© Indian Academy of Sciences

PRAMANA — journal of physics Vol. 59, No. 2 August 2002 pp. 175–179

Spin squeezing and quantum correlations

K S MALLESH¹, SWARNAMALA SIRSI², MAHMOUD A A SBAIH¹, P N DEEPAK¹ and G RAMACHANDRAN³

¹Department of Studies in Physics, University of Mysore, Mysore 570 006, India

² Department of Physics, Yuvaraja's College, University of Mysore, Mysore 570 005, India

³Indian Institute of Astrophysics, Bangalore 560 034, India

Abstract. We discuss the notion of spin squeezing considering two mutually exclusive classes of spin-*s* states, namely, oriented and non-oriented states. Our analysis shows that the oriented states are not squeezed while non-oriented states exhibit squeezing. We also present a new scheme for construction of spin-*s* states using 2s spinors oriented along different axes. Taking the case of s = 1, we show that the 'non-oriented' nature and hence squeezing arise from the intrinsic quantum correlations that exist among the spinors in the coupled state.

Keywords. Squeezing; spin; quantum correlation.

PACS Nos 03.65.-W; 03.65.Ta

1. Introduction

It is well-known that the state of a harmonic oscillator is said to be squeezed if the variance Δx^2 or Δp^2 is less than $\frac{1}{2}$ which is the minimum uncertainty limit. Although squeezing is thus unambiguously defined in the case of bosonic systems [1] its definition in the context of spin needs careful consideration. A comparison of the uncertainty relations satisfied by the components of the spin operator \vec{S} ,

$$\Delta S_x^2 \Delta S_y^2 \ge \frac{\langle S_z \rangle^2}{4}, \quad x, y, z \quad \text{cyclic}, \tag{1}$$

with

$$\Delta x^2 \Delta p^2 \ge \frac{1}{4},\tag{2}$$

would naturally suggest that a spin state could be regarded as squeezed if ΔS_x^2 or ΔS_y^2 is smaller than $|\langle S_z \rangle|/2$, where the expectation value and the variances are calculated in some arbitrary coordinate system. Indeed this has been used as the squeezing criterion in the literature [2]. Such a definition does not take into consideration the existence of quantum correlations and is coordinate dependent. In an attempt to arrive at a proper criterion for squeezing, Kitagawa and Ueda [2] have considered a model in which a spin-s

K S Mallesh et al

state is visualized as being built out of 2*s* elementary spin- $\frac{1}{2}$ states. A coherent spin-*s* state (CSS) $|\theta, \phi\rangle$ can then be thought of as having no quantum correlations as the constituent 2*s* elementary spins point in the same direction $\hat{n}(\theta, \phi)$, which is the mean spin direction.

2. State classification and squeezing

In order to discuss squeezing, we begin with the squeezing condition itself. Referring to [2,4] we adopt the following definition: A spin-*s* state is squeezed in the spin component normal to the mean spin direction \hat{n} if

$$\Delta \left(\vec{S}.\hat{n}_{\perp}\right)^{2} < \frac{|\langle \vec{S}.\hat{n} \rangle|}{2}, \quad \hat{n} = \frac{\langle \vec{S} \rangle}{\sqrt{\langle \vec{S} \rangle.\langle \vec{S} \rangle}}, \quad \hat{n}.\hat{n}_{\perp} = 0.$$
(3)

It is easy to see that the familiar angular momentum states $|sm\rangle_{\hat{n}}$ are not squeezed. But one can however consider superpositions of the states $|sm\rangle_{\hat{k}}$ of the form

$$|\psi\rangle = \sum_{m} C_{m} |sm\rangle_{\hat{k}},\tag{4}$$

and investigate if these exhibit squeezing or not. For this purpose, we classify such states into two mutually exclusive classes, namely, the oriented and non-oriented states, which together exhaust all pure states in the 2s + 1 dimensional spin space of the system.

An oriented spin state by definition is a state $|\psi\rangle$ of the form

$$|\psi\rangle = |sm'\rangle_{\hat{k}'} = \sum_{m} D^{s}_{mm'} \left(\alpha\beta\gamma\right) |sm\rangle_{\hat{k}}.$$
(5)

Here D^s denote the standard rotation matrices and α , β , γ are the Euler angles taking $\hat{i}\hat{j}\hat{k}$ to $\hat{i}'\hat{j}'\hat{k}'$. If we now calculate the variance perpendicular to the mean spin direction, it indeed turns out to be exactly equal to

$$\Delta \left(\vec{S} . \hat{n}_{\perp} \right)^2 = \frac{1}{2} \left(s \left(s + 1 \right) - m^{2} \right), \tag{6}$$

which is never less than $\frac{1}{2} |\langle \vec{S} \cdot \hat{n} \rangle|$. Thus no oriented pure state is a squeezed state.

Any normalized spin-s state $|\psi\rangle$ of the form (4) is, in general, specified by 4s real independent parameters. The oriented states described above are specified at the most by the three independent Euler angles α , β and γ . Since 4s > 3, for $s \ge 1$, there exist states which are not oriented. In other words, there exist states which can not be identified as eigen states of S^2 and S_z with respect to any choice of the axis of quantization. We refer to such states as non-oriented. While an oriented state is characterized by a single direction, viz., the axis of quantization (specified by two real variables θ, ϕ) in the physical space, a non-oriented state could be characterized by more than one direction. In order to see whether squeezing exists for a non-oriented state we now start with an arbitrary state $|\psi\rangle$ and first determine its mean spin direction \hat{z}_0 . The most general spin-1 state that possesses a non-zero mean spin value $\langle \vec{S} \rangle$, can be written in the form

$$|\psi\rangle = \cos\delta |1,1\rangle_{\hat{z}_0} + \sin\delta |1,-1\rangle_{\hat{z}_0}, \qquad 0 < \delta < \pi, \tag{7}$$

Pramana - J. Phys., Vol. 59, No. 2, August 2002

176

where $|1, m_0\rangle_{\hat{z}_0}$ are the angular momentum states specified with respect to \hat{z}_0 . This state is obviously non-oriented for all values of δ other than $0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi$. For such a state referred to the frame $x_0y_0z_0$, the squeezing conditions for S_{x_0} and S_{y_0} are respectively given by

$$1 + \sin 2\delta < |\cos 2\delta| \tag{8}$$

and

$$1 - \sin 2\delta < |\cos 2\delta|. \tag{9}$$

These conditions are indeed separately valid for the entire range except for $\delta = 0$, $\frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi$, which implies that a non-oriented state $|\psi\rangle$ is indeed a squeezed state.

3. Quantum correlations

Having thus identified the squeezed states in the spin-1 case, it is of interest to analyse in quantitative terms if squeezing in spin systems arises from the existence of quantum correlations. This can be done by employing the model in which a spin-*s* state is constructed using $2s \text{ spin}-\frac{1}{2}$ states. Majorana's geometric realization [5] of a spin-*s* state as a constellation of 2s points on a sphere leads to Schwinger's idea [6] of realising $|sm\rangle$ states in the form

$$|sm\rangle = \frac{\left(a_{+}^{\dagger}\right)^{s+m} \left(a_{-}^{\dagger}\right)^{s-m}}{\left((s+m)! \left(s-m\right)!\right)^{\frac{1}{2}}}|00\rangle,\tag{10}$$

where $a_{+}^{\dagger}, a_{-}^{\dagger}$ are the creation operators for the spin 'up' and spin 'down' states, respectively. It must be noted here that spin 'up' and spin 'down' states as well as $|sm\rangle$ states are all referred to the same axis of quantization.

At this point, we would like to generalize this realization by taking the 2s 'up' spinors $u(\theta_l, \phi_l)$, l = 1, ..., 2s, where the *k*th spinor is specified with respect to an axis of quantization $\hat{Q}_k(\theta_k \phi_k)$ in the physical space. Coupling 2s spin- $\frac{1}{2}$ states in this way leads to a spin-s state in the form (4), where the coefficients C_m are given by

$$C_m = N_s d_m, \quad N_s^{-1} = \left(\sum_{m=-s}^s |d_m|^2\right)^{1/2}$$
 (11)

and

$$d_{m} = \sum_{\substack{m_{1}, \dots, m_{2s-1} \\ m_{1} \neq 1}} C(\frac{1}{2} \frac{1}{2} 1; \ m_{1} m_{2} \mu_{1}) C(1 \frac{1}{2} \frac{3}{2}; \ \mu_{1} m_{3} \mu_{2}) \cdots C(s - \frac{1}{2} \frac{1}{2} s; \ \mu_{2s-2} m_{2s} m)$$
$$\times D^{\frac{1}{2}}_{\substack{m_{1} \neq 2 \\ m_{1} \neq 2}} (\phi_{1} \theta_{1} 0) \cdots D^{\frac{1}{2}}_{\substack{m_{2s} \neq 2 \\ m_{2s} \neq 2}} (\phi_{2s} \theta_{2s} 0).$$
(12)

Thus our construction of a spin-s state $|\psi\rangle$ is done using 2s spin- $\frac{1}{2}$ states which are specified with respect to 2s different directions, $\hat{Q}_1, \hat{Q}_2, \dots, \hat{Q}_{2s}$ in general. In particular, if $\hat{Q}_1 = \pm \hat{Q}_2 = \dots = \pm \hat{Q}_{2s}$, then our construction specializes to the realization suggested

K S Mallesh et al

by Schwinger and employed in refs [2–4]. Indeed, in this particular case, the spin state realized is nothing but an oriented state $|sm\rangle$. The significance of our construction lies in the fact that if $\hat{Q}_l \neq \pm \hat{Q}_m$ for at least two quantization directions, the state realized is a non-oriented state of spin-s.

Considering in particular the simplest case of s = 1, we note that such a construction can be carried out using two spinors specified with respect to $\hat{Q}_1(\theta_1\phi_1)$ and $\hat{Q}_2(\theta_2\phi_2)$ so that the spin-1 state

$$|\psi\rangle = N_1 \sum_{m_1,m} D_{m_11/2}^{1/2}(\phi_1 \theta_1 0) D_{m_2 \frac{1}{2}}^{1/2}(\phi_2 \theta_2 0) C(\frac{1}{2} \frac{1}{2} 1; m_1 m_2 m) |(\frac{1}{2} \frac{1}{2}) 1 m\rangle$$
(13)

in the lab frame $\hat{i}\hat{j}\hat{k}$ is non-oriented if $\hat{Q}_1 \neq \pm \hat{Q}_2$. The mean spin direction \hat{z}_0 for such a state happens to be along the bisector of the two directions \hat{Q}_1 and \hat{Q}_2 . The squeezing condition for S_{x_0} now takes the form

$$\cos^2\theta < |\cos\theta| \tag{14}$$

which is satisfied for all θ except when $\theta = 0$, $\pi/2$, π . The absence of squeezing for $\theta = 0$, $\pi/2$, π is obvious as the two axes then merge together giving an oriented state. Thus in all other cases the state $|\psi\rangle$ is squeezed in the spin component S_{x_0} and is non-oriented by construction.

We now establish explicitly for s = 1, the connection between squeezing and the spinspin correlations that exist between the component spinors. Any spin-1 state constructed using the two spinors is said to possess spin correlations if the matrix C^{12} defined through its elements

$$C_{\mu\nu}^{12} = \Delta(S_{1\mu}S_{2\nu}) = \langle S_{1\mu}S_{2\nu} \rangle - \langle S_{1\mu} \rangle \langle S_{2\nu} \rangle$$
(15)

is non-zero. Here $S_{1\mu}$ and $S_{2\nu}$ are the spin components associated with the two spinors and the angular brackets denote the expectation values with respect to the coupled state. For the state $|\psi\rangle$ in (7), the correlation matrix is diagonal in the frame $x_0y_0z_0$ with the 'diagonal' or the 'eigen' correlation elements given by

$$C_{x_0x_0}^{12} = -\left[\frac{\sin^2\theta}{4(1+\cos^2\theta)}\right] = -C_{y_0y_0}^{12}, \quad C_{z_0z_0}^{12} = \left[\frac{\sin^2\theta}{2(1+\cos^2\theta)}\right]^2.$$
 (16)

A glance at these expressions shows that when $\theta = 0$, $\pi/2$, π , the values of the correlations are either 0 or $\pm 1/4$. On the other hand for all other values of θ , the eigen correlations satisfy

$$0 < |C_{ii}^{12}| < 1/4, \quad i = x_0, y_0, z_0.$$
⁽¹⁷⁾

In other words, all non-oriented spin-1 states have the eigen correlations restricted to the above range. One can also see that the trace of the correlation matrix is

$$\operatorname{Tr}(C^{12}) = \left[\frac{\sin^2\theta}{2(1+\cos^2\theta)}\right]^2.$$
(18)

This being invariant under rotations of the coordinate frames, satisfies the condition

178 Pramana – J. Phys., Vol. 59, No. 2, August 2002

Spin squeezing and quantum correlations

$$0 \le \operatorname{Tr}(C^{12}) \le 1/4.$$
 (19)

Indeed if a given coupled state has a correlation matrix that satisfies this condition, the state is squeezed. We can find the value of θ through

$$\cos\theta = \pm \left[\frac{1 - 2\sqrt{\text{Tr}(C^{12})}}{1 + 2\sqrt{\text{Tr}(C^{12})}}\right]^{1/2},\tag{20}$$

which identifies the structure of the state in terms of the two spinors. The four values of θ that satisfy the above equation correspond to the directions $\pm \hat{Q}_1$ and $\pm \hat{Q}_2$. Thus we conclude that the trace condition (19) on the correlation matrix is the necessary and sufficient condition for a spin-1 state to be squeezed.

4. Conclusions

We have classified spin states into two mutually exclusive classes, namely, oriented and non-oriented states, and studied their squeezing properties. It is clear from our analysis that squeezing is exhibited only by non-oriented states. Considering in particular the non-oriented states of a spin-1 system, we have shown that they exhibit squeezing. This has been illustrated in two different ways: first by looking at the non-oriented nature of the spin-1 state itself, and secondly, by introducing a new form of coupling in which two spin- $\frac{1}{2}$ states add up to give the required spin-1 non-oriented state. Our construction gives a quantitative description of the existence of quantum correlations as well as an indication as to how they lead to non-oriented nature and hence to the squeezing behavior.

This intimate relationship between squeezing and 'non-oriented' nature indeed suggests a way to prepare a squeezed state. The non-oriented states are potential candidates for observing squeezing experimentally. A recent study by Ramachandran and Deepak [7] reveals that the collision of a spin- $\frac{1}{2}$ beam with a spin- $\frac{1}{2}$ target, both oriented in different directions, leads to a combined spin state which is non-oriented.

Acknowledgements

The authors (GR and PND) acknowledge with thanks the financial support of CSIR, India.

References

- [1] H J Kimble and D F Walls (eds), J. Opt. Soc. B4, 1450 (1987)
- [2] M Kitagawa and M Ueda, Phys. Rev. A47, 5138 (1993)
- [3] D J Wineland *et al*, *Phys. Rev.* A46, 6797 (1992)
- [4] R R Puri, Pramana J. Phys. 48, 787 (1997)
- G S Agarwal and R R Puri, Phys. Rev. A49, 4968 (1994)
- [5] E Majorana, Nuovo Cimento 9, 43 (1932)
- [6] J Schwinger, in *Quantum theory in angular momentum* edited by L C Biedenharn and H Van Dam (Academic Press, NY, 1965)
- [7] G Ramachandran and P N Deepak, Proc. DAE Symp. on Nucl. Phys. edited by V M Datar and A B Santra, B40, 300 (1997)

Pramana – J. Phys., Vol. 59, No. 2, August 2002 179