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Abstract-We have compared the numerical results of two widely used difference methods for 
the radiative transfer equation in plane-parallel medium. The Discrete Space theory (DS) is 
based on the direct first-order differential equation for the specific intensity whereas Auer’s 
Hermitian (AH) method used the second order form for the mean-intensity and flux-like 
variables. The numerical results of these two methods are compared with analytical solutions 
under the two-stream approximation in a semi-infinite atmosphere. For the multi-stream case. 
the numerical errors are estimated using the solution of Chandrasekhar’s discrete ordinate 
method. It is found that DS method is stable with respect to the logarithmic spacing of optical 
depth and gives less error for the specific intensity at the surface than that of AH method. 
The maximum relative error for the mean intensity variable is less for AH method. Analytical 
solution of the difference equation of DS method is studied and it is found that the solution 
gives the correct surface value and the diffusion limit in a semi-infinite atmosphere. 

1. INTRODUCTION 

The transfer of energy by radiation is an important process in most of the astrophysical objects. 
Many computational techniques are developed in the past to solve the transfer equation in 
plane-parallel medium. They can be classified broadly into two groups: (la) Escape probability 
methods: these methods may be used to solve the time-dependent gas dynamics in which radiative 
transfer plays an important role. In these approaches high accuracy is not needed but one needs 
great computational speed.’ (b) Operator perturbation techniques: these are fairly recent in origin 
and can be used for solving the non-LTE line blanketing problems.’ (2) Methods based on 
discretization of the differential equation of radiative transfer: they are very accurate and can be 
used in the study of various physical processes in astronomical situations. In this paper, we have 
concentrated on these finite-difference techniques in plane-parallel medium. 

There are two approaches to solve the transfer equation by discretization methods. One is based 
on the direct solution of the first order differential equation form of the transfer equation. This 
method was developed by Grant and Hunt3.4 and they called it as “Discrete Space theory of 
Radiative Transfer” (DS). They used “interaction principle” to derive the reflection and trans- 
mission operators of the medium and gave an algorithm to calculate the internal and emergent 
radiation fields. The form of difference equation for “step” and “diamond” scheme is given by 
Grant and Hunt.5 The “diamond” scheme uses mid-point values as the cell averages. Peraiah and 
Grant’ (PG) used this method to solve the transfer equation in spherical symmetry. One can obtain 
the plane-parallel limit from their method by taking the ratio of inner to outer radii of the medium 
as unity. Peraiah7,x used the diamond scheme extensively to solve line formation problems in 
expanding medium in the rest frame and in the comoving frame. Recently DS was used to solve 
the problem of polarized radiation field.‘,‘O 

Feautrier” transformed the transfer equation into second order differential equation by 
introducing the mean-intensity and flux-like variables. He proposed a central difference scheme 
which is of second order accuracy. Auer” extended this method to fourth-order accuracy by using 
the Hermitian scheme (AH). This method is applied extensively for various applications for e.g., 
model atmospheres. I3 Feautrier form is also used in other applications like polarized line transfer.14 
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The computer memory requirements for AH are less and also the method is faster compared 
to DS. But the first order form is advantageous in problem with complicated phase functions and 
anisotropic velocity fields. It is reported in the literature that the solution of ther first-order 
equation may be inaccurate and instabilities occur. 15.16 But our experience shows that DS method 
is always stable and accurate in a wide variety of applications. The step size restriction of DS is 
applicable only to the very outer layers. To verify our claim we incorporated logarithmic optical 
depth scale for semi-infinite atmosphere in DS and obtained the correct diffusion limit and the 
surface values. The stability analysis of difference equations of DS is performed. We compared the 
two methods, i.e., AH and DS methods, and estimated the errors using the analytical solutions 
wherever possible. 

In Sect. 2, we briefly describe the mathematical schemes of these methods. The computational 
results are described in Sect. 3. In Sect. 4, we give analytical solution of DS method. In Sect. 5, 
we give the conclusions. 

2. A BRIEF DESCRIPTION OF THE DIFFERENCE METHODS 

(a) The Discrete Space theory 

The monochromatic transfer equation for the isotropic scattering problem for constant 6 and 
B is 

*/J 
@CT, P) 

dt 
=Z’(r,p)-0.5(1 -6) 

s 
‘[Z+(*,y’)+Z-(r,~~)]d/l’-~B, 
0 

with the boundary conditions 

I-(r = 0, p) =f(p) and Z+(r = T, p) = g(p). (2) 

Here Z+(r, ZJ) and I-(r, p) are, respectively, the upward and downward intensities at the optical 
depth z along the direction p, where ~1 is the cosine of the angle made by the ray to the plane of 
stratification. c is the collision parameter and B is the Planck function. j-(p) and g(p) are the given 
functions. The scattering integral is discretized using Gauss-Legendre formula of order J in the 
interval p E [0, I]. By integrating Eq. (1) from r, to t,+ , gives, 

&M[U:+, - U:] = U:+ ,,z - 0.5(1 - c)C[U,= liz + U, ,,J - EB, (3) 

where 

u:+ l/2 = 0.5[lY’+ lq+,], (4) 

which is called “the diamond” scheme and 

c, c2 ... CJ 

c= “y2”‘“J I 4 . . *.. . . . 
c, c2 *** c, 

U(r) = [m, UI 1. . . . , I(T, p,r. (5) 

The resulting system of equations are solved using the interaction principle and star product. This 
semi-implicit method is more accurate compared to the explicit and fully-implicit schemes. Details 
of the methods can be seen in Ref. 6. 

(b) Auer’s Hermitian scheme 

Feautrier” introduced the variables 

U(r, PL) = 
Z(T, PL) + I(z, -PI I(& P) - I(T, --CL) 

2 
and V(r, ,u) = 

2 ’ (6) 
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which have respectively, a mean-intensity and flux-like character. By adding and subtracting Eq. 
(I), we have 

The boundary conditions can be written as 

and 

= g(p) - U(r, cl) at r = T. 

The scattering integral is discretized using Gauss-Legendre quadrature. Feautrier” proposed a 
second order discretization scheme to solve Eq. (7) and Eq. (8). Auer12 introduced Hermitian 
scheme which is fourth order accurate. The resulting system of equations is tridiagonal in form 
and can be solved by standard techniques. 

3. A COMPARATIVE STUDY OF THE NUMERICAL RESULTS 

In order to compare the accuracy of these methods, we consider the solution of radiative transfer 
equation for three simple cases. 

(1) 

(2) 

The first case is monochromatic conservative scattering under the two-stream approximation 
in a semi-infiinte atmosphere with E = 1, lop2 and lop4 and for B = 1, ‘I and t Z. For the 
numerical evaluation, we have considered only the cases given by Auer,” so that we can 
compare DS method with other methods discussed in this paper. We have chosen the 
logarithmic spacing Ar, = fAzd_, , z = K(f’-’ - 1) with K = 0.01 and f = 10’lN, where N is the 
number of points per decade. We have chosen N = 5 and p = 1.0. The source function for this 
problem is given by 

s = (1 - c)I.J(t) + tB(z). (9) 

We compared the results of DS and AH with the analytical solution for this problem which 
can be easily obtained. We have tabulated the results in Table 1. At the surface DS method 
is more accurate whereas maximum relative error (MRE) is less for AH method. 
We have considered another problem which is similar to the first one but solved under the 
multi-approximation. We have and B = 1 and c = 1, 10m2, 10m4. Now the source function is 
given by 

S=(l-6) 
S’ 

V(z, p’) dp’ + cB. (10) 

One can obtain the solution for this case’using Chandrasekhar’s” discrete ordinate method. 
We compared the results of DS and AH methods with this solution and the results are tabulated 
in Table 2 for the four Gaussian angles. At all the angles, surface relative error (SRE) is less 
for DS and in the interior, MRE is less for AH method. 

Table 1. Surface relative error (SRE) and maximum relative errors (MRE) for DS and AH methods in a semi-infinite 
atmosphere under the two-stream approximation. 

I T T? 
B(r) - 

c 1 IO-’ 1o-4 1 IO-’ IO-4 I IO-’ 10-J 

DS (PG) Method 
SRE O.OE+OO O.OE+OO O.OE+OO O.OE+OO O.OE+OO O.OE+OO 3.8E -05 7.1E-05 7.5E -05 
MRE 4.OE-03 7.5E-03 8.3E-03 1.5E-03 2.7E-04 3.2E-05 1.5E-03 2.6E-03 2.9E-03 

AH method 
SRE 3.4E-04 6.lE-04 6.6E-04 5.4E-04 2.6E-04 2.OE-04 4.2E-05 3.OE-04 3.6E-04 
MRE 9.2E-04 1.7E-03 1.9E-03 5.8E-04 2.6E-04 2.4E-04 4.4E-04 4.OE-04 4.OE-04 
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Table 2. Same as in Table I but under the multi-stream approximation for the four Gaussian angles. 

IO-’ IO-4 
t 
I( 0.069 0.33 0.66 0.93 0.069 0.33 0.66 0.93 

DS (PG) Method 
SRE O.OE + 00 O.OE + 00 O.OE + 00 O.OE + 00 O.OE + 00 O.OE + 00 O.OE + 00 O.OE + 00 
MRE 7.4E - 03 7.4E - 03 7SE - 03 7.6E - 03 8.4E - 03 8.4E - 03 8.4E - 03 8.4E - 03 

AH Method 
SRE 9.OE - 04 6.9E - 04 5.9E - 04 5.5E - 04 l.OE-03 7.7E - 04 6.5E - 04 6.OE - 04 
MRE I .6E - 03 I .6E - 03 1.6E-03 1.7E -03 1.8E-03 1.8E -03 1.8E -03 1.8E - 03 

(3) We have considered finite atmosphere with total optical thickness T = 1,2 and 10, with 6 = 0, 
and g(p) = 1 at the lower boundary. The medium is divided into 20 shells with equal optical 
thickness except for the case T = 1, where only 10 shells are considered. The solutions are 
compared again with Chandrasekhar’s discrete ordinate method. From Table 3, we see for AH 
method, SRE and MRE coincide. For DS method, SRE is less than MRE. 

4. ANALYTICAL SOLUTION OF DIFFERENCE EQUATIONS FOR DS METHOD 

Grant and Hunt3 derived the step size requirement for a stable solution of DS method by 
considering the non-negativity of the transmission matrix. The stability condition is 

For the two stream approximation, AT d 21~. For optically thick atmospheres they suggested 
doubling method where one subdivides the shell until the stability condition is satisfied. 

Since we could use a large step size (i.e., for logarithmic spacing of optical depth) for 6 = 1 in 
the two-stream approximation, we reexamined the stability criterion using the analytical solution 
of the difference equations of DS method. A similar analysis was done for the step scheme of the 
first order differential equation by Kalkofen and Wehrse. I8 They showed that for sufficiently large 

Table 3. Same as in Table 2 but for finite atmospheres. 

1 
T 
P 0.069 0.33 0.66 0.93 

DS (PG) Method 
SRE I.lE -04 3.8E - 04 2.4E - 05 7.7E - 05 
MRE 2.6E - 02 3.8E-04 5.8E - 05 7.7E - 05 

AH Method 
SRE 2.1E-02 3.3E - 04 1.3E-04 6.8E - 05 
MRE 2.1E -02 3.3E - 04 1.3E-04 6.8E - 05 

2 
T 
P 0.069 0.33 0.66 0.93 

DS (PG) Method 
SRE 2.1E -05 6.9E - 05 l.OE-05 3.4E - 05 
MRE 2.6E - 02 3.1E-04 9.6E - 05 3.4E - 05 

AH Method 
SRE 2.IE-02 3.6E - 04 1.7E-04 9.8E - 05 
MRE 2.IE-02 3.6E - 04 1.7E - 04 9.8E - 05 

10 
T 
P 0.069 0.33 0.66 0.93 

DS (PG) Method 
SRE O.OE + 00 O.OE + 00 O.OE + 00 O.OE + 00 
MRE 1.3E -01 8.5E - 03 l.lE-03 1.4E-03 

AH Method 
SRE 3.IE-01 3.1E-04 4.7E - 03 3.4E - 03 
MRE 3.IE-01 8.3E - 04 4.7E - 03 3.4E - 03 
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value of At, the solution diverges instead of reaching the constant value Zi = I, = B, for large K. 
We extend the same analysis in this paper for the most important case of semi-implicit difference 
scheme and show that the solution reaches the correct limit. 

In another paper, Kalkofen and Wehrse” compared the finite difference equations in various 
formulations of radiative transfer. They discussed the stability of semi-implicit difference scheme 
only for the restricted case where the source function is S = 1. In this paper the stability analysis 
is done for the general case where the source function is given by the form 

s 

+I 
s = OS(1 - 6) Z(r, p’) dp’ + tB. 

-I 

We first consider the case for t = 1.0. 

(a) True absorption 

The transfer equation for the outward intensity in the case of “diamond scheme” is 

& (E - 1>z: = VI:-B, k=0,1,2 ,... 

where Zk = Z(t,, p) and the shift operator EZ, = Z,, , . The boundary condition is 

ZL = B, for very large N. 

The solution for this equation is 

Z: = B. 

The transfer equation for the inward intensity is 

-&E-1)1,=- k , (E+1)Z--fj k=() 12 , , ,... . 
At L 

The boundary condition is 

The solution for this equation 

I, = 0. 

is 

Z, = B(l - rk), 
(1 - OSAr) 

r = (, + 0.5Ar) 

(11) 

(12) 

(13) 

(14) 

(15) 

For very large K, rk+O (even for very large values of Ar), we have 

I, = B. (16) 

(b) The two-stream approximation 

Here we describe the analytical solution of difference equations of DS under the two-stream 
approximation for constant t and B. 

(E+ 1) 
+y(E - l>Z: = 2 k Z’_(l-c) ,-(E+l)[Z:+Z;]-tB 

where y = ~/AT. Let 

a2= -y(E-l)- 
(1 +~)(l + E) 

4 . 

Equation (17) can be written as 

a,Z: = b,Z; -EB, 

a2Z; = b,Z: - cB. 

(17) 

(18) 

(19) 
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The particular solution is given by 

I: = - (a,+&) tB 

(~I~,--~:) 
From this expression one can show that Z: = B by considering only the first order terms in 
A = E - 1. Similarly, 

I; = _ (4 + h 1 
(46 -G) 

cB=B. 

To find the homogeneous solutions, we obtain the roots of the equation 

(a, a2 - bf) = 0, which are r, = 
(1 + 0.5J;Ar) 1 

(1 -0.5GAr)’ *‘=r,’ 

(20) 

(21) 

The general solution of the homogeneous equation can be written as 

I;hom = A frf + A:*:. (22) 

Two of the four arbitrary constants are redundant. We obtain a relation between them by 
introducing Eq. (22) into either one of the Eqs. (17). It follows that 

A; =rA: and A; =!-A:, where r =-&-f. 
r c 

Now the general solution of Eqs. (17) can be written as 

(23) 

I:=A:rk+A:r$+B I 

1 
I; =rA:rf+;A:r:+B. 

By imposing the boundary condition I; = 0 and I,+ = B, we obtain 

A:= 
- Brr[ 

and A: = 
Brrr 

(r’rf - r;“) (r’r~ - r;Y) 

At the boundary, we have, 

(24) 

(25) 

For very large N, (r, /r2)N = rTN+co, and (r2/r, >” = riN+O, we obtain 

Z$ = B(1 - r) = 

which gives the correct surface value 
Away from the boundary, we have 

B(1 -s)= B(3). (26) 

for the mean intensity J(0) = 0.51+(O) = B&/(1 + A). 

(27) 

For large values of k, r:--tO, we have 

IK’ = B. (28) 

Similarly, we have 

I, = B(1 - r:) = B. (29) 

In comparison, for step scheme, the roots r, and r2 are r, = 1 + ,/k and r2 = 1 - &.‘” For large 
K, the expressions for Zi and 1, oscillate in sign and do not converge to B is ,/& > 1. 
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We have performed the above analysis for the two-stream approximation. We find that we need 
to take small step size only in the outer layers for getting an accurate solution. The diffusion limit 
is obtained irrespective of the step size as we go deep into the medium. This analysis holds good 
even in the multi-stream case, as the two-stream approximation is valid inside the medium (i.e., 
radiation field is nearly isotropic). In the very outer layers, where the radiation field is anisotropic, 
one has to restrict the step size to x 2~. The logarithmic optical depth scale always satisfy the above 
conditions. 

5. CONCLUSIONS 

We have compared the methods of DS and AH for few idealized models. We find that at the 
surface DS is more accurate compared to AH, whereas in the interior AH is more accurate. The 
error of both the methods are insignificant. We performed the stability analysis of the DS method 
under the “diamond scheme” and found that it gives the correct diffusion limit. The logarithmic 
depth scale also ensures the correct step restriction for DS method. We conclude that the methods 
based on the first transfer equation need not be less stable compared to the difference schemes for 
the second order form. 
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