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ABSTRACT

The spectrum of the solar corona and plasma spectra in astrophysical objects and fusion devices exhibit
forbidden lines in alkali-like ions. Ions belonging to the iron group are particularly important in this respect.
The electric quadrupole (E2) transitions for Fe xvi are computed using the highly correlated relativistic wave
function obtained by using coupled cluster theory including all single, double, and some triple excitations
from the core. Term values of the present ion obtained by our method are compared with the available exper-
imental and theoretical data. The detailed highly accurate relativistic data for line strengths and transition
probabilities are presented for a large number of transitions of low transition rates, and a few of both of them
are compared with existing data as samples.

Subject heading: atomic data

On-line material:machine-readable table

1. INTRODUCTION

The study of atomic transition is a subject of considerable
interest in many fields. The extremely hot environment of
the stars (for instance, the corona of the sun and planetary
nebulae) show abundances (Feldman 1992) of the highly
stripped ions. With the advent of high-resolution spectro-
graphs, observation of weak or forbidden transition lines
becomes possible, and they are of great astrophysical
interest. Many astrophysical phenomena such as coronal
heating, the evolution of many chemical compositions in
the stellar envelope, and the determination of the chemistry
in planetary nebulae precursors’ envelopes are believed to
be explained largely by these forbidden lines.

In astrophysics, the study of transition probabilities plays
an important role in the determination of atomic abundan-
ces. In controlled thermonuclear reactions, atomic radiation
is one of the primary loss mechanisms. In laboratory
tokamak plasmas and in various astronomical objects, suit-
ably chosen electric quadrupole (E2) forbidden lines serve
as a basis for reliable electron density and/or temperature
diagnostics (Biemont & Zeippen 1996). Accurate estimates
of radiative transition probabilities between multiplet states
are an important source for the successful experimental
identification of the spectra of astrophysical and laboratory
plasmas. Probabilities of magnetic dipole and electric quad-
rupole transitions, in particular, are important in plasma
diagnostics, but the experimental determination of these
quantities is difficult, and only an accurate theoretical calcu-
lation can provide important information.

In the present article we are interested in studying the
electric quadrupole transition properties of the Na-like
highly stripped ion Fe xvi. We have successfully (Ray
2002a) performed similar calculations for Co xvii (Ray
2002b) and Ni xviii (Ray & Das 2002) that are in very good
agreement with the other relativistic and nonrelativistic cal-
culations. Tull et al. (1972) have mentioned the additional
need for both theoretical and experimental studies on such
systems. The present availability of intense tunable radia-
tion sources has made it feasible to measure transition prob-
abilities of electric quadrupole (E2) transition. However, no

experimental E2 transition probability data on Fe xvi

appear to be available in the literature.
A number of theoretical calculations on electric and mag-

netic multipole transition rates have been performed in
recent years using various approximations (Huang 1985;
Johnson, Plante, & Sapirstein 1995; Safronova, Johnson, &
Livingston 1999; Avgoustoglou & Beck 1998; Beck 1998;
Ishikawa & Vilkas 2001), and it has become evident that
accurate, correlated wave functions must be employed to
evaluate the transition rate accurately. For the electric
dipole forbidden transition in high-Z ions, electric quadru-
pole (E2) transition rates are dominant over magnetic
dipole (M1) rates. High-precision calculation of transition
energies as well as of wave functions is necessary because E2
transition rates involve a fifth-power dependence on transi-
tion energy. A relativistic description is required for describ-
ing the highly stripped ions such as Fe xvi where the orbital
electrons probe regions of space with high potential energy
near the atomic nuclei. The primary effect of this relativistic
description is to include changes in spatial and momentum
distributions, spin-orbit interactions, quantum electrody-
namic corrections such as the Lamb shift, and vacuum
polarization, whereas the secondary effect in many-electron
systems is the modification of orbitals due to shielding of
the other electrons in penetrating orbits.

In the present calculation we have used an improved
methodology (Majumder et al. 2001) of generating the
basis set. The Dirac-Hartree-Fock method adapted in the
numerical MCDF GRASP code by Parpia (1992) is able
to generate only the bound orbitals because of the boun-
dary conditions imposed to solve the differential equa-
tion; generating higher orbitals creates a convergence
problem. The Gaussian basis set expansion method is
able to generate both the bound and continuum orbitals
solving the Dirac-Hartree-Fock equation, but these orbi-
tals are highly dependent on two arbitrary parameters,
known in the literature as �0 and �; there is a great
debate on the choice of these two parameters. In our cal-
culation we have chosen a basis of a total of 98 orbitals
with both bound and continuum; the continuum orbitals
are confined within a maximum energy of 500 a.u. All
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the bound orbitals in our basis are obtained by using the
MCDF GRASP code (Parpia 1992), and the rest contin-
uum orbitals are from the Gaussian code (Chaudhuri,
Panda, & Das 1999), choosing best values for �0 and �.
We have taken nine s orbitals up to 9s, eight each of the
p1=2 and p3=2 orbitals up to 9p1=2 and 9p3=2, seven each of
the d3=2 and d5=2 orbitals up to 9d3=2 and 9d5=2, five each
of the f5=2 and f7=2 orbitals up to 8f5=2 and 8f7=2, and four
each of the g7=2 and g9=2 orbitals up to 8g7=2 and 8g9=2 as
bound orbitals; the rest in our basis are virtual orbitals.
These two different types of orbitals, bound and contin-
uum, are generated by two different codes, so they may
not be orthogonal. We are considering that the MCDF
GRASP orbitals are closer to the actual orbitals since
they are obtained by imposing the proper physical boun-
dary conditions. In our methodology, first we make the
virtual orbitals orthogonal to the more accurate GRASP
orbitals one by one following the Schmidt orthogonaliza-
tion principle. These new orthogonal virtual orbitals are
normalized using the same Fock space. We have adapted
a total of 12 s orbitals up to 12s; 11 each of the p1=2,
p3=2, d3=2, d5=2, f5=2, and f7=2 orbitals up to 12p1=2, 12p3=2,
13d3=2, 13d5=2, 14f5=2, and 14f7=2; and 10 each of the g7=2
and g9=2 orbitals up to 14g7=2 and 14g9=2. The motivation
in choosing such an improved basis is to make the basis
orbitals as close as possible to the actual physical orbitals
so that it can provide more accurate data in a finite set.
However, the Slater determinant formed by these orbitals
to represent the atomic state function are deficient from
the physical point of view because of the lack of the
correlation effect that is approximated by an equivalent
single-particle potential in the Dirac-Hartree-Fock
theory. How the effect of correlation can be included
properly in a many-electron system is a great challenge to
quantum chemists and atomic and molecular physicists.

One of the most advanced methods for treating this prob-
lem is the coupled cluster method (CCM; Bishop &Kümmel
1987). It is a quantum many-body method in which the
wave function is decomposed in terms of amplitudes for
exciting clusters of a finite number of particles. The develop-
ment of this theory was started in the nuclear physics com-
munity by Coester and Kümmel (Coester 1958; Coester &
Kümmel 1960) and was later introduced in quantum chem-
istry by Cizek and coworkers (Paldus et al. 1978; Paldus
1983); it was applicable mainly to the closed shell system.
Subsequent development of this theory using the idea of
complete model spaces (Lindgren 1978; Ey 1978;Mukherjee
1986; Lindgren &Mukherjee 1987) and a Hermitian formu-
lation (Lindgren 1991) of the CCM has led to connected
cluster operators and an effective Hamiltonian, also for an
incomplete model space.

2. THEORY

2.1. Coupled ClusterMethod

The idea of the CCM is as follows: two particles in the
filled Fermi sea interact with each other and lift themselves
out of the Fermi sea, so that after the interaction both par-
ticles are in orbitals that in the previous simplified picture
were unoccupied. This process may be described by a quan-
tummechanical operator S2 that acts on the Fermi sea wave
function (say j�i) to produce the wave function S2j�i,
which describes two particles outside the Fermi sea and con-

sequently two holes inside it, and all remaining N � 2 par-
ticles are in their previous orbitals, where N is the total
number of electrons present in the atom.

It may also happen that two pairs of particles do this com-
pletely independently. This process may be described by
applying this operator S2 twice and so on, with the proviso
that we must include the proper weighting factor. By the
principle of linear superposition, the total amplitude for
excitation of an arbitrary number(s) m (including zero) of
independent pairs is

X1
m¼0

1

m!
Sm
2 j�i ¼ eS2 j�i : ð1Þ

Simultaneous excitation of three particles can be described
by a contribution S3j�i to the exact wave function, and the
simultaneous excitation of n independent triplets will be
ð1=n!ÞSn

3j�i. We must count also the possibility of simulta-
neous excitation of pairs and triplets. Again by linear super-
position, the amplitude for simultaneous excitation of m
pairs and n triplets from the Fermi sea is ð1=m!n!ÞSm

2 S
n
3j�i.

Here S2 and S3 are independent processes, so they com-
mute, and we need not worry about their ordering. Sum-
ming over all possible values of m and n leads to the
amplitude eðS2þS3Þj�i for the total effect of all pair and trip-
let excitations. Proceeding in this way with the excitation of
clusters of 4, 5, . . .,N particles, we arrive at a wave function

j�i ¼ eS j�i ; ð2Þ

where

S ¼
XN
n¼1

Sn : ð3Þ

Here Sn indicates excitation of n particles at a time. Hub-
bard (1957) noticed first that the operator generating the
wave function of a quantum many-body system has an
exponential form. This exponential representation may be
regarded as an expansion of the exact wave function in a
complete orthonormal basis. But we have to keep always in
mind the arguments we have used. Such an interpretation of
the wave function is very useful in practical application of
the CCM. Because of its wide range of applicability in differ-
ent fields of many-body systems of both bosons and fer-
mions, quite regardless of the type and range of interaction,
and for yielding high-precision results for the ground state
as well as low-energy excited states, it is considered a univer-
sal theory for including correlation in many-body physics.

The CCM equations for the matrix elements of Sn are
easily obtained by projecting the Schrödinger equation

e�SHeS j�i ¼ Ej�i ð4Þ

onto the complete N-body space spanned by the Fermi sea
states and those states obtained by creating n general
particle-hole excitations out of it. This yields a series of
coupled equations, each of which contains a finite number
of terms. The excitation operators can be written as

S1 ¼
X
i; a

sai a
þi ; ð5Þ

S2 ¼
X
i; j; a; b

sabij a
þibþj; ð6Þ
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and so on. Here i and j are the hole annihilation, aþ and bþ

are the particle creation operators, and sai and sabij are the
amplitudes for single-particle and two-particle excitations,
respectively.

The first equation in this series yields an expression for E.
Because of the special form of the above Schrödinger equa-
tion, the remaining equations do not involve the energy E or
other macroscopic terms and represent a truly microscopic
decomposition of the Schrödinger equation into a set of
coupled equations that describe the dynamics of theN-body
clusters. These equations are intrinsically nonlinear. We
consider all the single (S1), double (S2; S1 � S1), and some
disconnected triple (S2 � S1) excitations (Bartlett 1995)
from the core in the present calculation.

2.2. Electric Quadrupole (E2)Transition

Thematrix element for electric quadrupole transitions is

Q̂Qfi ¼ h�f jQ̂Qj�ii ; ð7Þ

where j�ii and j�f i denote the initial and final atomic state
functions, respectively. Here electric quadrupole operator Q̂Q
is a rank 2 tensor and may be written as

Q̂Q ¼ er2C2
qðr̂rÞ : ð8Þ

The line strength is defined as

Sfi ¼
X

Mf ;Mi

jh�f jQ̂Qj�iij2 : ð9Þ

Applying the Wigner-Eckart theorem, the above expression
transforms to

Sfi ¼
X

Mf ;Mi

X
q

2Jf þ 1
� �

�
Jf 2 Ji

�Mf q Mi

� �2

jh�f jjQ̂Qjj�iij2 : ð10Þ

The transition probability (per second) for the present E2
transition is related to the line strength (in atomic or e2a40
units) by the relation (Sobel’man 1972)

A ¼ ð1:11995� 1018=gf�
5ÞSfi : ð11Þ

Here � is the wavelength in angstroms of the associated elec-
tromagnetic radiation, A is the transition probability, and
gf is the degeneracy of the final state.

2.3. Computation Using CCM

The expression for the present E2 transition using the
CCM is

h�f jQ̂Qj�ii ¼ h�0
f jfe

Sy
f g�QQfeSigj�0

i i ð12Þ

with

�QQ ¼ eT
y
Q̂QeT ; ð13Þ

where T, Si, and Sf are the cluster operators for excitations
from the core and the valence orbitals in the initial and final
states, respectively. The connected parts of equations (12)
and (13) will contribute, and hence we compute only those
parts in our quadrupole matrix element calculation. Here

j�0
i i and j�0

f i are the Slater determinants obtained by
using the Dirac-Hartree-Fock single-particle orbitals.

3. RESULTS AND DISCUSSION

We are presenting theoretical data for the term values, E2
transition line strengths, and transition probabilities that
are far more accurate. First, we have used fully relativistic
Dirac-Hartree-Fock orbitals, and second, we have included
the effect of Coulomb correlation through an ab initio all-
order many-body coupled cluster theory. It should be noted
that the present coupled cluster theory is equivalent to an
all-order many-body perturbation theory. We have
included all the single (S1), double (S2; S1 � S1), and some
disconnected triple (S2 � S1) excitations from the atomic
core in our calculations. In Table 1, we compare our term
values with the corresponding available experimental data
(Feldman 1971) and theoretical data (Tull et al. 1972). In
their calculation of term values, Tull et al. (1972) have
included the relativistic effects through a first-order pertur-
bation theory using nonrelativistic frozen core type Har-
tree-Fock orbitals. The percentage errors with respect to the
observed values are presented in the same table for both the
theoretical results and for the theoretical results obtained by
the simple Dirac-Hartree-Fock theory. We have used nega-
tive signs to indicate the direction of error, that is, whether
it is below the corresponding observed values or above the
corresponding observed values. A negative sign before the
error indicates that the experimental values are lower than
the theoretical values, and no negative sign indicates that
the experimental values are higher than the theoretical val-
ues, in the present data set. The effect of the Coulomb corre-
lation can be understood by comparing the columns with
footnotes ‘‘ a ’’ and ‘‘ b.’’ All our theoretical results indicate
the importance of correlation in such a system. The effect of
correlation is greater in low-lying states and in all the p orbi-
tals. Again it is to be noted that the effect of correlations
have changed all the errors to negative, which indicates that
in the present improved situation, all the theoretical values
are a little higher than the experimental term values. How-
ever, the low-lying p3=2, d3=2, and d5=2 have a greater devia-
tion; the percentage error is 10�1, whereas in other cases it is
10�2. In Table 2, a few of our line strength data are com-
pared with the existing line strength data (Tull et al. 1972;
Charro, Bielinska-Waz, & Martin 2000). They are in good
agreement with both the theories. Similarly, in Table 3 we
have compared a few of our transition probability data with
the existing relativistic transition probability data (Fuhr,
Martin, & Wiese 1988). Our transition probability data are
also in agreement with theirs.

In Table 4, which appears in full in the electronic version
of this article, our detailed present data for line strengths
and transition probabilities are reported. All our line
strength data are very close to the results of Charro et al.
(2000) and Tull et al. (1972); to compare with them one has
to multiply our line strength data in Table 4 by a constant
factor of 1=

ffiffiffi
2

p
. This factor arises simply because of the use

of a different formulation. We have used the formulation
prescribed by Sobel’man (1972). All our transition probabil-
ity data are also in good agreement with Fuhr et al. (1988).
The relativistic quantum defect orbital method adapted by
them (Charro et al. 2000) is quasi-relativistic in nature,
while Tull et al. have adapted a nonrelativistic approach
where the relativistic correction to the term values is
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TABLE 1

Term Values of Fe xvi

Levels J-Values

DHFa

(cm�1)

CCMb

(cm�1)

Tull et al.c

(cm�1)

Observed

(cm�1)

Errora

(percent)

Errorb

(percent)

Errorc

(percent)

3s ......... 1/2 0 0 0 0 . . . . . . . . .
3p ......... 1/2 278216 277333 277340 277160 �0.381 �0.062 �0.065

3/2 299611 298840 296800 298140 �0.493 �0.234 0.449

3d ......... 3/2 678114 676809 676760 675480 �0.390 �0.197 �0.189

5/2 681258 680037 680070 678410 �0.420 �0.240 �0.245

4s ......... 1/2 1865257 1868505 1866250 1867530 0.122 �0.052 0.068

4p ......... 1/2 1975523 1978467 1976200 1978040 0.127 �0.022 0.093

3/2 1983944 1986861 1983860 1986100 0.108 �0.038 0.113

4d ......... 3/2 2122800 2125890 2123290 2124070 0.060 �0.086 0.037

5/2 2124235 2127355 2124720 2125360 0.053 �0.094 0.030

4f ......... 5/2 2182244 2186321 2183720 2184620 0.109 �0.078 0.041

7/2 2182741 2186824 2184220 2185160 0.111 �0.076 0.043

5s ......... 1/2 2630439 2664389 2661370 . . . . . . . . . . . .

5p ......... 1/2 2688406 2718587 2715570 2717170 1.059 �0.052 0.059

3/2 2718588 2722720 2719360 2721160 0.094 �0.057 0.066

5d ......... 3/2 2785573 2789835 2786630 2788020 0.088 �0.065 0.050

5/2 2786324 2790600 2787360 2788680 0.084 �0.069 0.047

5f ......... 5/2 2815591 2820246 2817100 2818600 0.107 �0.058 0.053

7/2 2815847 2820505 2817360 2819000 0.112 �0.053 0.058

5g ......... 7/2 2818429 2823650 . . . . . . . . . . . . . . .

9/2 2818583 2823804 . . . . . . . . . . . . . . .

6s ......... 1/2 2849097 3077036 3073690 . . . . . . . . . . . .

6p ......... 1/2 2943971 3107609 3104270 3106360 5.228 �0.040 0.067

3/2 3105293 3109944 3106410 3108870 0.115 �0.034 0.079

6d ......... 3/2 3142805 3147537 3144080 3146020 0.102 �0.048 0.062

5/2 3143243 3147983 3144510 3146660 0.108 �0.042 0.068

6f ......... 5/2 3160009 3164938 3161540 3163100 0.098 �0.058 0.049

7/2 3160158 3165089 3161690 3163190 0.096 �0.060 0.047

6g ......... 7/2 3161866 3167124 . . . . . . . . . . . . . . .

9/2 3161955 3167213 . . . . . . . . . . . . . . .
7s ......... 1/2 3117343 3318384 3134870 . . . . . . . . . . . .

7p ......... 1/2 3196172 3337287 3333780 . . . . . . . . . . . .

3/2 3333824 3338733 3335110 . . . . . . . . . . . .

7d ......... 3/2 3356962 3361923 3358350 3360440 0.103 �0.044 0.062

5/2 3357239 3362205 3358620 3360740 0.104 �0.043 0.063

7f ......... 5/2 3367725 3372798 3369270 3371190 0.103 �0.048 0.057

7/2 3367819 3372894 3369360 3371070 0.096 �0.054 0.051

7g ......... 7/2 3368971 3374253 . . . . . . . . . . . . . . .
9/2 3369027 3374309 . . . . . . . . . . . . . . .

8s ......... 1/2 3290726 3471676 3468060 . . . . . . . . . . . .

8p ......... 1/2 3358510 3484166 3480560 . . . . . . . . . . . .
3/2 3480070 3485123 3481440 . . . . . . . . . . . .

8d ......... 3/2 3495353 3500440 3496790 3498710 0.096 �0.049 0.055

5/2 3495538 3500629 3496970 3498960 0.098 �0.048 0.057

8f ......... 5/2 3502529 3507687 3504080 3505700 0.090 �0.057 0.046

7/2 3502592 3507751 3504140 3505830 0.092 �0.055 0.048

9s ......... 1/2 3408424 3575083 3571410 . . . . . . . . . . . .

9p ......... 1/2 3470457 3583762 3580090 . . . . . . . . . . . .

3/2 3579284 3584428 3580700 . . . . . . . . . . . .
9d ......... 3/2 3589909 3595075 3591380 . . . . . . . . . . . .

5/2 3590039 3595208 3591500 . . . . . . . . . . . .

a Results of Dirac-Hartree-Fock theory.
b Present results of CCM.
c Results of Tull et al. 1972.



performed by using a first-order perturbation theory. They
both have supplied the E2 transition line strength data.
However, detailed relativistic E2 transition probability data

are compiled by Fuhr et al. (1988). In our calculation there
are some new results both for E2 line strength and E2 transi-
tion probabilities that are reported for the first time.

4. CONCLUSIONS

The continuing developments in astrophysical and astro-
nomical observations demand accurate theoretical transi-
tion data to determine stellar chemical composition. Our
theoretical data obtained from the highly correlated many-
body coupled cluster method using fully relativistic Dirac-
Hartree-Fock orbitals generated by an improved methodol-
ogy of forming a basis set are definitely very accurate for the
highly stripped Na-like ion Fe xvi and can partially meet
the present requirement.

The author would like to thank B. P. Das for introducing
the present many-body CCM theory, and her group mem-
bers for helpful discussion. She is thankful to the Indian
Institute of Astrophysics, Bangalore, India, for providing a
research associateship.

TABLE 2

Comparison of Present Line Strengths with Available Theoretical Data of Fe xvi

Present Calculation Line Strength Charro et al. 2000 Line Strength

Transition (n0l0 ! nl) l � 1=2 l þ 1=2 Sum l � 1=2 l þ 1=2 Sum

Tull et al. 1972

Line Strength

(Nonrelativistic)

3s! 3d ......................... 0.118 0.177 0.295 0.118 0.177 0.295 0.284

3s! 4d ......................... 0.079 0.119 0.198 0.072 0.108 0.180 0.199

3s! 5d ......................... 0.011 0.017 0.028 0.010 0.015 0.026 0.027

4s! 4d ......................... 1.829 2.750 4.579 1.77 2.66 4.43 4.40

4s! 5d ......................... 0.538 0.801 1.339 0.495 0.738 1.23 1.35

3p1/2! 4f...................... 0.308 . . . . . . 0.316 . . . . . . . . .

3p3/2! 4f...................... 0.090 0.543 0.941 0.923 0.554 0.962 0.908

3p1/2! 4p ..................... . . . 0.060 . . . . . . 0.059 . . . . . .

3p3/2! 4p ..................... 0.064 0.062 0.186 0.063 0.061 0.183 0.180

3d3/2! 4d ..................... 0.061 0.026 . . . 0.061 0.026 . . . . . .

3d5/2! 4d ..................... 0.026 0.104 0.217 0.026 0.105 0.218 0.209

4f5/2! 5f ...................... 0.812 0.136 . . . 0.774 0.129 . . . . . .

4f7/2! 5f ...................... 0.136 1.128 2.212 0.129 1.080 2.110 2.100

Note.—All values are in atomic units.

TABLE 3

Comparison of Present Transition Probabilities with Available Theoretical Data for Fe xvi

Present E2 Transition Probabilities Fuhr et al. 1988 E2 Transition Probabilities

Transition (n0l0 ! nl) l � 1=2 l þ 1=2 Sum l � 1=2 l þ 1=2 Sum

3s ! 3d......................... 6.62E�3 6.82E�3 1.34E�2 6.7E�3 6.8E�3 1.35E�2

3s ! 4d......................... 1.37E0 1.36E0 2.73E0 1.5E0 1.44E0 2.95E0

3s ! 5d......................... 7.45E�1 7.44E�1 1.49E0 7.8E�1 7.6E�1 1.54E0

4s ! 4d......................... 8.18E�4 8.44E�4 1.66E�3 8.2E�4 8.4E�4 1.66E�3

4s ! 5d......................... 1.41E�1 1.41E�1 2.82E�1 1.5E�1 1.5E�1 3.00E�1

3p1=2 ! 4f .................... 2.06E0 . . . . . . 2.14E0 . . . . . .

3p3=2 ! 4f .................... 5.72E�1 2.58E0 5.21E0 5.8E�1 2.6E0 5.32E0

3p1=2 ! 4p .................... . . . 3.45E�1 . . . . . . 3.7E�1 . . .

3p3=2 ! 4p .................... 6.84E�1 3.39E�1 1.37E0 6.7E�1 3.4E�1 1.38E0

3d3=2 ! 4d .................... 1.54E�1 4.43E�2 . . . 1.6E�1 4.5E�2 . . .

3d5=2 ! 4d .................... 6.62E�2 1.75E�1 4.39E�1 6.6E�2 1.78E�1 4.49E�1

4f5=2 ! 5f ..................... 2.19E�2 2.76E�3 . . . 2.20E�2 2.78E�3 . . .

4f7=2 ! 5f ..................... 3.67E�3 2.28E�2 5.11E�2 3.68E�3 2.30E�2 5.14E�2

Note.—All values are in units of 108 s�1.

TABLE 4

Line Strengths and Transition Probabilities of Fe xvi

Transition ( f ! i)

Line Strength

(a.u.)

Transition Probability

(s�1)

3s1=2 ! 3d3=2...................... 0.16638E0 0.662E6

3s1=2 ! 4d3=2...................... 0.11254E0 0.137E9

3s1=2 ! 5d3=2...................... 0.15749E�1 0.745E8

3s1=2 ! 6d3=2...................... 0.48443E�2 0.419E8

3s1=2 ! 7d3=2...................... 0.21085E�2 0.254E8

3s1=2 ! 8d3=2...................... 0.10808E�2 0.159E8

3s1=2 ! 9d3=2...................... 0.41210E�3 0.693E7

3s1=2 ! 3d5=2...................... 0.25121E0 0.682E6

3s1=2 ! 4d5=2...................... 0.16763E0 0.136E9

3s1=2 ! 5d5=2...................... 0.23547E�1 0.744E8

Note.—Table 4 is published in its entirety in the electronic edition of
the Astrophysical Journal. A portion is shown here for guidance regarding
its form and content.
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