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ABSTRACT

Using reasonable assumptions and approximations it is shown that the poloidal component of the “steady”
part of the magnetic field in the Sun’s radiative core (RC) and convection zone (CE) can be modeled as an
analytical solution of the equation for magnetic diffusion in an incompressible medium of constant diffusivity,
which is subject to (1) continuity of the normal component across the RC-CE boundary and (2) merging with
an asymptotically uniform field of finite strength at large distances, and whose field lines isorotate with the
solar plasma. The last requirement enables determination of the values of the parameters in the first two

eigenmodes of the diffusion equation.

The resulting model does not have any singularity, separatrix, or closed loop, and yet it yields a much
better fit with the helioseismologically determined isorotation contours than the fit given by the earlier model

(Gokhale & Hiremath 1993).

The ratio of the range of the travel times of Alfvén waves along the field lines in this model, to their mean
value, is comparable to the relative range of the periods of the sunspot cycle. For example, it is 9.5-12.5 yr if

B, ~ 0.02 G.

The model enables us to estimate the “initial” (at zero-age main sequence) relative strengths of the two
diffusion eigenmodes as 4:1. The characteristic diffusion timescales of these modes are estimated to be ~10.6

and ~2.7 x 10° yr, respectively.

The model is consistent with (1) nonisorotation in the neighborhood of the RC-CE boundary which may
lead to build-up of a strong (e.g., ~1 MG) toroidal field on timescales ~107-108 yr, and (2) the presence of a
torsional MHD perturbation, with the dominant scale of latitudinal variation in CE and the scale of temporal
variation, both comparable to the observed scales of the solar magnetic cycle.

Subject headings: diffusion — Sun: magnetic fields — Sun: rotation — waves

1. INTRODUCTION

Theoretically it is possible that the Sun’s interior has
retained some of its large-scale (global) magnetic field from its
protostar phase even after the Hayashi phase (Cowling 1953;
Layzer, Rosner, & Doyle 1979; Piddington 1983; Mestel &
Weiss 1987; Spruit 1990). This part of the global field (viz., of
promordial origin) is expected to vary with time very slowly,
i.e., on timescales much longer than the travel times of the slow
MHD waves across the Sun.

Recently, we have modeled (Gokhale & Hiremath 1993,
hereafter Paper I) this slowly varying (“steady”) part of the
magnetic field in the Sun’s outer radiative core (ORC) and
convective envelope (CE), assuming it to be a “current-free”
field whose field lines isorotate according to the Sun’s internal
rotation as determined helioseismologically (Dziembowski,
Goode, & Libbrecht 1989). It is true, e.g., for reasons given in
Paper I, that the steady field would be current free to a first
approximation in the solar interior except near the rotation
axis. However, this approximation can be really good only in
CE, where buoyancy and convection can lead to fast disposal
of the currents but not so in ORC. In fact in the preliminary
model (Paper I) we did find it impossible to obtain a good fit
for a current-free field to be isorotating with the plasma in the
ORC. Moreover, an inward extrapolation of a current-free
field model would always lead to multipole type singularities
near the center (e.g., dipole and hexapole in the preliminary
model), unless the field is trivially uniform everywhere. It is
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therefore necessary to improve the “preliminary” model by
assuming, for the field in ORC and CE, a form of some simple
solution of the basic equations. In this paper we present such
an “improved ” model.

In § 2 we show on the basis of reasonable assumptions that
in the first approximation the “steady” part of the poloidal
magnetic field in the Sun must be a solution of the equation of
magnetic diffusion in a sphere of constant diffusivity and its
flux function ®(r, 9) must have a functional relation with the
angular velocity Q(r, @) of rotation of the plasma.

In § 3 we modify Chandrasekhar’s solution of magnetic dif-
fusion in a sphere of constant diffusivity (surrounded by a
medium of very large diffusivity) to incorporate the boundary
condition imposed by the presence of a locally uniform inter-
stellar field. This solution gives us mathematical forms ®gc and
@ for the flux function in RC and CE.

In § 4 we express the forms, QR and Q°E for Q(r, 9) in RC
and CE, assuming the relation between Q and ® to be linear.
The coefficients in this relation and the relative values of the
coefficients in ®yc and @ are then determined from least-
squares fits of Q8¢ and Q°F to the values of Q in RC and CE
given by helioseismology.

We find (§ 5) that it is possible to obtain excellent simulta-
neous least-squares fits for the fields, in both ORC and CE, in
their respective assumed forms, satisfying the continuity of the
radial component at the common boundary, such that the field
lines in each region isorotate with the plasma rotation given by
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helioseismology. The resulting field geometry is much simpler.
Unlike the preliminary model, it is free from any singularity,
separatrix, or closed loops. '

The present model yields Alfvén travel times along the differ-
ent field lines in the range ~9.5-12.5 yr, if By ~ 0.02 G (which
may be important for oscillatory models of the solar cycle).

The model enables us to determine not only the relative
magnitudes of the first two eigenmodes of diffusion in ORC but
also their characteristic timescales in terms of the magnetic
diffusivity. This information can be used to obtain a crude
estimate of the “initial ” (ZAMS) relative strengths of the two
diffusion eigenmodes.

We also find (§ 5) that the conclusions of the preliminary
model about the presence of a nonisorotation near the
ORC-CE boundary and of an MHD perturbation (with the
scale of latitudinal variation in CE and the scale of temporal
variation, both similar to those of the solar cycle) are valid

- even in the improved model (§ 6).

In § 7 we summarize the important features of the model and
discuss their implications.

2. ASSUMPTIONS AND THE RESULTING FORM OF THE
BASIC EQUATIONS

We assume that the magnetic fields and the fluid motions are
symmetric about the Sun’s rotation axis and note that on the
relevant timescales the fluid motions can be considered as
incompressible. For simplicity the magnetic diffusivity 7 is
assumed to be uniform and constant with a value represented
by a suitable average. However, the convection and the mag-
netic buoyancy operating in CE leads to fast disposal of the
electric currents. Hence the effective average value n¢g of 7 in
the convective envelope must be several orders of magnitude
higher than the average value #yc in the radiative core.

Following Chandrasekhar (1956a), the magnetic field B and
the velocity field » can be expressed as

_ o _, AEP)
h=—¢( o 1+ (¢, + 7! o 1, 6]

ou Y (€24
v=-(—£1§+(CQ)1¢+C I-Lcac_)lz (2)

where h = B/(4np)'/?; p is the density; {, ¢, and z are the
cylindrical polar coordinates, with their axis along the axis of
solar rotation; 1,, 1,, and 1, are the corresponding unit
vectors; and T, P, Q, and U are the scalar functions which are
independent of ¢.

For the reasons given in Paper I, we neglect the meridional
motions and write Chandrasekhar’s MHD equations in the
form

oP
nAsP - =0, 3
nAsT S0 = (70, ¢2P) @
a_ﬂ_ -3rr2 2
2 e, e ®
[AsP, P = o (T~ 0) ©
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Next we assume that the “steady ” part of the poloidal field
is very weak compared to the “steady” part of the rotation
and that the strength of the “steady ” part of the toroidal field
is less than (or at most comparable to) that of the “steady”
part of rotation. These assumptions are quite reasonable on
physical grounds (e.g., Mestel & Weiss 1987; Spruit 1990) and
have the following two consequences.

First, the Lorentz forces in the momentum equations are
negligible, and hence the induction equations (3) and (4) are
effectively decoupled from the momentum equations (5) and (6).

Further, equation (4) itself can be written, to the first approx-
imation, as

[Q (*P]=0 ©
which is same as
Q = function (®) ()]
where

¥, 2) = PPC 2) (10)

is the flux function representing the flux of the poloidal field
through the circle of axisymmetry passing through ((, 2).

Physically this means that in the lowest order the plasma
rotation imposes isorotation on the poloidal field. In the next
order the small deviation from isorotation will give the time-
dependent part of the toroidal field.

Thus the “steady ” (slowly varying) part of the Sun’s internal
poloidal field must satisfy diffusion equation (3) (with = g in
the radiative core and # =g [>nrc] in the convective
envelope), as well as isorotation, viz., equation (9).

3. SOLUTION OF EQUATION (3)

3.1. Chandrasekhar’s Solution of the Diffusion Equation

Chandrasekhar (1956b) has given a solution of the diffusion
equation (3), in a sphere of radius R,, of uniform and constant
diffusivity 5, which is embedded in a current-free field, in the
form

P(r, 3, 1) = P(x, p) exp (—t/7), 11

where x = r/R,, p =cos 9, r and 3 being the radial distance
and colatitude of a point, and 2(x, y) is a solution of

AsP+(m) '?2=0 inx<l1, (12a)
and
As? =0 (12b)

The solution of equation (12a) which is finite at origin has the
form

inx>1.

9",,(x, Il) = x—3/2J"+3/2(a" x)c?/l(”) for x =< 1 H (133)

and the solution of equation (12b) which vanishes as x — oo
has the form

Px, W)= x""ICH2(y) for x> 1, (13b)
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where n is any nonnegative integer, v has value t, = R2/na2,
C3¥2(y) is Gegenbaur’s polynomial of degree n (Abramowitz &
Stegun 1964, p. 794) and J,,, 3, represents a Bessel function of
ordern + 3/2.

Hence, the solution of equation (11) is

P, 8,1) = Y, Ayx™%2J,455(2, X)C3*(1) exp (—t/2)
n=0

for x <1 (14a)

and
Pr, %, 0= Y M,x "*3IC3(y) exp (—t/1) forx>1,
n=0

(14b)

where the values of a, and the coefficients 4, and M, are to be
determined using the boundary conditions.

3.2. Modification for Modeling Solar Magnetic Field

For modeling the “steady ” (slowly varying) part of the pol-
oidal field in RC and CE we adopt the above solution with R,
as the RC-CE boundary (i.e., with R, = 0.7 Ry). This is pos-
sible because #ncg > g (se€ § 2), and equation (12b) is the lim-
iting form of equation (12a) in the limit # — oo.

However, here we introduce the following important modifi-
cation. In the solution (13b) of equation (12b) the terms with
positive powers of x were dropped in order to ensure that the
field vanishes as x — co. However, the Sun’s poloidal field must
merge with the interstellar field at large distances which is
nonzero and which can be considered as locally uniform.
Hence on the right-hand side of equation (13b), we introduce a
term B, corresponding to a uniform field. Moreover, we
assume that the field has odd north-south parity (which allows
2, only with even values of n). Thus, we modify equations (13a)
and (13b) as

gn(x, l‘) = x—3/2 Z Aan+3/2(anx)C3/2(ﬂ) for x <1 (15)
n=0
(even)

and

Pux, W) =Bo C3*w) + Y, M,x"®"*IC32(y) for x> 1.
n=0
(even)

(16)
These solutions give the following forms for the magnetic
flux functions in the radiative core and the convective
envelope:
Dpc(x, 9) = 2mAo R2x'7? sin® 9 Z Ann+ 37200 )C* () ,
(evem
(17
where A4, is taken as a scale factor for the field, A, = 4,/4,, and
®cg(x, 9) = B, R2 sin? 9

[szS’z(uH Zﬁnnx“”“’C?”(u)], (18)
n>0

where fi, ., = M,/(nB, R"*3) are strengths of the central multi-
poles. Equation (18) is equivalent to the form as given in Paper
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I and is given as follows:
@cg(x, 9) = By RA[(x* + 2u; x ' + 4y x~3 +---) sin?2 9

+(=S5u3x3+--)sin* 9+ ---]. (19)
3.3. The Boundary Conditions

At x = 1, 1.e.,, r = R,, the flux function ®(x, 3) and the radial
component B, of the magnetic field must be continuous. Fol-
lowing Chandrasekhar’s (1956b) method, with the modifi-
cation necessitated by the presence of the uniform field term in
@, the boundary conditions can be reduced to the following
pairs of equations for each value of n.

Forn=0:

Ao J3)5(0) = (1 + 24)B,
and

Aol3732(c0) + 09 J55(20)] = (2 — f11)Bo ,
where J;(x) = (d/dx)J (x). These two equations give

3J352(00) 060 I 1)2(0t0) = (1 + fy) (20)
and
Ao = 3Bo/ag J1/2(°‘o) . (21)
Forn=2:
A, J7/2(°‘2) =3B,
Az[%-’wz(“z) + oy JY ()] = =303 B, .
These give
Jsa(0) =0 (22)
and
A, = is Bo/-]7/2(°‘2) . (23)

4. EVALUATION OF COEFFICIENTS USING EQUATION (9)

4.1. The Data and the Method

The “data” used here are the same as those used in Paper I,
viz,, the values of the angular velocity of the Sun’s internal
rotation as determined by Dziembowski et al. (1989), with
uncertainties as quoted by Christensen-Dalsgaard & Schou
(1988). The method of analysis is also somewhat similar. As
before, the law of isorotation (eq. [9]) is assumed to be linear
and written in the form

Qmod(x’ 9) = QO + Qld)(x’ ‘9) s (24)

and the parameter Q, and the products of the coefficient “Q,”
with the coefficients in ®(x, J) are determined by least-squares
fitting Q. 4(x, 9) to the helioseismologically determined plasma
rotation Q. (x, 9). The difference is in the assumptions about
the fields in ORC and in CE which yield different forms for
®(x, 9) and in the order in which the various parameters are
determined.

Since the forms of ®(x, 3) as well as the levels of uncertainties
in Q, are different in CE and in ORC, we write equation (24)
separately in CE and ORC as

Qoed(x, 9) = QFF + OFfOcg(x, 9), (29)
and

QYE(x, 9) = QF"C + QP Dopclx, 9),
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where @¢g and Dgic represent flux functions in CE and ORC
given in equations (17) and (18), respectively.
As in Paper I, we define a dimensionless rotation w,(x, 9) as

wobs(x7 9) = [Qobs(xa ‘9) - ﬁ]/ O Qs

where Q is the mean and o, is the standard deviation in the
set of the values of Q,,(x, 9) used. However, instead of deter-
mining O and ag,, separately in ORC and CE, we have deter-
mined these for the combined data from ORC and CE.

We then fit w,,4(x, 3) in CE and ORC to the forms

mod(x '9) ng + aCE(DCE(x’ ‘9) (263)
and

o5 (%, §) = 0 + a®*Dopel(x, 9) . (26b)
4.2. Procedure for Determining the “ Steady” Parts of the
Rotation and the Poloidal Field

As before, the uniform field at the large distances, B,, is
essentially a scaling factor for the Sun’s field. Hence we choose

By =1 “unit”

First the parameters OF (=0 + ooy, OFF
(= nByR2a%ay,,,), iy, and fi3 for “steady ” parts of rotation
and field in CE are computed by least-squares fitting of a)md(x,
U to a)obs(x, u). As shown in Paper I, such a two-term fit is the
best fit in CE (it is not enough to take only the first term in @,
and there is no gain in including the third term). The goodness
of the fit and the uncertainties in the parameters are also com-
puted in the same way as in Paper 1.

Next, equations (20)—(23) are used to determine the values of
the parameters oo, 4o, %, ,and 4, ;,i=1,2,3,... etc.

Last, the parameters Q*¢ (=Q + wORC ,) and QR
(=nB, R2 a®®qg,) are determmed by ﬁttlng wo“c(x, 9 to

ORC

Dobs (X, ‘9)

5. THE MODEL FOR THE “STEADY ” PARTS OF ROTATION
AND POLOIDAL MAGNETIC FIELD

5.1. The “ Steady” Parts of Rotation and Poloidal Field in CE

The above-mentioned computations yield the following
results for the “ steady ” part of the field in CE:

fi, = 3.638 £ 0212,
fis = 0.621 + 0.063 .

Here we note that this value of i, is exactly equal to ] and
13 is almost exactly equal to f3, where i}, 43 are the values
obtained from values of 4, and u; determined in Paper I (by
converting from formula [19] to formula [18]). This confirms
once again that the field whose field lines isorotate with the
plasma in CE is current free up to the accuracy of QSE.

@n
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For the “steady ” part of the rotation in CE, we obtain
QSE = 3259 + 4.1 nHz
QSE = 33.2 + 1.9 nHz per unit flux .

The corresponding y? is = 42.95, and the confidence for good-
ness of fit is = 99.9943%.

(28)

5.2. The “ Steady” Parts of Rotation and Poloidal Field
inORC

With the value of ji; given in equation (27), equations (20)
and (21) yield unique values a, = 2.904 and 4, = 9.374. On the
contrary, equation (22) has many roots, and the corresponding
values of 4, are given by equation (23). Different pairs of
values of ¢, and A4,, along with the unique values of a, and A4,,
yield the results as given in Table 1.

According to Table 1, the different values of a, yield very
low values of 2 (all with probabilities <10~7), the smallest
being given by the smallest posmve root o, ; of ;. The differ-
ences between the values of x2 are so small that it is difficult to
identify the most appropriate value. However, this is mainly
because of the large uncertainties in Q,,, near the rotation axis,
where the polynomials C3?(u) have the largest amplitudes.
Hence the difficulty can be avoided by rewriting ®gpc and Ocg
in terms of sin? 9 and sin* 9 (since sin & has large values near
the equator where helioseismic data are more reliable). When
this is done and the condition of continuity of magnetic flux is
rechecked, we find that the continuity condition is satisfied by
only the smallest value of a,, viz., 5.763.

Hence the corresponding parameters for the “steady ” part
of the field and the rotation are

g =2904, A,=9374, a,=5763, A,=1955,
(29)
and
QYRC = 450.2 + 5.0 nHz ,
(30)

Q€ = —3.9 + 0.6 nHz per unit flux .

5.3. The Geometrical Structure of the Field and the Currents

The field lines of the field given by equations (17) and (18) in
the region 0.0 < r/Ry < 1.0 are plotted in Figure 1. In CE
(0.7 < r/Rg < 1) the field structure is similar to that in Paper L.
However in RC it is entirely different from that derived in
Paper I. It is interesting to note that in RC the field is much
simpler: it has no closed loops and no singularity (see eq. [17]).

Here the toroidal currents in RC will be much less concen-
trated near the axis than the previous model in which the
diffusion was neglected.

TABLE 1

RESULTS OF THE LEAST-SQUARES FITS FOR a, = 2.904, A, = 9.374 WITH THE
FIRST FEW VALUES OF o, AND THE CORRESPONDING VALUES OF 4,

Values Q, AQ, Q, AQ,
of a, A, (nHz) (nHz) (nHz per unit flux) Q, 1
1.955 450 5.0 —-3.89 0.17 11.58
—2.389 439 3.0 -0.31 0.16 13.51
2.754 437 24 0.11 0.18 13.69
-3.079 434 1.8 0.98 0.16 1393
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FiG. 1.—Structure of the “steady” part of the magnetic field as given by
flux functions (17) and (18) with values of parameters given in egs. (27) and (29).
The field lines correspond to flux values A: 0.0, B: 0.51, C: 1.02, D: 2.04, E:
2.55,F:3.06,G:3.27,H: 3.47,1: 3.71, J: 3.76, K: 3.82, L: 4.08, and M: 4.29, in
units of nB, R2.

5.4. Admissibility of Global Modes of Slow MHD Oscillations

In the context of models of solar cycle based on global
MHD (magnetohydrodynamic) oscillations, it is of interest to
calculate the Alfvén wave travel times along the field lines in
the present and the previous models of the “steady ” part of the
poloidal field. Using the density values from the standard solar
model (Bahcall’s model [1989, p. 90] in ORC and Spruit’s
model [1977, p. 26] in CE), we have determined the time taken
by Alfvén waves to travel along various field lines (from one
“end” on the solar surface to the other) in the previous model
(Paper I) and the present model. In units of R./[Bo/(4mpo)'/?],
where p, is the central density, the travel times vary from
~0.97 x 1076 to ~7.75 x 107° for the field lines in the pre-
vious model. In the present model it varies from ~2.42 x 1076
for the field line very near the axis to ~1.84 x 1076 for the
outermost field line that just touches the RC-CE boundary.
The former gives a maximum-to-minimum ratio of ~8,
making it impossible for that model to have global modes of
slow MHD oscillations. On the other hand, the present model
gives for Alfvén travel times a range of only ~20% about the
mean value. This makes it possible, in the present model, for
the field structure across the core to have global slow MHD
oscillations with a relative bandwidth in frequency comparable
to the observed relative bandwidth of the solar cycle frequency
(Gokhale et al. 1992). (For the mean travel time to be ~11 yr,
ie., the period to be ~22 yr, the value of B, should be
~0.02G)

5.5. Estimation of Diffusion Timescales and the “ Initial”
Amplitudes of Diffusion Eigenmodes
From the values of ¢, and a, obtained in § 5.2, we estimate
the diffusion timescales for the two terms in equation (17) as
¢o = R2/(nrcad) ~ 10.6 x 10° yr
7, = R2/(frc @3) =~ 2.7 x 10° yr

taking #gc = 34.6cm2s™ !,
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This enables us to estimate the ratio of the “initial ” (ZAMS)
relative amplitudes of these two terms A% and A§ as

A3 _ A, exp frc(®3 2_ ag)t
x4, R?

~ 0.276

where “t” is the present epoch.

5.6. The Slow Field Winding at the ORC-CE Boundary

Equations (25) yield different values for the angular velocity
Q on the two sides of the ORC-CE boundary, suggesting a
steep radial gradient across the boundary. The values of the
apparent “jump,”

[Q] = [QRsd(1, 9) — Qia(1, 911,

as given by the present model, vary from ~125nHz at 3 = 10°
to ~50nHzat 3 = 90°.

How much of the “jump ” [€2] is time dependent (varying on
short timescales) and how much is “steady” (varying on long
timescales) is not known at present. If a substantial part of this
is sufficiently long lived, then the timescale 7, of field winding
will be given by

T4 = | By I/ B, | [€2]) ,

where | B, | is the strength of the long-lived part of the toroidal
field and | B, | is strength of the poloidal field. The values of
|B,| at r =R, (ie., at the ORC-CE boundary) range from
~36B, at 3 = 10° to ~6B, at 90° (equator).

If B, ~ 10° G (e.g., Dziembowski & Goode 1991) and B, ~
1072 G as suggested in § 5.4, the timescales of winding range
from ~ 107 yr in the polar regions to ~ 108 yr in the neighbor-
hood of the equator.

To the order of the present approximation in which the
dominant term, viz. [Q, {?P] in equation (4), is equated to zero,
equations (3) and (4) will both have the same form. Hence the
function T(r, 3, t) describing the slowly varying toroidal field
will also have the form similar to that of P in equation (11), e.g.,

T(r, 9, t) = T (x, p) exp (—t/7)

with  given by an equation similar to equation (13a), except
in the spherical shell near r = R, across which the “jump” [Q]
occurs. Within this shell 7 will be given by the equation

AsT + ()1 T = —({7[Q, P2,]

subject to the boundary conditions at the boundaries of the
shell. However, details of such a solution remain to be worked
out.

6. RESIDUAL ROTATION: EXISTENCE OF TIME-DEPENDENT
PERTURBATIONS

Having determined the “steady” parts of the rotation and
the magnetic field by the above procedure, we attempt to deter-
mine the forms for the nonisorotating (i.e., time-dependent)
parts of the field and rotation by least-squares fitting the
residual rotation rate, viz.,

6Q(X, ‘9) = Qobs(x9 '9) - Qmod(xa ‘9) B (31)

to the next term in equations (26a) and (26b)}—i.e., to the term
in fis in equation (18)—in CE and to the term 1, in equation
(17) in ORC. The goodness of the fits and the uncertainties in
the estimates of the parameters are also computed as before.
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6.1. Time-dependent Parts in CE
Such an attempt gives

fs = 0.0125 + 0.0335

and a very large value of y* showing that the residual rotation
in CE cannot be used to determine accurately the parameter
fis. This implies that either the residual rotation dQ is not of
the form x~>C3/*(cos 9), or it contains observational errors
which are larger than the real values of the residual rotation, or
both.

For further insight, we add a “third ” term of this form, with
the above value of fis, to the first two terms already determined
in § 5.1 and recalculate the x2 for the fit between Q,_ 4(x, 9) and
Q. (x, 9). The new value of x2 is somewhat larger (43.97) than
its two-term value of 42.95. Thus, even if a part of the residual
rotation constitutes a true rotational perturbation, it may not
be of the form x ~3C3/*(cos 9).

On the other hand, as shown in Paper I, inclusion of a term

* Ps(cos 9) in the magnetic potential, i.e., a term x ~° sin® 9 in the

form of equation (19) not only improves the fit but also reduces
the uncertainties in u, and u, (and thereby in i, jis). Thus if
6Q in CE contains a real rotational perturbation, it is closer in
form to the term x ™3 sin® 9 in equation (19) than to the term
x~3C3?*(cos 9) in equation (18).

The overall conclusion is that the residual rotation in CE is
time dependent and may be of the form x ™5 sin® 9.

6.2. Time-dependent Partsin ORC
A similar attempt to fit the residual rotation in ORC yields

o, = 8.182
and
Aq = 0.0027 £+ 0.0018 .

The corresponding y? is also very large. Thus the residual
perturbation is not of the form of the higher order term in the
“steady” part of the rotation. However, the smallness of the
uncertainty in A, suggests that the residual rotation may
contain a small part having the form of

x12J 1 2(g X)C3*(cos 9) ,

though mixed with substantial observational errors.

Here again, for further checking we add a “third” term of
this form, with these values of a, and A,, to the two terms
already determined in § 5.2 and recalculate the x? for the fit of
Qoa(x, 9) with Q. (x, 9). The new value of x? (11.56) is in fact
slightly smaller than that (11.58) given by the two-term fit. At
present we do not know a reliable method to determine if this
lowering of y? is significant or not. However, if it is, it would
imply presence of a small part of the above form in the rotation
in ORC.

The overall conclusion is that a small part of the “residual ”
rotation in ORC may be “steady,” but most of the residual
rotation in ORC is time dependent.

6.3. The Torsional Oscillations

From §§ 6.1 and 6.2, we see that in any case the “residual”
rotation in ORC and CE cannot fit those terms which extend
the common solution of equations (3) and (9) beyond the
fourth power in sin 3. These “residual” rotation fields will
therefore contain time-dependent forms. Since the displace-

HIREMATH & GOKHALE

Vol. 448

ments due to these are without compressions (by virtue of their
axisymmetry) and are perpendicular to the steady component
of the poloidal magnetic field, they must constitute torsional
MHD oscillations. From § 5.4 it is clear that their periods will
be in the range ~1to ~ 100 yr if B, lies within the limits set in
Paper I and ~22yrif B, ~ 0.02G.

7. CONCLUSIONS AND DISCUSSION

The present model incorporates important improvements
over the preliminary model of the steady part of the poloidal
magnetic field in the Sun’s interior in the following respects: (1)
the central singularity and the complexity due to the
“separatrix ” are eliminated and (2) the field lines in this model
have a much better fit with the helioseismologically inferred
isorotation contours in the outer radiative core.

The Alfvén wave travel times along different field lines in the
present model have less spread than those in the preliminary
model and would therefore provide a better basis for
developing a model of the solar cycle in terms of global MHD
oscillations.

The removal of the central singularity enables us to draw
inferences about the rotation near the center. The present
model suggests that the rotation near the center is uniform
with angular velocity Q, = 450 nHz.

The opposite signs of QPR and QFF represent evolutions of
the fields in ORC and CE in segarate frames of rotation, rotat-
ing with angular velocities QO*¢ and QGE, respectively.

As in the preliminary model, here also the observed rotation
enables us to determine the leading two terms in the magnetic
flux function. This is essentially because the latitudinal depen-
derice of rotation is known with enough accuracy only up to
sin* §.

Regarding the slow winding of the poloidal field into a
strong toroidal field and presence of MHD perturbations with
timescales comparable to those of the solar cycle, the conclu-
sions of the present model are qualitatively similar to those of
the preliminary model.

The assumption of field diffusion provides a starting point
for studying the complexity of the “initial ” (ZAMS) configu-
ration of the magnetic field (though the diffusion rate itself will
be modified by the possible presence of MHD oscillations
throughout the evolution of the field and rotation).

The strength of the field in the model is normalized to B,,
whose upper and lower limits have been estimated in Paper I
as ~107* G and 1 G, respectively. Recent analysis by Stenflo
(1993) of the magnetogram data during 1960-1993 indicates an
upper limit of ~6 x 102! Mx on the flux of “steady” part of
the poloidal field. This corresponds to a limit of ~0.1 G on B,.

It must be emphasized that at any time the ~ rms ~ held near
the surface will be much stronger due to possible simultaneous
presence of many global MHD oscillations.

More data especially on rotation in high latitudes and near
the axis with higher resolution and accuracy will be needed for
further refinements of the model.

Direct fitting of the acoustic frequency splittings to a rota-
tion law of the form given in equation (25) will be more conve-
nient for studying the interaction of rotation and magnetic
field inside the Sun.

We are thankful to an anonymous referee for helpful com-
ments and suggestions.
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