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Abstract

An observation of a c:lestial source generally results in data which are insufficient for a
unique reconstruction of the desired brightness profiles of the source. Two typical situations are
considered her¢e which pettain to the reconstruction of an object from the measurements of (A) an
incomplete set of its Fourier components, and (B) of a diffraction limited image of the object.
The inadequacy of classical restoring schemes is evident from the violation of prior knowledge,
like positivity of the brightness profile. Various schemes have been developed over the list
decade for obtaining a restoration, which agrees with the measurements, as wellas our prior know-
ledge about the source. Four such schemes are reviewed and critically discussed here.
CLEAN is an iterative subtraction of point - components from a conventional map until the
residual map is no longer significant ahove the noise-levél. In Biraud’s method, the Fourier
components of the object are extrapolated im steps such that the object itself is described by a
positive function. A ‘ Maximum Eatropy Method ’ tries to define an ° entropy ’ characterising the
observations as well as prior knowledge and then obtains a solution which leads to a maximum
of this ‘ entropy . The last scheme, an ‘ Optimum Deconvolution Method’, attempts to optimize
the solution by imposing prior knowledge as constraints on a least-squares solution which is also
made to satisfy a smoothness requirement of a minimum variance of its second-differences. All
these methods have been found to restore the object considerably better than. the classical methods
even in the presence of noise. Computationally, CLEAN is the most attractive method and it
has been routinely ysed in processing two-dimensional maps with as large as v» 104 grid-points.

INTRODUCTION

In an observational science like radio astronomy,
an object of interest is seldom accessible to direct
measurements. Its physical properties have to be
inferred from the radiation emitted by it. Unfor-
tunately, this radiatien can be detected only after it
undergoes an appreciable modification in the inter-
vening medium and/or the observing instrument. In
many cases, such modifications can be approximated
either by (A) 2 Fourier transform (FT) relation or
(B) a convolution with some known function chara-
cterising the observational environment. These are
quite general processes occurring in a wide variety of
situations like interferometry, diffraction, crystallo-
graphy, autocorrelation measurements, antenna pro-
blems, electrical filters and so on. The image-recons-
truction in such cases involves an ‘inverse problem’
in which the mathematical analysis is expected to
reverse the maturally occurring ° cause-effect * sequence.
The difficulty with such a problem can be seen from the
fact that even a fundamental limitation like the finiteness
ofthesize of an antenna or of the duration of a measure-
ment can make the given data entirely compatible with
abritrary aassumption outside the range of observations.
This means that an inverse problem does not possess
aunique solution and is therefore mathematically
‘ill-posed’. In order to define a meaningful solution
it is necessary to modify the original problem in such
a way that the modified, orthe °¢regularised’ ptoblem

possesses a2 “smooth ’ solution, which is stable against
minor perturbations in the given data (see Tikhonov
and Arsenin 1977 for an elaborate discussion).

Often the solution represents the brightness distri-
bution of sources in a given field of view or the power-
spectrum of the fluctuations of a certain physical pro-
perty in a medium. In such cases, any physically
meaningful solvtion to the problem should necessarily
be positive. Although such a prior knowledge about
the solution is generally availablein many practical
situations, classical methods usually fail to give
solutions compatible with the prior knowledge. Hence
thete have recently been several attempts to evolve
numerical schemes which ensure a physically meaning-
ful solution consistent with our prior knowledge as
well as being reasonably compatible with the obser
vations in the presence of noise.

The purpose of this paper is to review some
typical methods of Fourier inversion or deconvolution
developed and used in radio astronomy during the past
decade. We will also summarise the conventional
approach in order to highlight its inadequacy in this
context. In order to facilitate the discussion, we will

‘assume that the given observations have been formulated

in one of the following two equations:

-i2nux

(A): Q@)= e qt(x)dx -+ noise ; ot
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cwhere Q(#) or r(x') are the quantities which can be
obtained directly from the measurements and gy(x)
Is the true solution which we call the ‘object’. "The
variable # associated with x in the FT domain is a
spatial frequency if x denotes a spatial coordinate, but
we will refer to it simply ‘as a ‘frequency’ for brevity.
The asterisk (*) denotes a convolution as in<the above
equation. s

Since the main - difficulties in solving either of the
problems above can be appreciated more easily in
the FT domain, we take the FT of (B) which gives

R() = P(WQs (4) + FT (noise),

where the capital letters denote FT of the functions
represented by the corresponding small letters in (B).
A unique solution can be defined only if all the values
of Qy(#) can be estimated from the measurements,
which is seldom possible in practice. For instance,
for all finite apertures, P(¥) = 0 beyond a certain
critical frequency which depends on the size of the
aperture and hence the measurements in (B) can never
give any information on Qyat such frequencies. Simi-
larly, 1in an autocotrelation receiver, the finiteness
of the duration of observations sets a limit to the fre-
quency upto which R(#)'can be measured. In aperture-
synthesis interferometry, there are, generally an appre-
ciable number of intermediate frequencies at which
Q(#) cannot be given since the cbrrésponding baselines
-may not be available for observations. .

"For the numerical schemes it is useful to describe
the observations and the solution in terms of finite
samples. We represent the data by Qn,=0(#,) and
rm = r(x'p) in (A) and (B) tespectively and assume
-that there are M values given. The  solution, the
restored image of the object, will be denoted hy g(x)
and it is assumed that there is some knowledge of the
range of x, e.g., the field of view of observjtions,
so that the infinite limits of integration can be replaced
by fiaite limits for numerical evaluations. It is also
-assumed that # samples gp=g(xg) can adequately
represent the solution ¢(x) throughout its range.
For simplicity; we will also assume that the xj are
uniformly spaced at an’ interval aAx. The term © data
bandwidth > is used in this paper to mean the set of
#m (ot the range of #) -aver which measurements
are feasible. Thus this includes and is restricted to the
region over which P(#)#0 in problem (B) and the
values #, at which Qy are given in problem (A).

. The algotithms in the methods discusse& below
will be explicitly . given only for the one-dimensional
problems (A) and  (B), but a brief mention will be

made of any particular difficulty anticipated when a )

straight forward "generalisation-of any of these is

attempted for 2 two dimensional problem.

-

. There is one class of problems where a great deal
Is known about the object and the unknown part
can be reduced to a few parameters. For instance,
our prior knowledge may enable us to regard the
object as a superposition of a few Gaussian compo-
nents whose positions, widths and amplitudes are

. the unknown parameters. In such cases, the prior

knowledge is sufficient to make the inverse problem
well -posed’, sincethese parametets can be obtained
by a least-squares fit, which generally has a stable
solution under such circumstances. Such a procedure,
called ¢ model-fitting >, has been used in radio astro-
nomy in a few simple problems or when the obser-
vational data are too meagre to aim at a general sclu-

tion. However, these methods will not be discussed
here any further.

CONVENTIONAL APPROACH

The classical approach to the inverse problems of
the types discussed here is based on the linear filter
theory (cf. Bracewell and Roberts 1954). The first
step in such a method is to define a ‘window ’ or a
tapering function W(#) confined strictly to the data
bandwidth, i.e., W (x)=0 if a measurement at # exists
(problem A) or if P (#) =0 (problem B). Then
the solution 4L (x) is obtained by first computing its

FT, QL (#), which is defined as :

L6 W \») ;
R(#) W ()| P(%)

(4)

QL = [
3 (B)

which can be calculated for all valués™6f « sifice the .
-values outside the data bandwidth have been defined
to be zero throughW(#). A familidr example is the
‘ principal solution’ which corresponds to setting the

‘nonzero values of W(%) to unity.

T

In the absence of noise, a restoration obtained by a
Fourier transformation of (Qy is equivalent to teco-
vering gI. = g¢ * w, where O (4) is the FT of w(*) and the
asterisk (*) denotes convolution. Thus w(x) may be
called an equivalent ‘beam’ for the restoration of the
object. If the data bandwidth is rectangular, the

“principal solution has an equivalent beam of the form
“sin x/[x, notorious for its its unending series of ripples’

(sidelobes) and, in particular, the first minima on
either side of origin with an amplitude -25%, of the
central maximum. Apatt from introducing unphy-
sical negative values into the solution, the existence of
sidelobes over a wide rangeof x is quite annoying in the
interpretation of a restored object. The sidelobe level
can be restricted by a suitable choice of tapeting function
for W(#), butthis invariablyleads to aloss of resolution.

;, From the standpoint of current philosophy of data -

" analysis (c. f. Jaynes 1968), a classical solution is vnsa-

tisfactory on three counts: (a) it is biased since it
-involves atbitrary .assumptions on the unavailable.data
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é.g., O (w) = 0 outside the data bandwidth; (b) it
violates our priot knowledge aboutit, e.g., by including
negative values (sidelobes) even when it represents
the brightness distribution of an object which must be
positive everywhere; and (c) the equivalent beam does
not take into account the existence of noise. It may be
recalled herethat oneis not justified in introducing the
effects of noise as a perturbation on the solution to an
inverse problem since thesolution is unstable against
small changes in the data (Turchin et al. 1970).

Linear methods are still used because of their
computational ease and the availability of a detailed
understanding of these methods including their limi-
tations in any given context. Sometimes, the noise
is also considered within the framework of linear
filter theory by making W/(x) depend on the sigral-to-
noise ratio, as in a Wgciner filter. However, this still
suffers from the other drawbacks mentioned above.

Nowadays, it is often witnessed in many fields
that the scope of experimental techniques has been
highly restricted by the available resources and there
is a pressing need to explore every feasible means to
get the best out of the available data. Also, the availa-
bility of high speed digital computers has now made
the exploration of new methods of restoration a far
simpler task than in the past. There have thus been
several new restoring methods developed over the
past decade or so in several different fields. The
following sections are devoted to a brief description
of such restoring schemes being used in radio astro-
nomy. However, since it is not possible to scan the
literature fully within the scope of this review, we
confine ourselves to a few typical examples and for a
picture of the current state of art, we referthe interested
reader to the proceedings of a recent symposium(Schoo-
neveld 1979):

¢‘CLEAN’

It is generally found that a’ restoration seeking
consistency with prior knowledge involves much more
computational effort than a conventional method. For
two-dimensional problems, this can sometimes become
prohibitive in spite of the advantages of prior know-
ledge. Our first example of the new methods is an
attractive compromise which incorporates prior know-
ledge oaly partially but still provides remarkably better
restoration than a conventional method without much
sacrifice of computational simplicity in many cases.
It is an iterative algorithm called ‘CLEAN’ which
aims at decomposing the objéct into a series of point-
components  (delta-functions) in the field of view.
In this method, a Fourier inversion problem is also
treated effectively as a deconvolution problem. In the
following description, we will assume that the field
of view (x], xy) has been divided. into # equidistant
points x, and thatthe point-components are all intended
to be situated at these points.

As remarked earlier, a classicalsolution gr(x) is cha-
sacterised by an effective beam w(x) whose artefacts like

5

sidelobes are quite annoying. In many problems,
the actual source, i.e., the nonzero values of gy(x),
can be safcly presumed to be confined to a few isolated
sections in ( x], xy) distributed in an unknown fashion
butinsuch a way thattheir total extentis asmall fraction
of the field of view. One can then regard the object
as being equivalent to a superposition of point sources,
say & <« < nin number, whose amplitudes and locations
in the field of view are to be determined. This is the
central theme of CLEAN, first suggested by Hogbom
(1974). It is an iterative algorithm for picking the
grid-points xj in such a way that a superposition of
beams w(x) centred at these selected grid-points will be
equivalent to the classical solution. This methed
has mostly been used in mapping radio sources from
their Fourier components obtained from inteiferc-
metiic measurements, where the jargons ‘dirty map’
and ‘dirty beam’ are popular for gr (x) and w(x)
respectively. For a detailed matkematical analysis of
the method, we refer the reader to Schwarz (1978).

The various steps involved in CLEAN can be
summarised as follows :

(a) Obtain a dirty map gz, (x) 3s the set of its values
qr(xg), £=1, n, using a convenient classical
method and let w(x) be its equivalent ‘dixty
beam’. Without loss of generality, we assume
a normalisation w(0)=1.

(b

N

Locate the point, say x;, where the dirty map .
gL (x) has the highest absolute value, and Jet

Imax = 4L (1)

(¢ ;I’hc corresponding ‘ component’ ¢] is now
equal to a delta function at' x; of amplitude
& Gmasr 1-€. ¢l = g Gmax O (x-xj).where'gis an-
emiprical parameter(co 1) called the ‘loop gain’.
Now subtract the contribution of this point-
source from g to obtain the ‘residual map’

gr 1. e,
qr (XB)=4L (X&) —Gmax w(xk—xi), k=], n

(d) Treat g as the updated dirty map- and repeat
the last two steps to get the next component
¢, and the corresponding residual map, and
then the next component cg, 2and so on,
each time vpdating the residual map and dirty
map in the same manner. :
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(¢) The iteration cycle (b)-(d) is terminated by
spscifying suitable criteria like

(i) the absolute value of the amplitude of the
componeat being less than a specified value;

or

(il) number of iterations exceeding a specified
limit.

The resulting CLEANed map is then the sum
of all the components. For better persentation, one
oftea coavolves this map with a ‘clean beam’ usually
a Gaussian, which does not possess any undesirable arte-
facts lik> sidelobes. Although a fixed value of g, say
0.75, caa work satisfactorily in most circumstances, the
coavargznc: of iterations can be accelerated by choosing
it more juiiciously and, if necessary, varying it during
the coutse of iterations by examining the residual map
at intermzdiate stages. It can be shown that in most
practical cases, the convergence is guaranteed for any
choice of g in the range 0 « g < 2 (Schwarz 1978).
Oa2 of the virtues of CLEAN is that it naturally
allows for an interactive program where one can display
the residual maip at regular intervals; and literally
supzrvise the CLEANing process. Also, it is not
necessary that the x4 inspected for the determination
of the com»onents (the ‘search area’) should cover
the eatire fizld of view. In most applications, the
users have bzen able to restrict the search atea to a
small fraction of the tota] field of view and process
routinely, with moderate computing efforts, two-
dim=nsional maps with fields of view chosen on a grid
matrix with as many as 512 x 512 points (#=262144).

EXTRAPOLATION OF FT USING POSITIVITY

The fizst attempt at incorporating positivity in the
reduction of a radio astronomical observation was made
by Biraud (1959), who also demonstrated clearly the
passibility of super-resolution with positivity as com-
pared to a classicial method. Since g(x) > 0, we can
write it as @, where @ is a real function and hence having
a FT A(#) which is Hermitian. The FT of ¢ is thus
an auto-convolution of the Hermitian function A.
Biraud’s m=thod is to construct a sequence of Hermitian
functions iteratively converging to a specific function
whose autoconvolution represents Q(#y,;) as closely as
desired. As a measure of fitting the data, Biraud used
the least-squares criterion :

2

O (#) — G(#p) | = minimum,

s=2
m

where G=A*A. If the observations are not all of the
sam= accuracy, one has to use a weighted least-squares
cciterion by suitably waighting each term in the above
sum to take care of the variation of accuracy of measure-
ment with #,. For simplicity, however, we will
teeat these wzights as unity in the following paragraphs.

We will now describe the algorithm for problem
A. Tt can be applied to problem B by using R(#)/P()
in place of Q(#) and using a weighted least-squares
criterion to take care of the variation of the effective
signal-to-noise ratio of obsevrations according to P(n).
It will be assumed that a sampling intetval Ax is
appropriate for Q(#), and hence for A(%); whose auto-
correlation is required to represent Q. Let 2L A # be the
highest frequency available for O, say = #p. Then
the bandwidth of .4(%) is confined at least to + L A .

The following steps summarise Biraud’s method,
in which any Hermitian function (even Ap= 0 will
work) can be used as the initial guess 4o, provided
A(#) vanishes for |#] & Lax.

(2) Assume that 4 can be approximated by a
function 4, bandlimited to LA #, and perform
the following cycle of iterations, steps (bl)-
(b3), with the iteration count / initially
assumed to be equal to 1.

(b1) Define

Ay=A4- 0, 3(#) + o[ d(u+1An)4-8(x—IA )]
-icy[ 8(#+/A u)— (u— I Ad)jwhere the coefficients
¢1, €3 and ¢; are obtained so as to minimise

2

Q)G ()| , with Gy=A, * A,.

=3
m

If O(0) is known, then 5,2 is minimised subject
to the constraint Q(0) = G(0) by the method
of Lagrange multipliers ; i.e., by introducing
the Lagrange multiplier ¢, and determining
allthe ¢; by solving the set of equations

ocs

b 52 + 2, {,Q(O) - G(O)} ] =0,i=1,2,3,4.

The unconstrained czse corresponds to ¢;=0.

(b2) Use A, in place of A and repeatthe previous
step by incrementing /by 1, until all the
values of /from 1 to L are covered.

(b3) Repeat the above steps until .4, saturates to
a stage where 5,2 no longer decreases by
continuing the iterations.

() Now check the latest available value of s,2
against the desired degree of agreement with
the data, i.e the expected value of
the variance of noise, say, 5,2 =sp? , then the
latest available Gy(x) is the FT of the restored
object, from which q(x) is easily found by a
Fourier transformation.  Otherwise, one
tries to increase the band width A, by
replacing L by L 4- 1, A, by A, and going
back to step (a). The whole cycle, including
baadwidth extrapolation, is repeated until
the agreement with data is satisfactory, or
it does not improye €ven by extrapolation of
bandwidth.
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A very clear demonstration of resolution-enhance-
ment even in the presence of noise was given by Biraud
(1969). 'The method is generally found to converge
for arbitrary initial guesses although no proof exists
forits convergence. An extensive study and evaluation
of the method was the subject of Wong (1971).

MAXIMUM ENTROPY METHOD

Another approach to the inverse problems is to
aim at an objective criterion enabling us to choose the
most appropriate solution out of the infinitely many
mathematically feasible solutions consistent with the
data. The idea is to use our prior knowledge to define
a suitable criterion representing a least biased solution
or the ‘most random’ solution consistent with the
observations and prior knowledge. In the spirit of
information theoty this can be done by using the
prior knowlzdge to construct a prior probability distri-
bution or, equivalentlyitslogarithm called the ‘entropy’
of the object. The least biased solution is then the one
with maximum entropy. Such an approach for the
pictute-proczssing problem was advocated in the pio-
neering works of Felgett and Linfoot(1955) and
Jaynes (1968) and thelatter gave examples of situations
where p:ior probability distribution could be constru-
cted from prior knowlsdge. However, a prior know-
ledge like positivity is too insufficient to construct any
probability  distribution. Hence, in practical imple-
mentations, this principle has been relaxed and replaced
by a similar one which assumes a certain statistical model
for the description of the object or observations and uses
the logarithm of the resulting  posteriori probability in
place of entropy. Thus, there are several restoring
schemss using different models for this purpose, which
are all unfortunately called ‘ Maximum Entropy Method
(MEM)’ and they maximise quite different expre-
ssions under the name ‘entropy’. Essentially, there
have been two major schools of thought and we denote
the ‘entropies’ used by them by H, and H, res-
psctively. The corresponding methods will be denoted
by MEM1 and MEM2 for brevity. In our notation,
the definitions are :

H, = S1n gz, (Burg 1967)

H,= —= gk In g¢  (Frieden 1972)

where 4 = g(x ). For details of derivation of these
expressions and illustrations with specific applications,
we refer the reader to Burg (1967) and Ables
(1974) for MEM1 and Frieden (1972, 1975) for MEM2.
Here, we will only give a brief description of
the methods , by assuming the above expressions for
‘entropy’. For convenience, we willalso use 2 common
notation for both problems A and B by representing
either problem in the form,

m=2 Pyt g(xf) + noise = 5 Pyt gz + D,
2 £

9

where D,, ate called the residuals and the new unknowns
are gg. The correspondence with our earlier notation

is established by the following convention :
Problem A: rp= Q) pruk=Cexp(—2mittyy xE)A x
Problem B:ryy = r(x' 1) 5 pmbk = p(x' m— xk) A x.

For simplicity, we will first consider the noise-free
case and later indicate how noise is introduced in MEM.
The specification of MEM can now be written as :

o Hy =3 1ngg
maximise H = Y4
Hy=— %é g9k 1n g (MEM?2)

(MEM1)

subject to the M constraints r,,— = P,k g4
&

This can be solved by the method of Lagrange
multipliers by introducing M Largange multipliers Ay
which are obtained along with the # unknowns of the
solution by solving the system of equations '

o) .
_—(H“I'E = Am Pk 4k) =9H/99i+z A Dmi=0,
; m k m

9q;

along with the constraint-equations mentioned above.
By substituting H, or H, for Hin the above equations,

one can eliminate gz as:

— 1/ 2 A Pk

(MEMI)

» .

exp (—1 —= A _Pm,é), (MEMZ)
V.3

9k =

Thus it is only necessary to solve M (nonlinear) equations
for the Ay, in MEM. Standard iterative methods
like Newton-Raphson method have generally been
psed with success for this purpose. However, there
is a very special case in which the gg can be obtained in
closed form without recourse to any iterative method.
This happens for MEM1 applied for the noise-free case
of problem A when Q(#uy,) are the first M Fourier com-
ponents of g (x), i.e., #py = (m — 1) #,. However,
smce_the data are not always available in this fashion,
and since noise is generally not negligible, this advantage
is lost in most practical problems.
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The introduction of noise is not straightforward
in MEM. Here agiin, we see two essentially different
approaches. The first scheme uses a  least-squares
criterion seeking 2 minimum of o= 5 D2, | M simul-

”

taneously with maximising the entropy. In the second
scheme, noise is also described by a model, defining an
‘entropy’ Hy, & both H & H) are sought to be maximised
by the solution. In order to maximise two functions sim-
ultaneously, a procedure analogous to the Lagrange
multiplier methods is used in the following manner :

maximise

H — Ac* (first scheme)

or H 4+ A Hy (second scheme)

waere A, an anilogue of Lagrange multiplier, is intro-
duced here as an  empirical (positive) constant. Itis a
slowly-varying fuaction of the signal-to-noise ratio.
Since it is found that the solution is not sensitive to the
exict choicz of A, the fact that it is empirical does not
pose a1y problem hz=ce. For further details and illus-
trations to sp=cific problems, we refer the reader to
Wernecke and D’Addario (1977) and Gull and
Daniell (1978) for the first scheme and to Frieden (1972)
for the second. As a slight modification of the first
scheme, one may assume o2y to be known and intro-
duce the constraint o®=o?y to determine A as the
usual Lagrange multiplier ( Ables 1974), but it is
generally simpler to treat it-as empirical from the com-
patational point of view.

" Although two different approaches have thus been
sugz:sted in literature to consider noisy data in MEM,
it is not yet clear if these two schemes lead to different
results in practice. In fact, it is possible to show that
the second schems (Frieden 1972) can often be expected to
bz eqaivalent to the first scheme (e.g., Gull and Daniell
1978) for all practical purposes. Since this does not
seem to have bsen recogaised in literature, we will
present the argument below.’

In MEM?2, Frieden (1972) obtained an expression

" for the ‘noise-entropy’ Hy= —= ,,(Dsy+B) 1n (D,,+B)

by following a procedure very similar to the one he
employed for deriving H,.  The constant B is an
empirically chosen positive number ( = 20y) such
that D,,+B may be safely assumed to be positive for
the desired solution for all ». An advantageous feature
of this method is that the choice of B is not critical and

" even an overcautious choice of a very large value of B

will work effectively (Frieden 1972). Thus, without
Inss of generality, we can assume a choice of B such that
|Dysy| 44 Bfor gl m,in which case, we can use the ap-
proximation la (14-DypB) -= Dy [B. Thus

(D +B) 1 (D py+-B) = (Dpyt-B) [1n (1+Dyy/B). B]
~ (Dw+B) (nB+ Dy/B)

Hy= Z[-B ln B+D(1n B+1)—D2,/B].
”

Again, without loss of generality, we can assvme the
noise to have a zero mean and hence require that D,,
also should have a zero mean, i.e., § D, =0. Hence
Hy = — 3 D2,/ B + constant. Thus, maximising Hy
is the same as minimising = D2?,i.e. using t‘he least-

squares critcrion !

If the observations were not all of the same accuracy,
one would have multiplied each term in Hy or the
variance of D,, by a weight related to the relative indi-
vidual accuracy of the particular measurement. With
this provision, the methods used by Frieden (1972)
and Gull and Daniell (1978) are indeed equivalent for
all practical purposes. ‘

For the noise-free case, there are alternate ways of
of arriving at MEM1 as an wunbiased restoration
consistent with positivity (see e.g., Schooneveld 1979a,
Komesaroff and Lerche 1979). Note that when MEM1
is used in the first scheme to take note of noise, it is
strikingly similar to 2 purely numerical scheme called the
‘logarithmic penalty function method’ (Fiacco and
McCormick 1970) for minimising o2 requiring posi-
sivity of gg.

Summ arising, we can say that MEM has certain
inherent positive features which are undisputed. The
most important of these is the fact that it is a scheme
which automatically leads to positivity by the very
definition of ‘entropy’, and also that it uses the data
only to the extent available without making any
assumptions on the unavailable data, In allthe examples
cited in literature, it has consistently been found to
lead to a supstresolution compared to a classical method.
However, it is still questionable whether the K term
‘entropy’ has indeed the same significance in picture-
processing as it has in the information theory and thus
whether it is justifiable to claim the ‘mostlikely object’
to be obtained solely from the specifications of MEM.

AN ‘ OPTIMUM DECONVOLUTION METHOD’

Our last example of a restoring method illustrates
another way of looking at the inverse problem. This
is to regard the problem on hand as an optimisation pro-
blem setting four criteria as the necessary requirements
of the optimum solution : (2) it should satisfy a suita-
ble stabilising criterion to ensure that it is stable against
minor perturbations in the data; “(b) it should be
unbiased and should lead to a reasonable agreement
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with the data in the presence of noise, €.g., fulfilling
the least-squares criterion ; (c) it should be derived
without making any assumptions on the unavialable
data and using the data only to the extent given; and
(@) it should be consistent with our prior knowledge
about it. Clearly, since the first two criteria are quali-
tative in nature and not mathematically precise statements,
there could conceivably be several ways of meeting
these requirements. One possibility was suggested by
the present author (Subrahmanya 1979) as an Optimum
Deconvolution Method (ODM) in connection with the
restoration of an object from its Fresnel diffraction
observed by the method of lunar occultations (Hazard
1976). A highlight of this method is a simple itc.ative
algorithm for introducing positivity as a constraint on
the solution. The method will be summarised below.

The fitst two requirements of the solution are
combined in ODM by defining a  ‘regularised least-
squates solution’ (RLS) which should minimise

S =d + AE (8%p)?

where A2gp = gg+1 — 2 gf + gk—1 21e the second
differences and A > 0 is an empirical parameter similar
to the one introduced in MEM for handling noisy data.
Its purpose is to get 2 RLS which is as smooth as possible
(i.e.,has aslow a variance of second-difference as possible)
but stillleads to a 02 not appreciably different from the
minimum value, or o2y, if the latter is known. The
exact choice of A is not critical to within about a factor
of 5 and it is also a slowly decreasing function of signal-
to-noise ratio for any given problem.  Thus, for a
routine application, it is enough to determine it once
by trial and error for a typical signal-to-noise ratio, and
redetermine it only if the signal-to-noise ratio changes
drastically, say by a few factors. The use of second-
differences to obtain a stable solution was originally
sugzasted by Phillips (1962) andforadetailed discussion
of this and other related schemes of ©regularisation’,
we refer the reader to Twomey (1965) and Tikhonov
and Arsenin (1977).

It can be seen that the RLS automatically meets one
more requirement of the desired solution-the available
data are used in the form given without any need for
assuming =~ anything  about the  unavailable
data. As for prior knowledge, we summarise below
the scheme adopted for introducing positivity
and refer the reader to a more detailed paper
(Subrahmanya 1980) for incorporating other types
of prior knowledge and also for a critical evaluation of
the msthod. Intuitively, one can see that an att=mpt
to minimise the negative artefacts of the RLS will also
control the positive part of the supricus cipples because
of the least-squares criterion, In ODM, this is achieved
by minimising, ip each iteration, a weighted sum of
squares of those values of the solution which were
found to be negative in the previous iterations. These
weights are defined in the method to be proportional
to the degree of constraint-violation (square of the

11

negative value obtained) in the previous iteratiens.
In the actual algorithm used, the Jth iteration can be

- interpreted as requiring a2 minimum of

Sj=35 + i Ae,7 PPk

with respect to the unknowns ¢g. Denoting the solution
in the Jth iteration by 4g,5" we can write the new terms

in the above expression as Ag,0 = 0 (initial solution)

( 0, 4qky 20

Ao, +17— A7 = 1 r s g7 <0
kT gk, F ;

The purpose of o is only to introduce a scale factor to
ensure that the added terms do not dominate in the
definition of §j. The choice given above was found to
lead to a rapid convergence of iterations, mostly within
3 to 5 iterations, in the lunar occultation problem. Good
results were also found from a simpler choice @ =#no?y.
In order to minimise S in the above iterations, one
has to'solve the system of equations, -

Syloge =0,k =1,2, ...,n,

which are all linear in the unknown gz sinceS) is

quadratic. For further details and computational simpli-
fications, we refer to Subrahmanya (1980). Here we
only note that the method has successfully been used
for routine reductions of the.obsetvations of several
hundred lunar occultations. In general, it kas, Eteen
found that it is possible to obtain an enhanced resoluticn
with ODM, sometimes by mozre than a factcr of two,
over a classical method for this problem. :

CONCLUSION -

The methods described in the preceding secticrs

“illustrate the different possible approaches ta an inverse

problem.. CLEAN is essentially a deconvolution
problem and it converts any other type of problem to
problem B before beginning the iterations. On the
other hand, Biraud’s method treats the problem as an

_ FT extrapolation situation (problem A) before proce-

eeding  with the iterations. Nei‘her of these methods
introduce any empirical parameters. In both of these
methods, the limitations to the restoration are approa-
ched in 2 natural manner by terminating the iterations
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as soon as the data and prior knowledge are satisfied
reasonably by the estimated parameters — °point-
sources’ in CLEAN and Fourier components in
Biraud’s method.

The other two methods — MEM and ODM—
work with the problem as given without any need for
mapping the data or the solution obtained from the
itérations into a different domain by a Foutrier transfor-
mation. Both these methods involve empirical para-
mesters, denoted here by A, the choice of which,
howaver, is not found to pose any problem in practice.
Ualikethe other two m=thods, the question of the highest
resolution which can be reliably obtained from these
methods cannot be answered in astraightforward manner.
One possible scheme would be to start with sampling
the restored solution at an interval just sufficient for the
classical resolution-limit, and then to repeat the restora-
tion by choosing finer and finer sampling intervals.
This will allow for ths possibility of enhancing the
resolution gradually and the process can be terminted
as soon as there is no appreciable change in the degree of
consistency with the data (¢%?) or and with prior
kidwledgs. Baut this is not a very practical scheme for
large problems (large #) since the methods are already
tims-consuming and it is too expensive to apply them
sevaral timss to find out the limiting resolution.

At present it is a difficult task to discuss quanti-
tatively the absolute limit to the resolution upto which
a reliable restoration is ' possible in a given situation.
Presumibly, this is also the limit to which there is no
appreciable  difference between the various  possible
restorations which can satisfy both the observations and
our prior knowledge. However, this opinion is not
generally shared by the strong proponents of MEM who
feel that the ‘entropy’ could still be exploited to
surpass this limiting resolution. We refer to two
specific papers in the current literature in order to
illustrate the conttoversy prevailing on this issue. In a
paper by Kikuchi and Soffer (1977), one finds ap
attempt to define the cotrect ‘entropy’ as a function
of some measurable paramsters of the soutce as well
as the observing conditions. On the other hand,
Kermisch (1977) gives a numerical example of simulated
data which, when used in MEM1 and MEM2, gave
distinct restorations which are appreciably  different
from each other as well as the true soutce although
both ate equally plausible in a given physical problem.
The present situation may be summarized by saying
that an improvement in resolution by about a factor of
two compared to a classical method seems generally
feasible by the methods incotporating positivity for
data with signal-to-noise ratios as low as 5 ot so.

Note that prior knowlédge is sought to be intro-
duced rigorously in all the methods discsssed above
except CLEAN, which is the most popular method
being used in radio astronomy. Itis an attractive com
promise between a full implémentation of prior know-
ledge and the computational simplicity of a classical
method. It has been used routinely over years in two-
dimensional problems in order to map "“radio sources
from their interferometric observations, whefg the num-
ber of unknowns can be as large as~10%4 " Onthe other
hand, except for a few isclatéd attempts withh MEM,

the other methods have generally been restri cted to one-
dimensional problems in view of the heavy computing
requirements. However, this situation is likely to
Improve in the near future in view of the rapid deve-
lopments taking place in the field of image-reconstruction
and the increasing availability of faster computers and
array-processors.
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WE- ‘HEAR THAT

Dc. Yash Pal, Director of the Space Application Centre of the Indian Space Research Otganization and

praszatly President of the Indian Physics Association has been awarded the Sixth Marconi International Fellowship,

along with a grant of U. S. $ 25,000 for his work on Satellite Instructional Television Experiment (SITE) in India
in conjunction with the NASA’s ATS-6 Satellite.

Professor Jayant V. Nurlikar, Tata Institute of Fundamental Research, has been awarded the Bhatnagar
Award in Physics for 1978.

D: K.S. inshna Swamy, Tata Institute of Fundamental Research has been selected for the Shri Hari Om
Ashram Prerit Dr. Vikram Sarabhai Research Award in field of Planetary and Space Sciences for 1979.
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ANNOUNCEMENT

The Eleventh International Conference on Solid State Track Detectors will be held between
September 7-12 1981 at the University of Bristol, England. For further details, contact Professor P. H.

Fowler, H. H. Wills Physics Laboratory, Tyndall Avenue, Birstol BS8 1TL, England.
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