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Relativistic multi-reference Fock-space coupled-cluster calculation of the
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We report the forbidden 6s%'Sy — 6s5d3D; magnetic-dipole transition amplitude computed
using multi-reference Fock-space coupled-cluster theory. Our computed transition matrix element
(1.34 x 10™* ) is in excellent agreement with the experimental value (1.33 x 10™* up). This value
in combination with other known quantities will be helpful to determine the parity non-conserving
amplitude for the 65218y — 6s5d > D; transition in atomic Yb. To our knowledge our calculation
is the most accurate to date and can be very important in the search of physics beyond the standard
model. We further report the 6s6p3Po — 6$6p1P1 and 6s5d°D; — 6$6p3P0 transition matrix
elements which are also in good agreement with the earlier theoretical estimates.

PACS number(s) : 31.15.Ar, 31.15.Dv, 31.25.-v, 32.70.Cs,

I. INTRODUCTION

The highly forbidden 652 1Sy — 6s5d 3D magnetic-dipole (M1) transition amplitude in ytterbium (Yb),
a key quantity for evaluating the feasibility of parity non-conservation (PNC), has recently been measured
by Stalnaker et al. [1] using Stark-interference experiment. The electric-dipole (E1) matrix element for
65215y —> 6s5d 3Dy transition in Yb is forbidden because of its s — d nature. The forbidden M1 transition
amplitude mentioned above is therefore the key quantity to explore the feasibility of the PNC study for this
transition in Yb. Accurate determination of the M1 transition amplitude, which is strongly suppressed in
nature in the absence of external fields, can be used together with the large PNC- and moderately large
Stark- induced E1 amplitudes to understand PNC studies in neutral Yb. Strong configuration mixing and
spin-orbit interaction in both the upper and the lower states give rise to a non-zero 6s2 'Sy — 6s5d 3Dy
transition amplitude ﬂ, E] Surprisingly, despite its tremendous importance in PNC experiments, only a
rough theoretical estimate (JA(M1)| < 107%up) is available in the literature for this transition. PNC in
atoms arises from the neutral weak interactions and are considerably enhanced in heavy atoms. Combining
the high precision experiments and theoretical calculations of PNC observables, it is possible to extract the
nuclear weak charge |3]. Any discrepancy of its value with the one obtained from the standard model (SM)
of particle physics could possibly reveal the existence of new physics beyond the SM.

The ground and excited states of closed shell ground state systems like Yb are, in general, multi-
configurational in nature, and hence, an accurate description of these states requires a balanced treatment
of non-dynamical or configuration mixing and dynamical electron correlation effects (this will be more clear
by studying the energy levels in figure [). It is, therefore, imperative that these systems must be treated
with methods which are combinations of the configuration interaction (CI) and many-body perturbation
theory (MBPT), such as multi-reference many-body perturbation theories (MR-MBPT) |4, 5, 6, 7, ], @],
multi-reference Fock-space coupled-cluster (MR-FSCC) theories and/or it variants m, ,[12, [13, @] etc.
The state-of-the-art MR-FSCC is an all-order approach and is capable of providing reliable estimates of pre-
dicted quantities. In this paper, we employ the MR-FSCC method to compute the magnetic-dipole transition
amplitude for 652 1Sy — 6s5d 3D; transition in Yb using four-component relativistic spinors. The resulting
value of this magnetic-dipole transition matrix element in atomic Yb is 1.34 x 10~*up, which differs by less
than one percent from the experimental value. In addition, we have also calculated the 6s6p 3Py — 6s6p ' P,
M1 transition transition amplitude in Yb which plays crucial role in the measurement of the PNC induced
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Figure 1: Energy levels of the ground and low lying excited states of Yb. The energies (in cm™') are given with
respect to the ground state and are obtained from the NIST database [15]. Electric dipole (allowed) and magnetic
dipole (forbidden) transitions are represented by ‘blue’ (solid) and ‘red’ (dashed) lines respectively. This diagram
helps us to understand the requirement of a multi-reference theory to describe the atomic states of Yb.

electric-dipole amplitude |16]. This is the first time any variant of coupled-cluster theory has been applied
to determine the M1 transition amplitude of Yb. A precise determination of this quantity ensures not only
the power of the theory but also for the experimental uncertainties. To our knowledge no such theoretical
results are available for magnetic dipole transitions in Yb.

The structure of this paper is the following : section [[ describes the physical relevance of the problem.
Section [T provides a brief outline of the multi-reference Fock-space CC (MR-FSCC) theory for two-electron
attachment processes that is used to compute the M1 transition elements between the ground 'Sy and excited
3D, state. Section [[II] contains the results of our calculation with an in-depth discussion. Finally in section
[Vl we conclude and highlight the findings of our paper.

II. FOCK-SPACE MULTI-REFERENCE COUPLED-CLUSTER (MR-FSCC) THEORY FOR
TWO-ELECTRON ATTACHMENT PROCESSES

In MR-FSCC method |11, 112, [13, [17, [18, [19, 20], the self-consistent field (SCF) solution of the Hartree-
Fock (Dirac- Fock in relativistic regime) for the N-electron closed shell ground state ®up/pr is chosen as
the vacuum (for labeling purpose only) to define holes and particles with respect to ®yp,pp. The multi-
reference aspect is then introduced by subdividing the hole and particle orbitals into active and inactive
categories, where different occupations of the active orbitals will define a multi-reference model space for
our problem. We call a model space to be complete if it has all possible electron occupancies in the active
orbitals, otherwise incomplete. The classification of orbitals into active and inactive groups is, in principle,
arbitrary and is at our disposal. However, for the sake of computational convenience, we treat only a few
hole and particle orbitals as active, namely those are close to the Fermi level. The classification of orbitals
is depicted schematically in Fig[2(a). Diagrammatically, active holes and particles are depicted as solid lines



with double arrows and the corresponding inactive lines are designated by dotted lines with single arrow. The
orbitals which can be both active and inactive are designated by solid lines with single arrow (see Fig[2(b)).

We designate by \I/?(k’l) a model space of k-hole and I-particle determinants, where in the present instance
(YbJr2 +2e — Yb), k = 0 and [ ranges from 0 to 2. Generally, any second quantized operator has k-hole
and [-particle annihilation operators for the active holes and particles. For convenience, we indicate the
“hole-particle valence rank” of an operator by a superscript (k,!) on the operator. Thus, according to our
notation, an operator A% will have exactly k-hole and I-particle annihilation operators.
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Figure 2: (a) Schematic depiction of the classification of particle and hole orbitals into active and inactive categories.
(b) Diagrammatic representation of hole (), particles (1), active particles (double up arrow), inactive holes, and
particles (dashed down/up arrow). (c) Diagrammatic representation of S (T), S©b and S cluster operators.

We now describe the type of ansatz used to derive the MR-FSCC equations for direct energy difference
calculations in two-electron attachment processes. The Hartree-Fock/Dirac-Fock function ®xp/p is denoted
by ¥(©:0) and the inactive hole and particle orbitals (defined with respect to ®yp/pr) are labeled by the indices
a,b,c,---and p,q,r,- -, respectively. The corresponding active holes and particles are labeled by the indices
a,B,7--+ and w,v,w---, respectively. Note that there will be no active holes (particles) for two electron
attachment (detachment) processes. The cluster operator correlating the N-electron ground/reference state
is denoted in our notation by S(©9 which can be split into various n-body components depending upon
the various hole-particle excitation ranks. The cluster operator S99 upto 2-body (first two diagrams of
Fig[2(c)) can be written in second quantized notation as,

1
SO0 =510 450 = 3 plst™ ol afoat + 7 D0 (palst™Vlab){afafmadt +- (1)

D,a a,b,p,q

where a' (a) denotes creation (annihilation) operator with respect to ®yur,pr and {---} denotes normal

ordering. It should be noted that S(©9 cannot destroy any holes or particles; acting of ®yp /DF it can only
create them.

For (N +1) electron states the model space consists of zero active hole and one active particle (k = 0,1 = 1)
and hence according to our notation the valence sector for (N + 1) electron states can be written as (0,1)
sector. We introduce an wave operator 2 which generates all valid excitation from the model space function



for (N + 1) electron states. The wave operator € for the (0,1) valence problem is given by
Q = {exp(©0 + 5O} (2)

In this case the additional cluster operator S(%) must be able to destroy active particle present in the
(0,1) valence space. Like 5(0.9) " the cluster operator S(>1) can also be split into various n-body components
depending upon hole-particle excitation ranks. The one- and two-body SO (3rd and 4th diagram of
Figl(c)) can be written in the second quantized notation as

1
SOV = s 487 o= 3 plst™V fui{afan} + 5 D (palsy”Vjua){afafapan} + (3)

pFU p,q,a

where u denotes the active particle which is destroyed.

Similarly, for (N + 2) electron states (two-electron attachment processes) the model space consists of zero
active hole and two active particles (k = 0,1 = 2) and the valence sector may be written as (0,2) sector.
In this case, the additional cluster operator must be able to destroy two active particles and this may be
designated by S(®2), The total wave operator 2 for the (0,2) problem is then given by

Q = {exp(S©0 + 5O 4 502y}, (4)

A typical two-body S£0’2) operator (5th and 6th diagrams of Fig2 (c)) may be written as
5(0:2) :l Z ( |s(0’2)|uv>{aTaTa ay} (5)
2 2 pq 2 pYgvu Sy
p,q,u,v

where v and v denote active particle which are destroyed. Note that orbitals p and ¢ both cannot be active
at the same time. We further emphasize that under two-body truncation scheme S(°2)=0, if all the particle
orbitals are active.

In general, for a (k, ) valence problem, the cluster operator must be able to destroy any subset of k- active
holes and - active particles. Hence, the wave operator  for (k,1) valence sector may be written as

= {exp(S*™Y)}, (6)

where

l
S0 = ZO Z (7)

To compute the ground to excited state transition energies and M1 transition element(s) of Yb, we begin
with the Dirac-Coulomb Hamiltonian (H) for an N-electron atom which can be written as

N N 9
o= Z [cd} P + Bmc® + VNuc(Ti)] + Z % (8)
P i<j Y

with all the standard notations often used. The normal ordered form of the above Hamiltonian, relative to
the mean field energy, is given by

H=H—-(D|H|®)=H — Epr = Z( |£17) {a aJ} —|—i Z (i7]|kl) {a al alak} (9)

ij 2,5,k,1
Here
.. o1 o1
(ij]|kl) = (ij|—|kl) — (ij|— k), (10)
T12 T12

Epr is the Dirac-Fock energy and f is the one-electron Fock operator.



We define the exact wave function \I!Ek’l) for (k, 1) valence sector as

v — qudth (11)

i
where

Q0D _ 3 gk, (12

The functions @Ek’l) in Eq.([I2)) are the determinants included in the model space \I!?(k’l) and C®0 are the
corresponding coefficients. Substituting the above form of the wave-function (given in Eqs. ([ and (I2))

in the Schrodinger equation for a manifold of states H|\I/l(-k’l)> = Ei|‘IJEk’l)>, we get

HQ <Z ci|<1>§.’“”>> = E,Q <Z OJ(I)E’“’”)), (13)

where E; is the i-th state energy.
Following Lindgren [11], Mukherjee |[12], Lindgren and Mukherjee [18], Sinha et al. [19] and Pal et al. [20],
the Fock-space Bloch equation for the MR-FSCC may be written as

k.l
gapkl _ P(k’l)Hiﬂ ) pk.D) Y(k,1), (14)
where

Hg}’l) _ pkh -1 ptD (15)

and P is the model space projection operator for the (k,1) valence sector (defined by =, C’Z-(k’l)q)(k’l)). For

i

complete model space, the model space projector P%!) satisfies the intermediate normalization condition

prhopkl — pkl), (16)
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Figure 3: Diagrammatic representation of He(?f’l)(ﬁgure a) and Hé?f'Q)(ﬁgure b). The one- and two-body dressed

operators of H are represented by circle and dashed lines, respectively. Exchange diagrams are not shown here for
convenience.

At this juncture, we single out the cluster amplitudes S(®° and call them T. The rest of the cluster
amplitudes will henceforth be called S and are shown in Fig. 2l The normal ordered definition of {2 enables
us to rewrite Eq.(@) as

Q = exp(T){exp(5)} = exp(T)2y (17)

where (), represents the wave-operator for the valence sector.
To formulate the theory for direct energy differences, we pre-multiply Eq.([I4) by exp(—T) and get

HQ,P®) =, PEOEED PED (k1) £ (0,0) (18)

where H = exp(—T)H exp(T). Since H can be partitioned into a connected operator H and Eye Jer (IN-

electron closed-shell reference or ground state energy), we likewise define Heg as .

HED = g®b B (k1) # (0,0). (19)
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Figure 4: Diagrammatic representation of \I/(O 2) |M1|\I/(0 2y, The one-body dressed operator M1 =
exp(TT)M1 exp(T) is represented by line with arcle Exchange dlagrams are not shown here for convenience.

Substituting Eq.([I9) in Eq.(I8) we obtain the Fock-space Bloch equation for energy differences:
HQ,P®D =, p®b gD ph (k1) £ (0,0). (20)

Egs. ([I@) and (20) are solved by the Bloch projection method for £k =1 =0 and k = 0,1 # 0, respectively,
involving the left projection of the equations with P*-!) and its orthogonal complement Q*-1) (P*:1) 4
Q(k’l)zl) to obtain the effective Hamiltonian and the cluster amplitudes, respectively. At this point, we
recall that the cluster amplitudes in MR-FSCC are solved hierarchically through the subsystem embedding
condition (SEC) |17, [21] which is equivalent to the valence universality condition used by Lindgren [11] in
his formulation. For example, in the present apphcatlon we first solve the MR-FSCC for £ = = 0 to obtain
the cluster amplitudes T'. The operator H and H g A%V are then constructed from this cluster amplitudes T
to solve Eq. (20) for k = 0, I = 1 to determine S ) ) amplitudes. The effective Hamiltonian for (0, 1) Fock
space (represented diagrammatically in Fig[]), constructed from H, T and S (0.1) is then diagonalized within
the model space to obtained the desired eigenvalues and eigenvectors. The diagonalization is followed from
the eigenvalue equation

HgDCON — e, @
where
——
2SS = POYH + £SOV pOD, (22)

—N—
The expression HS" in Eq.([22) indicates that operators H and $(°1)) are connected by common orbital(s).
The MR-FSCC equations for (0, 2) sector are then solved to determine S(*2) where the cluster amplitudes
from the lower valence sectors behave as “known quantities”. The effective Hamiltonian for the (0,2) Fock
space constructed from H, T, S(®V and S(? is then diagonalized to get the desired roots by using the
equation

AGP 02 = 02, (23)

where

~ (02 L T =/
A = PO [H 4+ F50D +5 HSOD SO 4 F502) PO, (24)



It is worth noting that the eigenvalue and eigenfunctions for the (0,1) valence sector are by-products of
MR-FSCC for the (0,2) valence sector with no additional computation. Once the cluster amplitudes are
known, the magnetic-dipole matrix element between the two states can be computed using the following
expression

0,2 0,2
(|
0,2 0,2 0,2 0,2
V0P D) 0w )

(Final state(f)|M 1|Initial state(z)) = (25)

where |\IJE0’2)> and |\I/(f0’2)> are the exact initial and final states, respectively. With aid of Q, the valence
universal wave operator, Eq.([I8) can be further simplified to

(0,2) N (0,2)
s (@21 + SHFI(1 + )@ ) o

V@I 4 SHer e (1+ 5)[@0?) (@0 |(1 4 51T e (14 )2

where M1 = exp(TT)M1exp(T) and S = SO 4 §(0.2),
The single particle reduced matrix elements for the M1 transition is given by,

6 . . + K .
(nsllmi ) = 5 Grlleg i x (155 ) [ 3100) (P + Py (27)

Here j’s and x’s are the total orbital angular momentum and the relativistic angular momentum quantum
numbers respectively; k is defined as wa where w is the single particle difference energy and « is the fine
structure constant. The single particle orbitals are expressed in terms of the Dirac spinors with P; and Q;
as the large and small components for the ith spinor, respectively. The angular coefficients are the reduced
matrix elements of the spherical tensor of rank m and are expressed as

(rsllegm ) = (192 g+ @i+ ) (4 B )t (25)
2 2

with

_ | 1 ifly+m+1; even
(g, m,li) = { 0 otherwise (29)

and [’s being the orbital angular momentum quantum numbers. When kr is sufficiently small, the spherical
Bessel function j,(kr) is approximated as

(kr)" (kr)"
I+l 1-3-5----2n+1)

jn(kr) =~ ( (30)

III. RESULTS AND DISCUSSIONS

The magnetic (M1) and electric-dipole (E1) transition matrix elements of Yb are computed using
37s33p28d12f59 GTOs with ag = 0.00525 and 3 = 2.73 (geometrical basis with a; = ap3'~!). [High
lying unoccupied orbitals are not included (kept frozen) in CC calculations.] The reference space for ex-
citation energy and associated properties is constructed by allocating 6s valence electrons of Yb among
657s8s6pTpbd6d valence orbitals in all possible ways. The basis and reference space used in this calculation
is exactly same as that employed in an earlier communication by one of the author [22] for transition energies,
ionization potential and hyperfine matrix element calculations. We have considered that the nucleus has a
finite structure and is described by the two parameter Fermi nuclear distribution

_ Po
1+exp((r—c)/a)’

p (31)



Table I: Theoretical and experimental magnetic dipole transition matrix elements (in Bohr magneton ug) of Yb.

Initial State Final State This work Expt./Theory

65 1Sy 6s5d°D;  1.34 x 1077 1.33 x 10 "[1]
656p° Py 6s6p'Py  0.12 0.13[16]

where the parameter ¢ is the half charge radius and « is related to skin thickness, defined as the interval
of the nuclear thickness in which the nuclear charge density falls from near one to near zero. The energy
levels of Yb and Yb™ are not reported here as those have already appeared in the previous work [22].
The magnetic-dipole transition matrix elements in Yb computed using MR-FSCC method agree well with
experiment and with other available theoretical calculations (see Table[l) The present result for |[A(M1)|
for 65215y — 6s5d3D; transition differs by less than one percent (< 1%) from the experimental value.
Our calculation further shows that the major contribution to |A(M1)| comes from SV (S(-2) contribution
is only 1%). At this juncture, we emphasize that the random phase approximation (RPA) and the second
order multi-reference many-body perturbation theory (MR-MBPT(2)) estimate this quantity (|JA(M1)|) to
be 0.68 x 10~ *up and 0.98 x 10~y p respectively. These large deviations (~ 49% for RPA and ~ 25% for
MBPT) in the perturbative estimate clearly demonstrates the importance of higher order correlation effects.

In addition to the trasition matrix element <6$5d3D1| M1 ‘652 1SO>, we also report the 6s6p3Py —
6s6p ' P, M1 transition amplitude in Yb, which plays an important role in the measurement of PNC induced
electric-dipole amplitudes [16]. We briefly outline its relevance as the details are available elsewhere [16].
The PNC-induced electric-dipole transition amplitude A(E1)pnc is given by

A(E1)pnc <686p1P1’€Z ’656p3P0>

- b<5d3/2651/2‘ Hy [5d3/56p1/2) (32)

E
X <6$5d3D1 ez |656p3P0>

where H,, is the PNC weak interaction Hamiltonian in the non-relativistic limit, e is the electronic charge, b
is a coefficient that describes the configuration mixing amplitude and angular mixing coefficient, and AFE is
the energy separation between the 6s5d 3D; and 6s6p ! Py states |[16]. The mixing coefficients of the 6s5d 3D,
and 6s6p 1 P, states by the weak interaction is given in Ref.|2]. We have also determined the matrix element
(6s5d3D1 | ez |6s6p®Py) which turns out to be 2.52a.u. This value provides a step forward towards the
determination of A(F1)pnc amplitude in Yb and in the search of physics beyond the standard model.

IV. CONCLUSION

We have computed the highly forbidden magnetic-dipole transition matrix elements for 6s?'S; —
6s5d3D, and 6s6p3Py — 6s6p ' P; transitions in Yb using the Fock-space multi-reference coupled-cluster
(MR-FSCC) method. The values of the magnetic-dipole transition matrix elements presented here are the
most, accurate theoretical estimates to date and are in accord with the experimental value. We have also
evaluated the <6$5d3D1’ ez ’656p3P0> matrix element, which can be combined with other known quantities
to determine the PNC amplitude for the 65215, — 6s5d3D; transition in atomic Yb. To our knowledge
this the first time any variant of coupled-cluster theory is applied to determine this quantity, which is ex-
pected to be useful to experimentalists in this area and in the search of any new physics beyond the standard
model.
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