectral models,
taking the rapid rotation of neutron stars into account is
very important.

It is difficult to constrain EOS models effectively with
the poor quality EXOSAT data. However, the present
generation X–ray satellites Chandra and XMM have
much better resolving power. For example, the resolv-
ing power of Chandra HETGS is 60–1000 in the energy
range 0.5–10.0 keV. The future generation X–ray satel-
lite Constellation-X will have even better resolving power
(upto 3000). With the spectral data of these X–ray ob-
servatories, it may be possible to constrain EOS models
and other parameters of LMXBs effectively. Therefore we
propose that it is essential to compute EOS-dependent
general relativistic spectral models to utilise these good
quality data in a fruitful way.
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Appendix

Here we give Einstein’s field equations and the equation
of hydrostatic equilibrium that were solved for the com-
putation of the structure of the rapidly rotating neutron
star. For an axisymmetric and equatorial plane symmet-
ric configuration, the computational domain in spherical
polar coordinates covers 0 ≤ r ≤ ∞ and 0 ≤ θ ≤ π/2.
For numerical convenience, we make a change of variables
(r → s and θ → µ) given by r̃ = r̃e

s
1−s and θ = cos−1 µ,

where r̄e is the quasi–isotropic radial coordinate of the
equator. It is easy to see that s and µ vary in the range
0 ≤ s ≤ 1 and 0 ≤ µ ≤ 1 and at the equator s = 0.5.

The four Einstein’s equations (Cook et al. 1994) to
solve are given below:

ρ(s, µ) =−e−γ/2
∞∑
n=0

P2n(µ)
[(

1− s
s

)2n+1∫ s

0

ds′s′2n

(1−s′)2n+2

×
∫ 1

0

dµ′P2n(µ′)S̃ρ(s′, µ′) +
(

s

1− s

)2n

×
∫ 1

s

ds′(1− s′)2n−1

s′2n+1

∫ 1

0

dµ′P2n(µ′)S̃ρ(s′, µ′)
]

(11)

γ(s, µ) = −2e−γ/2

π

∞∑
n=1

sin[(2n− 1)θ]
(2n− 1) sin θ

[(
1− s
s

)2n

×
∫ s

0

ds′s′2n−1

(1− s′)2n+1

∫ 1

0

dµ′ sin[(2n− 1)θ′]S̃γ(s′, µ′)

+
(

s

1− s

)2n−2 ∫ 1

s

ds′(1− s′)2n−3

s′2n−1

×
∫ 1

0

dµ′ sin[(2n− 1)θ′]S̃γ(s′, µ′)
]

(12)

ω̂(s, µ) = −e(2ρ−γ)/2
∞∑
n=1

P 1
2n−1(µ)

2n(2n− 1) sin θ

[(
1− s
s

)2n+1

×
∫ s

0

ds′s′2n

(1− s′)2n+2

∫ 1

0

dµ′ sin θ′P 1
2n−1(µ′)S̃ω̂(s′, µ′)

+
(

s

1− s

)2n−2 ∫ 1

s

ds′(1− s′)2n−3

s′2n−1

×
∫ 1

0

dµ′ sin θ′P 1
2n−1(µ′)S̃ω̂(s′, µ′)

]
(13)
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α,µ = −1
2

(ρ,µ + γ,µ)− {(1− µ2)[1 + s(1− s)γ,s]2

+[−µ+ (1− µ2)γ,µ]2}−1

[
1
2
{s(1− s)[s(1− s)γ,s],s

+s2(1− s)2γ2
,s − [(1− µ2)γ,µ],µ

−γ,µ[−µ+ (1− µ2)γ,µ]}[−µ+ (1− µ2)γ,µ]

+
1
4

[s2(1− s)2(ρ,s + γ,s)2 − (1− µ2)(ρ,µ + γ,µ)2]

×[−µ+ (1− µ2)γ,µ]− s(1− s)(1− µ2)

×
(

1
2

(ρ,s + γ,s)(ρ,µ + γ,µ) + γ,sµ + γ,sγ,µ

)
×[1 + s(1− s)γ,s] + s(1− s)µγ,s[1 + s(1− s)γ,s]

+
1
4

(1− µ2)e−2ρ

{
2
s3

1− s (1− µ2)ω̂,sω̂,µ

×[1+s(1− s)γ,s]−
(
s4ω̂2

,s−
s2

(1− s)2
(1− µ2)ω̂2

,s

)
×[−µ+ (1− µ2)γ,µ]

}]
(14)

where Pn(µ) are the Legendre polynomials, Pmn (µ) are the
associated Legendre polynomials and sin(nθ) is a function
of µ through θ = cos−1 µ. The effective sources S̃’s are
defined as (Cook et al. 1994)

S̃ρ(s, µ) = eγ/2
[
8πe2αr̃2

e (ε̃+ P̃ )
(

s

1− s

)2 1 + ṽ2

1− ṽ2

+
(

s

1− s

)2

(1− µ2)e−2ρ{[s(1− s)ω̂,s]2 + (1− µ2)ω̂2
,µ}

+s(1− s)γ,s − µγ,µ +
ρ

2

{
16πe2αr̃2

e P̃

(
s

1− s

)2

−s(1− s)γ,s
(
s(1− s)

2
γ,s + 1

)
−γ,µ

(
1− µ2

2
γ,µ − µ

)}]
(15)

S̃γ(s, µ) = eγ/2
[
16πe2αr̃2

e P̃

(
s

1− s

)2

+
γ

2

{
16πe2αr̃2

e P̃

(
s

1− s

)2

−s
2(1− s)2

2
γ2
,s −

1− µ2

2
γ2
,µ

}]
(16)

S̃ω̂(s, µ) = e(γ−2ρ)/2

[
− 16πe2α (Ω̂∗ − ω̂)

1− ṽ2
r̃2
e (ε̃+ P̃ )

×
(

s

1− s

)2

+ ω̂

{
− 8πe2αr̃2

e

(1 + ṽ2)ε̃+ 2ṽ2P̃

1− ṽ2

×
(

s

1−s

)2

−s(1−s)
(

2ρ,s +
1
2
γ,s

)
+µ
(

2ρ,µ+
1
2
γ,µ

)
+
s2(1− s)2

4
(4ρ2

,s − γ2
,s) +

1− µ2

4
(4ρ2

,µ − γ2
,µ)

−(1− µ2)e−2ρ

(
s4ω̂2

,s +
s2(1− µ2)
(1− s)2

ω̂2
,µ

)}]
(17)

where ω̂ ≡ r̃eω̃ and Ω̂∗ ≡ r̃eΩ̃∗. Here the tilde over a
variable represents the corresponding dimensionless quan-
tity and the variables ε and P (not to be confused with
Legendre polynomials, that always have a function of “n”
as the subscript) represent mass–energy density and pres-
sure respectively.

The equation of hydrostatic equilibrium for a bary-
tropic fluid is

h(P̃ )− hp ≡
∫ P̃

P̃p

dP̃
ε̃+ P̃

= lnut − lnut
p −

∫ Ω̃∗

Ω̃∗,c

F (Ω̃∗)dΩ̃∗ (18)

where h(P̃ ) is the dimensionless specific enthalpy as a
function of pressure and P̃p, u

t
p and hp are the dimension-

less values of pressure, t-component of the four–velocity
and the specific enthalpy at the pole. The quantity Ω̃∗,c
is the (dimensionless) central value of the angular speed,
which on the rotation axis is constant and equal to its
value at the pole. The quantity F (Ω̃∗) = utuφ is obtained
from an integrability condition on the equation of hydro-
static equilibrium. Choosing the form of this function fixes
the rotation law for the matter. Following Komatsu et al.
(1989), we set it to F (Ω̃∗) = A2(Ω̃∗,c − Ω̃∗). Here A is a
rotation constant such that rigid rotation is achieved in
the limit A → ∞. An appropriately chosen value of hp

defines the surface of the star.
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