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Abstract

Based on the standard idea that short cooling times imply continued heating, a method of
estimation of the amount of heating is developed and applied to the five examples of Krieger
(1978) assuming conduction to be the dominant cooling mechanism in plane parallel and line

dipole geometries.

As expected, one requires motre heating in former geometry than in the

latter. The required total energy supplied by heating is found to be comparable to the total

thermal energy

I. INTRODUCTION

In recent yeats, many investigators (Neupert et
al. 1974; Cheng and Widing 1975; Pallavicini et al.
1975; Widing and Cheng 1974; Vorpahl et al. 1977)
have noticed that the observed cooling times of the
solar coronal features are longer than the conductive
cooling times. Mainly two proposals have been put
forward to explain this discrepancy. In one, the con-
duction is inhibited either geometrically ( Neupert et al,
1974) ot through plasma turbulence (Cheng and Widing

1975; Widing and Cheng 1974). In the other, the
observed feature is somehow continuously heated
(Cheng and Widing 1975; Pallavicini et al. 1975;

Vorpahl et al. 1977).

Inarecent paper, Krieger (1978) thoroughly discussed
the discrepancy of obsecved and calculated cooling times.
Whether conduction is inhibited or not, this discrepancy
can always be removed by postulating a source of
continued heating, the indirect observational evidence
of which is now becoming available (Levine and
Withbroe 1977; Gerassimenko et al. 1978). All the
studieslisted abovelead one to arrive at the same conclu-
sion as stated above. Here, based on this standard
idea, we give a msthod of estimating the required
amount of heating with and without geometrical
inhibition. ’

II. THEORY

We make following simplifying assumptions :

1. Flow of energy takes place along the magnetic
field lines which are current-free above the

of the events under consideration.

chromosphere and the flow across the field-lines
can be ignored.

2. Temperatures are large so that the gravitational
effects can be ignored.

3. Conductive losses dominate over the radiative
ones.

4. All the variables can be written as a product-
of-two functions, one depending on time and
the other on arclength(s) along the field lines.

5. Thereis no exchange of plasma between flux-tube
and chromosphere, which implies that the
electron density is a function of arc-length
only.

Under the assumptions made above, the equation of
energy transfer in presence of a source of heating (Strauss
and Papagiannis 1971) is

52
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in which the coefficient of thermal conductivity is given
by (Spitzer 1962; Antiochos and Sturrock 1976)

k = X T8, « = 10°6. 2
Here nis the electron density, Athe Boltzmann constant,

T the plas_ma temperature, A the normalized area of
cross section of the flux-tube, R=H-D, H being the
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height of the loop above the chromosphere and D the
depth (Aatiochos and Sturrock, 1976), Q (o,t) is a
function of time and ¥ is a measure of the breadth of the
source. The nature of the source is left unspecified
for a comment to be made later. Using the hydrogen
plasma pressure (assuming it fully ionized)

p = 20kT, 3)

Eq. (2) and assumption (5), we obtain from (1) the
following for the pressure p

3 % dp < d dG _3.5-—_1_
— ) —=—— [A— 2R 2
2]’() v A ( dj)-}-.Q(OJ)P(f) e ¥R
Q)
with
2 —3-5
G(I)‘==7—[2éﬂ(f)] . : ©)

The general solution of (4) is possible only by
numerical methods. In order to simplify the approach,
we seek an analytical solution. A convenient choice
of the time-part of the heating term, which leads to such’
a solution, is '

Q(@,Hp(#)  =Dp,
; . ©

where Dp is a constant, independent of time. For

Al
simplicity, we assume it independent of arc-length also.
A discussion of this point will be given later.

Condition (6) makes (4) soluble by the method of
separation of variables. The time-part gives

5 25 -0'a
P =po[l——Ks po *]
3 @)
where Dy = p (t=0) and K| is the constant of separation.

This constant is chosen such that the heating decreases
with time. * A ‘particular choice is

: 3y -
Ks= - — Po T,
5 ®

where Uis the characteristic time of decay of a coronal
loop. Now (7) takes the form

! oega
2(#) =po(1 + T) .

o
The part depending on arc-length ‘s’ gives A
. . ;'2
< d i = -
_ (A ——) +DP c Yszz.: K_".
A ds ds (10)

Depending on the area of the cross section parameter A,
two cases arise :

(a) Plane Parallel Geometry :

In this case the area of cross section of the magnetic
fluxtube is throughout the same which implies

A= 1. (11)
On integrating (10) once, under the condition

dG . . o
= 0 at s.= 0, one obtains

ds
dG Dp K;
— b — L () = — s,
ds 4 < (12)
with ‘
52
B ¥2R2
I, (¥s) =J e ds. (13)
Thé second integration gives
Ky DP‘
G(J‘): G + — 52 — 12 (g;),
o 2« (14)
with
Awhj@(wﬂa-' S )
and

Go =G (J‘ =0).

Let the foot-points of the flux-tube be situated at a
distance of sp from its top (s=0). Then G(sp) = 0,
(5) and (8) lead to the following expression for the decay
time:

105 -1 PO Too -3.5 J'b2 .
, , . (16)

= =
Dp Po .
1-3.5 — |———] I, (¥sb)
4 Too
with

Too =T (s5=0,#=0).

(b) Line Dipole Geometry :

Here the area of the cross-section is proportional to
angle (see, e. g. Fig. 1 of Antiochos and Strurrock (1976)-
In particular, '
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A = cos?4b,
s=RS#. o (18)

Proceeding in the same ~way=ws-in e constant ~cress-
section case, the final expressions are

K,R? DpR?
G(0) = Go + —— ftan § — I, (%0,
2« « (19)
with
I (¢0) = YII (¥ 0) sec? 6 d6, (20)
where
02
— —Ya .
I, (¥0) = Je cos? 6§ dé. 1)
and
t tan 6
dipole = tp
0p

(22)
IOI. METHOD AND RESULTS
The heating function, in view of (1), (6) and (9), is
02

t -1.4
£(6,1) =.Qo(1+—-‘“> exp (— ——),
T ¥ 23)

35
Lo=Q0 (=0, t=0) = Dppo ,
249
It i§ obvious from (23) and (24) that one requires Dp,
20, T, ¥ and R for thé evaluation of the desired amount
of heating..
1
Ktieger (1978) teported observed cooling times (t)
assuming an exponential decay. Our Figure 1 shows
that to & good approximation the values of T reported
by him could be used in (23).
po can be calculated easily, using equation (3) and the
values of electron density (n) , and plasma temperature
(T4 2lso téported by Krieger (1978).
Following Antiochos and Strurrock (1976), the
compression factor [ is given as
A (6=0)
r=
A (0=0)

B (§=6p)
= = sec? 05,

B (8=o0)

(25)
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Fig. 1: Comparison of the decay rate of heating based

on an exponential law (solid line) and equation
(23) (broken line).

3. Flare loop (June 15)
4. Flare kernel (Sept. 1)
5. Flare kernel (Aug. 9).

in which B is the strength of the magnetic field. Using
(25), Krieger (1978) obtained the maximum possible
values of the compression factor (Imax) for all the 5
events considered by him. Then equations (18),
(25) and 2 sp = /give R in a straightforward manner.
The total length (/) of the loop has been taken from
Krieger (1978). The parameter Dp is obtained from
equations (13), (15), (16), (20)-(22) and the observed
values of the cooling times.

Corresponding to whether the whole loop, or a
half of it, or a small part of it is heated, we choose ¥=
1.0, 0.5 and 0.1, respectively. One can estimate
the amount of heating for any other reasonable value
of ¥ in the same way as in these representative cases.

In order to discuss the time-dependence of the
source of heating in the present model, we exhibit
present Q (o, #) | Qo against time (#) together with that
for an exponential decay, graphically.

The maximum amount of heating (Qp) estimated
for allthe 5 events, for the three above-mentioned values
of ¥, are presented in Table 1, along with the values
of R, for constant cross-section and line dipole geome-
tries. .

© Astronomical Society of India * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1980BASI....8...21E&amp;db_key=AST

OBASI - .. B D ZAED

rt

24
Tasre 1
| Oo (in erg cm-3 sec?)
¥ = 0.1 - ¥ =0.5 ¥ =1.0
X-ray event RY - -
type (1973) (cm) A=1 A=cos28 A=1 A=cos20 A=1 A=cos?0
Filament
disappearance 4.6% 2.0-3 . 4.0-¢ 9.1
Flare loop L : .
(Nov. 26) .. 6.98 2.3 3.1 0.46 7.0-2 0.24 4.5
Flare loop ‘ ) )
(June 15) 1.1° 1.1 - 1.0-2 0.22 1.0 0.11 1.0-2
Flare kernel : .
(Sep- 1) 5.67 1.19 3.52 2.22 7.81 1.22 5.1
Flare kernel .
(Aug. 9) 1.48 3.0 9.3t 6.0t 2.1+ 3.3t 1.4t
a The superscript denotes the power of ten by which the number is to be multiplied.
t Tne height of the loop above chromosphere differs from R by only about 10 per cent.
TasLE 2
Total amount of heating QF (in erg) .
Area of ¥=0.1 ¥=0.5 ¥=1.0
X-ray event type cross ‘
y(1973) P section A=1 A=cos?8 A=1 A=cos28 A=1 A—=cos?f
ats=0
(km?)
Filament :
disappearance 6.2% 1.929 .. 1.929 1.9%
l(:IlQa;\cr.l ?Zg%’ 1.37% - 4.528 6.0%7 4.5% 6.1% 4,528 6.0%7
l(qjlii:el?.f?)P 3.2 2.728 2.426 2.7%8 1.1%7 2.6% 1.720
Flare kernel - 6.6
(Sept. 1) 7.14 2.1 6.726 2.127 6.62%¢ 2.2 .
I(Xf; 1(93[“1 4.18 2.4 7.428 2.427 7.426 2.4 7.628
. \e .

a The supzrscript denotes the power of ten by which the number is to be multiplied.
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Thae total amount of heating may be estimated by
integrating the expression (23) as follows :

T 5h 62 o
£\"1-4 —_ —_——_—
0 =0 I (1+_) dr I e ¥ F.Ads, (26)
T o T B
o —sp

where P is the a-‘ual area of cross section of the flux-
tub: at the top. Since the value of F, in general, is
not aviilable, w2 mik: the assumption that the radius
r of the flux tube at the top is one tenth of the length.
In general, it is ;

w

b

_ ro\2 ro\2
=7 012 —) =70.25p2 | —|. (27
Fen( )[M) 02507 [— ) @)

Now (26) and (27) give:

5h 2

"L g ba[ s s
or=— ¢ ' (0.11)

Equatiorr (28) can now be used to estimate the total
amouit of heating for constant cross section (equation
(11}); and line dipole (equation (17)) geometries. The
redalts of these calculations are presented in  Table II.

IV. DISCUSSION AND CONCLUSION

*
It is obvious from Tables 1 and 2 that Qo and QT

in constant cross section geometry are larger than those
in line dipole geometry. This is quite expected. In
constant cross section geomeiry, no inhibition of
conduction takes place; consequently, flow of mass
and energy takes place freely. In order to observe the
same decay time, more heating is required. This
may bz considered as the upper limit of heating, becaus-
the presence of some inhibiting mechanism cannot be
ruled out (Neupert et al. 1974; Cheng and Widing
1975; Widing and Cheng 1974; Vorpahletal. 1977).
The inhibition of conduction can take place either geo-
meatrically or through plasma turbulence. For the events
considered here the plasma turbulence generated by
temperature gradient has been ruled out (Krieger
1978). Consequently we consider here geometrical
inhibition only. We have used maximum possible
values of compression factor which implies that the
geometrical inhibition is maximum. As a result, the
amount of heating in line-dipole case represents the
lower limit. This means that the direct observations,
if possible, are likely to give values in between the two
limits mentioned above.

25
Table 1 also shows that O for small ¥ is larger than
o ‘ o o

that for large ¥. This is also quite expected. ¥ — 0.1
represents that roughly 1/10 of the flux-tubé is heated,
whereas ¥ = 0.5 means that approximately half of it is
heated.* Thus, to observe the same decay time in the
former case,” one needs more energy at the top than
in the latter casel™ e \d

Fig. 1 shows that at the beginning of the cooling
phase, the rate of decay of heating agcording to our
formula (23) is a little faster than that fog an exponential
decay, which was assumed by Kriegar (1978) while
deducing the values of observed decay times. As the
time progresses, the latter becomes faster than that in
the present case. This behaviour is quitg similar to that
of Culhane et al. (1970) for the decay pf temperature
(their Figure 2). '

The time-dependence in the present kgwde] comes
from our assumptions (3) and (5). AsSumption (3)
is true only when the plasma temperature is appreciably
high. As the temperature decreases, other processes,
e.g., conduction driven evaporation (Antiochos and
Sturrock 1978) and radiation overtake it (Krall et al,
1978). Inthelight of the above statements, the present
rate of decay of heating is quite expected.

Strauss and Papagiannis (1971), using a similar
expression for the space part of the heating arrived at a
form of Q(o, #) (see, e.g., their Figure 4) by fitting it
to the observational data for the flare of June 20, 1968.
Consequently, we cannot compare our results with
theirs. A more realistic model will perhaps give a better
description of the rate of decay of heating.

Various mechanisms have been proposed for the
heating of solar coronal leops (Athay 1976; Svestka
1976). We do not consider our present model capable
of discriminating among them ; consequently it is
leftto alater and more sophisticated study. Itis obvious
from Table 2 that the required total energy supplied
by heating is in the ramge 1026 to 102 ergs. This is
comparable to the total thermal energy of the events
under consideration.

All static models including the preseat one predict
the transmission of high heat fluxes to the transition
zone and the upper chromosphere (Antiochos and
Sturrock 1976, 78; Krieger 1978), the observational
evidence of which does not seem to be available. This
discrepancy can be removed by taking exchange of
plasma between the coronal loop and the chromosphere
into account (Antiochos and Sturrock 1978). This
amounts to relaxing assumption (5). Further, the
numerical approach is the most appropriate way to solve
equation (4) or its modified versions. Our efforts
in these directions are in progress and the results will
be reported later.
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