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Abstract. Detection of periodic structures, hidden in random surfaces has been ad-
dressed by us for some time and the ‘extended matched filter’ method, developed by us,
has been shown to be effective in detecting the hidden periodic part from the light scat-
tering data in circumstances where conventional data analysis methods cannot reveal the
successive peaks due to scattering by the periodic part of the surface. It has been shown
that if 7o is the coherence length of light on scattering from the rough part and A is the
wavelength of the periodic part of the surface, the extended matched filter method can de-
tect hidden periodic structures for (ro/A) > 0.11, while conventional methods are limited
to much higher values ((ro/A) > 0.33). In the method developed till now, the detection
of periodic structures involves the detection of the central peak, first peak and second
peak in the scattered intensity of light, located at scattering wave vectors v, = 0, @, 2Q,
respectively, where @ = 27 /A, their distinct identities being obfuscated by the fact that
the peaks have width Av, = 27 /rg > Q. The relative magnitudes of these peaks and
the consequent problems associated in identifying them is discussed. The Kolmogorov—
Smirnov statistical goodness test is used to justify the identification of the peaks. This test
is used to ‘reject’ or ‘not reject’ the null hypothesis which states that the successive peaks
do exist. This test is repeated for various values of ro/A, which leads to the conclusion
that there is really a periodic structure hidden behind the random surface.
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1. Introduction

The detection of a periodic structure, buried in a strongly random surface, by the
method of light scattering studies is beset with the problem that the randomness
blurs out the distinct peaks in the intensity, expected from diffraction by the peri-
odic part of the surface. If A is the wavelength of the periodic part and rq is the
coherence length of the light on scattering by the random part of the surface, the
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successive peaks are then expected at scattering wave vectors v, = n@Q = n(27/A)
and every peak has a width Av, = 27/r¢. For high randomness rq is small so that
the successive peaks may overlap if Av, > Q, or ro < A giving rise to overlapping
peaks, that are indistinguishable [1,2]. The extended matched filtering method,
developed by us [3—11] utilizes the well-known conditions that, in the presence of
hidden randomness, (1) the peaks ought to have the same shape and (2) the sepa-
rations between the successive peaks are the same, irrespective of the order of the
peaks in the intensity distribution in the scattered data. A similar problem exists
in the field of communication engineering, where detection of identically shaped
pulses, but arriving at different (unknown, not necessarily periodic) instants of
time, and of varying heights is a commonly encountered problem. Our method
differs from the conventional matched filtering since in our case, the shapes of the
peaks are not known, but are to be selected by the method of least squares from
such infinite possibilities. Further, our problem, though seemingly a part of an
interdisciplinary field, is greatly compounded by the fact that we are interested in
detecting very weak periodic structures in the surface, i.e. (a/A) < 1, where a is
the amplitude of the periodic part. This gives rise to a situation where the central
peak subsumes all other peaks and makes them unobservable. For example, in the
numerical case that is presented below, the first peak is only 1/10th and the second
peak is 1/100th of the central one. The matched filter method begins with the hy-
pothesis that the intensity data is actually composed of successive equally spaced
and identically shaped peaks and by the method of least squares, determines the
best fit for such a hypothesis, as dictated by the physical theory. On the basis of
these established theoretical arguments, we have developed a detection method that
requires straightforward mathematical deductions and simple computer program-
ming. The results we determine, on comparison with the values of the parameters
used in the computation, are found to be very close, thus justifying the strength
of the matched filtering method. We had also justified our numerical scheme, by
using accurate curve fitting and calculating the reduced x? values. This procedure
justified all our findings in the detection of the central and the first peak.

The second peak is indeed more elusive, being very weak and thus having the
risk of being obfuscated by small errors in calculating the parameters of the sys-
tem. By very careful numerical work we proved the second peak too to be amenable
for detection. The identification and detection of the second peak in the periodic
structure proved conclusively the strength of the matched filter method of analysis,
when very weak periodic structures are involved. This also brought out the risk of
errors in calculating the relative magnitudes of the various peaks and the mathe-
matical and computational limitations associated with the analysis. The fact that
the peaks are of widely differing magnitude and that the magnitude of the second
peak is more than two orders of magnitude smaller than that of the central peak,
makes detection and any quantitative evaluation highly ambiguous and difficult
and the problem thus demands very thorough checks for the acceptance of a set of
parameters. As explained in the subsequent paragraphs, we have taken the help
of well-established statistical significance tests to examine whether the parameters
calculated could be relied upon. We have used the Kolmogorov—Smirnov test to
show that the probability of the matched filter data coming from the same distri-
bution as the simulated intensity data is quite high. This is indicated if the null
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hypothesis is not rejected, at the 0.05 level of significance. Kolmogorov—Smirnov
test has the advantage of being a distribution-free method for testing whether two
sample distributions come from the same parent distribution and hence we have
used it in the significance analyses in the paper.

In the following section we explain the theory behind the matched filter detection.
This has been explained before in our earlier publications, but is explained again
for the sake of completeness. The section following this explains in detail about the
Kolmogorov—Smirnov statistical test that we have carried out. Following this, we
discuss our interpretation. In the final section, we discuss our conclusions and the
future course of work.

2. Theory

We consider a reflection grating in the zy plane, where elevations in the z-direction
are given by

§(2,y) = acos(Qr) + 6¢(x, y), (1)

where the random part 6¢(x,y) is assumed to be a zero mean Gaussian stationary
random process, with

(0(x,y)) =0, (0¢(w,y)o€(2’,y)) = a’g(r), (1a)
where
r= (@ -2+ (y —y)"2
We define the wave vector v of scattering to be

vy = k(sin 01 — sin 0y cos 03), vy = —ksin Oy sin 03,

v, = —k(cos 01 + cos 605), vgy =vi4 vi, (2)
where k = 27/ is the wave vector of light, A being the wavelength of light. In what
follows, we shall calculate the scattered intensity under the Kirchoff approximation,
which is valid for 47r.cos 6 > X, r. being the radius of curvature of the surface
[12,13]. Defining (pp*)o to be the ratio of the light intensity scattered in the (62, 63)

direction to the intensity of light scattered in the specular direction (62 = 01,03 =
0), for a perfectly smooth surface, we find

{(P"p)o = {Jg(\/@gl))f(vmvy;g) + TV 29 (e + 1Q vy 9)

+f(vw _nviy;g)}}B(GlaGQL (3>

where, with /g = ov,//2 and /g1 = av,/+/2, we have

F(u2 vy 9) = (27/4) [ exp(=g[t = gr))Jo(uayr)rdr (4)
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A being the area of the surface in the xy plane.

B(01,05) = [F3(61,04,03)]2S(01,62) (5)

F5(01;602,03) = (14 cos 0y cos 63 — sin 6 sin 05 sin 65)/

(cos 61 (cos 61 + cos 63)) (6)
5(61,02) = S5(01)5(02) (7)
with
S(0) = exp[(—1/4) tan 0 erfc(K cot 6)] (8)
K? = (aQ)* + 4(o /1) (9)

of which F5(61;62,03) is a geometrical factor and S(61, 62) describes the ‘shadowing
effect’.

A careful inspection of the above formulae will explain the principles of the
matched filter detection process that we describe below. Equation (3) shows that
the intensity profile consists of a series of peaks of the same shape, as described by
the functions f (v, £nQ), but shifted along the v, axis, the separations between the
nearest peaks being always @), where f(v,) is the shortened notation for f(v,0;g).
Furthermore, the amplitudes J2 (the argument \/(2g1) being dropped from now
on) depend purely on a while the shapes of the functions f(v, =nQ) depend totally
on the randomness of the system. This is true only in the limit of the elevations
being small, and we restrict the numerical calculations in those limits only.

Considering that /g1 < 1, the amplitudes of the successive nth peaks fall as
((v/g1)"/n))? while the width of the peaks vary as Av, = ry', in every case.
The coherence length rg of the light due to scattering by randomness is estimated
as Avy = 1y 1 where Awv, is the half-width at full-maxima of the central peak
f(vg). The separation of the peaks being dv, = @, the central n = 0 peak can
submerge all the higher order peaks for Av, > dv, = @, and the peaks thus
become undetectable. The matched filtering method envisages the shape f(v,) of
the central peak and separates the zeroth order peak out from the total intensity
profile. This way, it tries to bring out and identify the n = 41 peaks, whose shape
must match with that of the n = 0 peak that has been eliminated out. We begin
by assuming the shape of the central peak (which must be the same for all other
peaks too), with two unknown parameters, ¢’ and y, to be

F(z) = falve) = [1+ (¢ /2y)03]" (10)

which should be the leading trend for various models of randomness.
We now define

Z(va) = [(p" (v2) p(vz))o/ (p*(0)p(0))o] = fa(va) (11)
X(UI) = Z(vz)/Zma)o (12)
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We have, in essence, sought to obtain Z(v,) and x(v,), as quantities, which are
essentially (p*(vy)p(vy))o sans the anticipated central peak. We define the wave
vector @* as that at which Z(v,) has a maxima. This peak can be identified as
the first peak due to scattering by the hidden periodic structure, if and only if its
shape matches with the zeroth order peak f,(v,) that has been eliminated out, this
‘matched filtering’ being a strict condition that follows from eq. (3).

Further defining y,(v.) as

Xa(Vz) = XaN (Vz)/XaD (V) (13)
with

XaN(Uac) = [fa(vz + Q*) + fa(vm - Q*) - 2fa(vz)fa(Q*)] (14)

XaD(Vz) = [fa(@" + Q") + fo(Q" — QF) — 2£o(Q") fa(Q")], (15)

we note that if f,(v,) = f(vs), identically, A(v,) = [x(vz) — Xa(vs)] must vanish
identically, in the limit of (J2/Jp)? being extremely small.

The matched filtering is thus effected by using a least square optimization, by
defining an estimator

N
A, y)? = / IXa(ve) — x (o) [P (16)

which can be calculated by computing x(v.) = {[{p*(vz)p(vz))o/{p*(0)p(0))o] —
fa(vz)} from the experimental data and calculating x,(v,) from egs (13)—(15) with
the assumed f,(v,). We select the filter by choosing ¢’ and y to be the one which
gives minimum value for A%(c, y).

The search for the optimum value of ¢’ begins by identifying that (92 /0v2)(pp)o ~
c'. We next eliminate the central and first-order peaks, and fit the ‘residual’ to the
matched filter parameters. We simulate the scattered data by calculating (pp*)o,
from eqs (3)—(9). We next search for the matched filter by choosing a suitable
fa(v) and calculating A? in every case and thus arriving at the matched filter
value (¢, y), where the value of A(c’,y)? is a minimum. The position in the peak
in Z(v,) occurs at v, = Q* from which the value of @ is further approximated as
Qca and the value of a as aca, by using the relations (17) and (18), given below.

fo(@ + Q)+ f(Q" — Q) — 2£u(Q) fo(Q)
~ (o) 1)P[f(Q +2Q) + f(Q" — 2Q)] (17)

ZmaxJg = [fa(0) + fa(2Q") = 2f3(Q") + 2a(Q") Zinax] J7
~ [fa(3Q7) + fa(Q) = 2fa(2Q") fa(Q") — 2fa(Q") Zmax] 5 (18)
We calculate (pp)o1 as the sum (3), with only the n = 0,1 terms, where for f(v,)
we substitute f,(v;), as obtained by using the matched filter values, while for a we

use, a¢a1 and for @, we use Qcal, being arrived at by using the procedures described
in the above paragraph. We then determine
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5{p*p)o,1 = (P P)o — (P"P)o,1- (19)

The quantity d(p*p)o,1 is thus a quantity, in which the n = 0 and n = 1 peaks have
been eliminated. The next highest term being thus J3 f (v, — 2Q), this peak must
show up at v, = 2@Q, if it is present. By fine tuning the parameters, Qca1, Gcal, We
arrive at the point, where [|6(p*p)o1|>dv, is a minimum, where we have chosen
the integral to extend from the point of maxima of §(p*p)o,1 to the point where it
drops to 85% of this peak value.

Detection of different peaks is beset with the difficulty that the magnitude of the
second peak relative to the zeroth peak (Jo/Jy)? ~ 2.1 x 1072 while the magnitude
of the first-order peak with respect to the zeroth one (J1/Jy)? ~ 0.09. The height
of the second peak is thus about one order of magnitude smaller than the first
peak and two orders smaller than the zeroth one. Moreover, we have estimated
the matched filter with its curvature around its peak at v, = 0 and tried to verify
whether these match with those obtained at v, = £Q* and +2Q*. In view of the
smallness of JZ with respect to JZ and JZ, it is thus necessary to obtain estimates
of the function f(v.) in the tail region also, since the tail of f(v,) continues well
beyond 2Q*, as it is found that f(2Q*)/f(0) > (J2/Jo)?. The central theme in all
this work is to anticipate the shape of the central peak and hence all other peaks
and eliminate the stronger peaks to bring out the identically shaped weaker ones.

3. The Kolmogorov—Smirnov test

The Kolmogorov—Smirnov test is a statistical test used to determine whether two
different sets of data come from the same parent distribution [14]. The cumulative
distribution function is plotted against the data. This test is based on the fact that
the two end points of the cumulative distribution data should be at 0 and 1. The
behaviour in between these limits is decided by the individual data. The maximum
distance D between the two distributions is the term that enters the calculation of
the probability. We also define a significance level «, which actually decides the
extent of chance occurrence. The null hypothesis Hy says that both distributions
come from the same parent distribution. If probability p is greater than «, Hy is
not rejected. Otherwise, it is rejected.
The expressions for calculating the value of probability are given below. If

Qrs(\) =2 (—)V 7V exp (-257X%) (20)
j=1
Q(0) = 1.Q(o) = 0.
Probability (D > observed) = Qs([v/Ne + 0.12 +0.11/4/N,.]D), (21)

where N, = N1 Ny /(N7 + N2) and N7 and Ny are the number of points in data sets
1 and 2 respectively.
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Table 1. Basic statistical parameters and parameters of the Kolmogorov—
Smirnov test. Hi2 refers to the null hypothesis when data 1 and 2 are com-
pared. His refers to the null hypothesis when data 1 and 3 are compared.

A =328 x1078.

Range Hio His

ro/A Mean Median difference Std. Dev. P KS-d a = 0.05 a = 0.05

0.10 0.978 0.977 0.0394 0.009 0.07 0.18 0 1
0.0013

0.11 0.979 0.985 0.0427 0.016 0.07 0.18 0 1
0.0060

0.12 0.984 0.981 0.0673 0.016 0.19 0.15 0 1
0.0031

0.13 0.986 0.986 0.0381 0.012 0.05 0.19 1 1
0.0003

0.14 0.980 0.982 0.0448 0.015 0.26 0.14 0 1
0.0016

0.16 0.982 0.982 0.0438 0.015 0.55 0.11 0 1

0

0.18 1.000 0.996 0.0919 0.023 0.44 0.12 0 1
0.0037

0.20 0.986 0.992 0.0685 0.020 0.26 0.14 0 1
0.0061

0.22 0.994 0.996 0.0961 0.0235 0.19 0.15 0 1
0.0019

0.25 0.999 0.998 0.1071 0.026 0.14 0.16 0 1
0.0009

0.28 0.980 0.981 0.1146 0.031 0.68 0.10 0 1
0.0007

0.32 0.990 0.997 0.1285 0.035 0.34 0.13 0 1
0.0069

4. Results

The results of this paper are summarized in table 1. Studies were carried out at a
fixed wavelength of A = 6328 A and at differing (ro/A) varying from 0.10 to 0.32.

The value of a is fixed at 328 A, in the computations.

The simulated intensity data obtained from eq. (3) is taken as the reference
data. This is first fitted to the matched filter expression consisting of the zero-
order, first-order and second-order peaks. We then fit the simulated intensity data
to a single peak, which means that there is no periodic structure hidden in the
random background. The reasoning behind this exercise is the following. Given the
intensity data, which appears only as a single broad peak, we have the following
two possibilities:

1. There exists a structure within the single peak that the light scattering data
has generated (simulated intensity data, in our case).

2. There is no special structure within the intensity data.

should be invalid.
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Figure 1. Plot of (1) simulated intensity, (2) intensity as given by the
matched filter expression and (3) intensity assuming a single peak. For (a)
ro/A =0.12 and (b) ro/A = 0.16.

It is necessary to discriminate between the two cases and statistical methods are em-
ployed to test the goodness of fit of the two hypotheses. Firstly, we fit the intensity
data to the hypotheses 1 and 2 given above. It is found that the Kolmogorov—
Smirnov test accords equal probability, to be exact, the same probability to both
the hypotheses. It is thus necessary not to fit the intensity data as such but to
modify the approach, to allow discrimination between the two hypotheses.

We then calculate the following ratios, to help us in deciding the correctness of
our theory.

(a) Ratio of the data of option 1 to the reference data [ratio (a)].

(b) Ratio of the data of option 2 to the reference data [ratio (b)].

Our contention is that, if any one of the fits mentioned in options 1 and 2 were ex-
act, the corresponding ratios (a) or (b) should be unity throughout. Unfortunately,
this is not the case, and both (a) and (b) deviate from unity at several points.
The idea is to determine, as to which of the ratios is closer to unity, through-
out the range under study. The reasons for this deviation of the ratio from unity
identically, could be the following. The data, as calculated from the theoretical
simulation, contains several peaks of decreasing magnitude as the order of the peak
increases. Their magnitudes being extremely ‘small’ they hardly contribute to the
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Figure 2. Plot of (1) simulated intensity, (2) intensity as given by the
matched filter expression and (3) intensity assuming a single peak. (a)
ro/A =0.25 and (b) ro/A = 0.32.

discrimination process unless their contributions and those of the bigger peaks are
put on the same footing. To achieve this, we note that though the magnitudes of
the higher peaks are very small, they may be comparable to the residuals at the
tails. To understand our line of attack, we refer to figures 1 and 2, which show
some of the intensity plots for different values of 79/A. From these plots it is clear
that both the matched filter intensity and the single peak intensity fit the reference
data quite well. No conclusion can be drawn from these fits as to which one of them
resembles the reference data better. Figures 3 and 4 show some of the ratio graphs.
From the figures showing the ratio plots, it is quite easy to decide that in the case
where the parameter a is not equal to zero, the matched filter intensity resembles
the reference data better than the single peak intensity. This conclusion, although
impossible from the usual intensity plot, is very clear from a plot of the ratio. This
is because, by taking the ratio, we are magnifying the difference at the tails.

To quantify the results, we employ the Kolmogorov—Smirnov statistical goodness
test. This test is used to determine whether two sets of data come from the same
parent distribution. Here, we use this test to determine whether the data ratio (a)
or (b) is from the same distribution as a set of 1’s (with a 5% error allowed, i.e. we
do not discard the hypothesis if the ratio lies between 0.95 and 1.05). We are thus
following a problem, related to ‘estimation of parameters’. The parameter involved
here is the ratio and having estimated its value from the data, we proceed to check
its deviation from unity. The statistical test involves the following procedure.
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Figure 3. Plot of ratio. (1) Intensity as given by the matched filter expres-
sion/simulated intensity (curve 1 with symbol e), (2) intensity assuming a
single peak/simulated intensity (curve 2 with symbol o). (a) ro/A = 0.12 and
(b) ro/A = 0.16.

e Arrange data in ascending order.

e Get the cumulative distribution function.

e Define null hypothesis Hy. In this case the null hypothesis states that the
two data are from the same distribution.

e Define significance level. In this case the significance level a = 0.05.

e We define three sets of data for the Kolmogorov—Smirnov test.

Data 1 — set of units with 5% error margin
Data 2 — Data ratio (a)
Data 3 — Data ratio (b).

The Kolmogorov—Smirnov test is applied for data 1 and 2 as one case and also data
1 and 3 in the second case.

The results obtained are given in table 1. For the case involving data 1 and
2 the parameters obtained are given in table 1. Here, the null hypothesis Hy
is not rejected at the 0.05 significance level. This conclusion is valid for almost
all the values of ro/A. In the other case, where data 1 and 3 are involved, the
corresponding probabilities are very small, tending to zero in most cases, and we
find that the null hypothesis is rejected for almost all the values of ro/A. This is at
a significance level of 0.05. All these observations lead us to conclude that when a is

884 Pramana — J. Phys., Vol. 70, No. 5, May 2008



Scattering of light by a periodic structure

2 2.2

Ratio

06 1 1 1
0 20 40 60 80 100
Number of points Number of points

Figure 4. Plot of ratio. (1) Intensity as given by the matched filter expres-
sion/simulated intensity (curve 1 with symbol e), (2) intensity assuming a
single peak/simulated intensity (curve 2 with symbol o). (a) ro/A = 0.25 and
(b) ro/A = 0.32.

finite (a/X ~ 1/20), there is certainly a periodic structure behind the randomness.
This is obvious from the residual plots themselves, but the Kolmogorov—Smirnov
test provides a statistical basis for the result.

As the orders of magnitude of the various peaks vary so widely and further the
magnitude of the third and fourth peaks should be so small, looking for higher-order
peaks becomes impossible. Also, the detection of different peaks as a function of
different parameters involved in the matched filter method of detection is still to
be carried out. Our subsequent studies will focus on these topics.

5. Conclusion

From the results obtained and the subsequent discussion above, we conclude the
following. In a situation where the parameter a or the amplitude of the periodic
structure is finite, (1) the parameters detected by the matched filter data give a
good description of the intensity data, while (2) an expression, consisting of a sin-
gle broad peak, without any periodic structure, cannot describe the intensity data
adequately. This fact is very clearly indicated by the results we have obtained.
The null hypothesis is not rejected (for various values of ro/A) in the case where
a matched filter intensity is chosen and was always rejected when a single peak
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intensity was chosen. This statistical corroboration along with many of our obser-
vations explained above, lead us to the above conclusion and further advances the
strength of the matched filtering method used by us.
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