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Searching for an accurate optical clock which can serve as a better time standard than the present
day atomic clock is highly demanding from several areas of science and technology. Several at-
tempts have been made to built more accurate clocks with different ion species. In this article
we discuss the electric quadrupole and hyperfine shifts in the 5d°6s? 2D5/2 (F=0,mpr=0) <
5d'°6s %S, 5 (F = 2,mp = 0) clock transition in " Hg", one of the most promising candidates for
next generation optical clocks. We have applied Fock-space unitary coupled-cluster (FSUCC) theory
to study the electric quadrupole moment of the 5d°6s> 2D5/2 state and magnetic dipole hyperfine
constants of 5d°6s> 2D3/2,5/2 and 5d'%6s? 25'1/2 states respectively of ' Hg%. We have also com-
pared our results with available data. To the best of our knowledge, this is the first time a variant
of coupled-cluster (CC) theories has been applied to study these kinds of properties of Hgtand is
the most accurate estimate of these quantities to date.

PACS number(s). : 31.15.Ar, 31.15.Dv, 32.30.Jc, 31.25.Jf, 32.10.Fn

I. INTRODUCTION

The frequencies at which atoms emit or absorb electro-magnetic radiation during a transition can be
used for defining the basic unit of time. The transitions that are extremely stable, accurately measur-
able and reproducible can serve as excellent frequency standards. Present frequency standard is based
on the transition between the two hyperfine levels of a cesium atom ([Xe]6s (2512, F =3,mp =0) <
[Xe]6s (25'1/2, F=4mp= O)) with an accuracy of 1 part in 10'5, However, there is an ongoing search for
even more accurate clocks in the optical regime. Recent day progress in technologies makes it feasible to built
more accurate clocks with higher precision. Moreover this kind of study not only provides the foundation
for a wide range of experiments and precision measurements but also can be used for stringent tests of our
fundamental concepts and theories. Some recent studies of frequency standards have yielded sensitive probes
of possible temporal variation of the fundamental constants @, 9, é]’ Atomic frequency standards based on
a single trapped ion has been established to provide more stability and accuracy than those of present-day
time standards M] Among all the ionic candidates for frequency standards, 9 Hg* B] is believed to be
the most reliable one. Recent progress on 99 Hg" frequency standards [3, 6, E|] have revealed the feasibility
of achieving an accuracy of 1 part in 10'® as compared to 1 part in 10'® which is the present day standard.
In particular, the 282 nm transition (5d%6s®2Ds/5 (F = 0,mp = 0) < 5d*°6525} )5 (F = 2,mp = 0)) is of
interest in " Hg". A schematic diagram of the energy levels and the clock transition is given in Fig. ().
The electronic structure of %9 Hg™ reveals that the excited (metastable) states which are interesting from
the point of view of frequency standards, involve open d-shells and are very difficult to evaluate using any
theoretical methods. Therefore, any kind of property calculation of ' Hg* involving an open d- shell is
very complex and challenging.

To measure the transition frequency accurately one needs to determine the corresponding states (energy
levels) with a high precision. When an atom interacts with an external field, the standard frequency may be
shifted from the resonant frequency. The quality of the frequency standard depends upon the accurate and
precise measurement of this shift. To minimize or maintain any shift of the clock frequency, the interaction
of the atom with it’s surroundings must be controlled. Hence, it is important to have a good knowledge of
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these shifts so as to minimize them while setting up the frequency standard. Some of these shifts are the
linear and quadratic Zeeman shift, second-order Stark shift, hyperfine shift and electric quadrupole shift.
The largest source of uncertainty in frequency shift arises from the electric quadrupole shift and the hyperfine
shift of the clock transition. Departure of the spherical symmetries in the D states of 99 Hg™T gives rise
to an electric quadrupole moment and in the presence of external electric field gradient the atomic electric
quadrupole moment will cause a shift in the energy levels of the D states. On the other hand, the non-zero
nuclear spin of ' Hg" produces nuclear multipole moments which interacts with the electron moments at
the site of the nucleus which is caused by the nuclear spin. This interaction will lead to a hyperfine effect
and the corresponding shift in the upper and lower levels are known as hyperfine shifts.

In this article we have used the relativistic Fock-space unitary coupled cluster (FSUCC) method, one of
the most accurate theories to describe the electron correlation effects in many-electron atoms, to calculate
electric quadrupole moment and hyperfine constants of "9 Hgt. The excited states which are of interests
in 9 Hgtinvolve open d- shells which make the calculation very complex and challenging. Unlike ordinary
Fock-space coupled-cluster (FSCC) theory, FSUCC is based on unitary groups and contains much more
physical effects in the same level of approximation. Although the electric quadrupole moment (EQM) has
been determined by the experimentalists and the theoreticians, to the best of our knowledge, this is the first
time a theory of this kind is being applied to study the properties of a complicated system like % Hg". The
precise determination of the hyperfine constants using FSUCC theory can be considered as benchmarking of
the determination of atomic states. Therefore, the accuracy obtained for the EQMusing this approach can
help us to determine the uncertainty (which is ~ 3.5%for the experiment) of the same which will be very
useful in the frequency standard studies.

The structure of the paper is as follows : Section [l gives a brief introduction about the importance of
using ' Hgt in frequency standards. It also introduces the importance of applying FSUCC theory in this
problem. This is followed by Sec. [l which deals with a short theoretical description of FSUCC theory,
electric quadrupole moment and hyperfine structure. We present the results and the relevant discussions in
the next two Sec. [Tl Finally, in Sec. [Vl we conclude and highlight the important findings of our work.
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Figure 1: Partial energy level diagram (including hyperfine levels) of the '°°HgTion. The ‘clock-transition’
(5d°65% 2 D5/ (F = 0,mp =0) < 5d'°65°5,,5 (FF =2,mp =0)) which is of interest, is a forbidden electric
quadrupole (E2) type at 282 nm.

II. THEORETICAL DETAILS

In this section we describe the theoretical formulation of our work. Relativistic Fock-space unitary coupled-
cluster (FSUCCQC) theory is a variant of well known Fock-space coupled-cluster (FSCC) theory in the rela-
tivistic regime which is based on an unitary ansatz. More details about UCC theory for atoms can be found
in Ref. |8 which is referred as I in the following sections. Therefore, we have just outlined the FSUCC



theory here. We obtain the open shell 5d°6s2 2D5/2 and 5d%6s> 2D3/2 states of %9 Hgt using core ionization
technique. In one of our earlier papers, we have outlined the treatment of open-shell coupled-cluster core ion-
ization potential (OSCC-IP) [9] which is referred as II in this manuscript. For determining the 5d'°6s 2S5 />
state of % Hg" we have used the open-shell coupled-cluster with electron attachment (OSCC-EA) method
|[10]. For more details we refer to the original article by Lindgren and Mukherjee [10].

A. Fock-space unitary coupled cluster theory

Relativistic coupled-cluster (RCC) theory is based on the no-virtual-pair approximation along with the
appropriate modification of the orbital form and potential terms [11]. One begins with the Dirac-Coulomb
Hamiltonian (H) for an N-electron atom which is expressed as

N N
H=3

cd; - Py 4+ pmc? + VNHC(Ti)] + Z vl (1)
i=1 i<j Y
with all the standard notations often used. In FSCC/FSUCC method, the self-consistent field solution of the
Hartree-Fock (Dirac-Fock in relativistic regime) for the N-electron closed shell ground state ® is chosen as
the vacuum (for labeling purpose only) to define holes and particles with respect to ®. The multi-reference
aspect is then introduced by subdividing the hole and particle orbitals into active and inactive categories,
where different occupations of the active orbitals will define a multi-reference model space for our problem.
We call a model space to be complete if it has all possible electron occupancies in the active orbitals, otherwise
incomplete. The classification of orbitals into active and inactive groups is, in principle, arbitrary and is
at our disposal. However, for the sake of computational convenience, we treat only a few hole and particle
orbitals as active, namely those are close to the Fermi level.

We designate by \I/?(k’l) a model space of k-hole and I-particle determinants, where in the present instance
(Hg — e — Hg™), I = 0 and k ranges from 0 to 1. Generally, any second quantized operator has k-hole
and [-particle annihilation operators for the active holes and particles. For convenience, we indicate the
“hole-particle valence rank” of an operator by a superscript (k,!) on the operator. Thus, according to our
notation, an operator A%*! will have exactly k-hole and I-particle annihilation operators.

We now describe the type of ansatz used to derive the FSUCC equations for direct energy difference
calculations in one-electron detachment processes. The Hartree-Fock/Dirac-Fock function ® is denoted by
¥(0:9) and the inactive hole and particle orbitals (defined with respect to ®) are labeled by the indices
a,b,c,---and p,q,r, -, respectively. The corresponding active holes and particles are labeled by the indices
a, B,y and u,v,w---, respectively. Note that there will be no active particles for electron detachment
processes. The cluster operator correlating the N-electron ground/reference state is denoted in our notation
by S0 which can be split into various n-body components depending upon the various hole-particle
excitation ranks. The cluster operator S(°:°) upto two-body can be written in second quantized notation as,

1
§O0 = 8"+ 5570 4o = 3 plst"Vlai{afaat + 7 D7 (palsylab}{ajafasan) +- (@)

p,a a,b,p,q

where a' (a) denotes creation (annihilation) operator with respect to ®up sor and {---} denotes normal
ordering. It should be noted that S(>% cannot destroy any holes or particles; acting on ®, it can only create
them.

For (N —1) electron states the model space consists of one active hole and zero active particle (k = 1,1 = 0)
and hence according to our notation the valence sector for (N — 1) electron states can be written as (1,0)
sector. We introduce an wave operator ) which generates all valid excitation from the model space function
for (N — 1) electron states. The wave operator € for the (1,0) valence problem is given by

Q = {exp(S® 4 g0y} (3)

In this case the additional cluster operator S must be able to destroy the active particle present in the
(1,0) valence space. Like 5(0.9) "the cluster operator S(1:%) can also be split into various n-body components
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depending upon hole-particle excitation ranks. The one- and two-body S(10) (depicted in Fig.([2)) can be
written in the second quantized notation as

1
SO0 = S0 1§50 g = Yol ) {alany + 5 Y (palst b {afalavac} + - (@)
a#b p,b,c

where « denotes the active particle which is destroyed.
In general, for a (k,!) valence problem, the cluster operator must be able to destroy any subset of k- active
holes and - active particles. Hence, the wave operator 2 for (k,!) valence sector may be written as

Q = {exp(S™V)}. (5)
where
) koo
m=0 n=0
We define the exact wave function ‘Ill(»k’l) for (k,1) valence sector as
v = qult? (7)

where

pOkD _ Z D kD), (8)

The functions ®*" in Eq.(®) are the determinants included in the model space W'*" and C*:)) are the
corresponding coefficients. Substituting the above form of the wave-function (given in Eqs. (@) and (&) in

the Schrodinger equation for a manifold of states H|\Ilgk’l)> = Ei|\111(-k’l)>, we get

HQ (Z Ci|<1>§-’“’”>> = EQ (Z @-l@&’“%) : 9)

where E; is the i-th state energy.
Following Lindgren [12], Mukherjee |13], Lindgren and Mukherjee [14], Sinha et al. [15] and Pal et al. [16],
the Fock-space Bloch equation for the FSCC may be written as

HOPpkD — P(k,l)He(ilchJ)Qp(k,l) V(k, l) (10)
where
Hg}’l) _ pkh -1 ptD (11)

and P is the model space projection operator for the (k,1) valence sector (defined by >, C’Z-(k’l)q)(k’l)). For

i

complete model space, the model space projector P%!) satisfies the intermediate normalization condition
pEhopEl) — plkl) (12)

At this juncture, we single out the cluster amplitudes S(°% and call them T. The rest of the cluster
amplitudes will henceforth be called S. The normal ordered definition of €2 enables us to rewrite Eq.(6]) as

Q = exp(T){exp(5)} = exp(T)S, (13)

where (2, represents the wave-operator for the valence sector.
To formulate the theory for direct energy differences, we pre-multiply Eq.([I0) by exp(—7") and get

HQ,P®D =, PEOEED PED vk 1) £ (0,0) (14)
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where H = exp(—T)H exp(T). Since H can be partitioned into a connected operator H and Eret/gr (N-
electron closed-shell reference or ground state energy), we likewise define Heg as

= (k,l k.l
H(Eff ) = H(Eff ) Egr7 V(k,l) 7& (070) (15)
Substituting Eq.([I3) in Eq.(I4) we obtain the Fock-space Bloch equation for energy differences:
~ = (k,l
HQ,PHFD =, P& D pb -y 1) £ (0,0) (16)

Egs. ([I0) and (I6)) are solved by the Bloch projection method for k =1 =0 and k = 0,1 # 0, respectively,
involving the left projection of the equations with P*-!) and its orthogonal complement Q*-1) (P*:1) 4
Q(k’l)zl) to obtain the effective Hamiltonian and the cluster amplitudes, respectively. At this point, we recall
that the cluster amplitudes in FSCC are solved hierarchically through the subsystem embedding condition
|17, (18] which is equivalent to the valence universality condition used by Lindgren [12] in his formulation. For
example, in the present application, we first solve the FSCC for £ = [ = 0 to obtain the cluster amplitudes
T. The operator H and H, C(;f,o) are then constructed from this cluster amplitudes T' to solve Eq. (I6) for

k=1,1=0 to determine S(*% amplitudes. H is then diagonalized within the model space to obtained the
desired eigenvalues and eigenvectors. The diagonalization is followed from the eigenvalue equation

flc(flf’O)C(l’O) — Lo g (17)
where
—
AV = POOH + g8 PO, (18)

~~
The expression AB in Eq.([I8)) indicates that operators A and B are connected by common orbital(s).
In FSUCC, the wave operator  in Eq.([I3) is replaced by

Q =exp(o) {exp (9)} = 20, (19)

with the cluster operator defined as ¢ = T'— T'T. In comparison to the ordinary coupled cluster (CC) theory
the wave operator o in UCC contains de-excitation operator (7'7) as well and therefore UCC theory contains
more higher order effects than the conventional CC theory in the same level of approximation. In this work
we have used unitary coupled-cluster theory in the single and double excitation approximation to treat the
closed shell correlation consistently. We refer to the article I for further details.

B. Electric quadrupole shift

The interaction of the atomic quadrupole moment with the external electric-field gradient is similar to the
interaction of a nuclear quadrupole moment with the electric fields generated by the atomic electrons inside
the nucleus. In the presence of the electric field, this interaction gives rise to an energy shift by coupling
with the gradient of the electric field. The quadrupole moment © of an atomic state |¥(yJF Mp)) is defined
as the diagonal matrix element of the quadrupole operator with the maximum value M and is expressed as

6= <‘IJ(7JFMF)|®zz|‘IJ(7JFMF)> . (20)
Here v specifies the electronic configuration of the atoms which distinguishes the initial and final states; J is

the total angular momentum of the atom and F' is the summation of nuclear and atomic angular momentum
with Mg its projection. The electric quadrupole operator in terms of the electronic coordinates is given by

0..=—- (3ZJ2 - T?) ) (21)



(i) (i)
Figure 2: Diagrammatic representation of the open-shell cluster operators in the single and double excitation (SD)
approximation. Fig (i) and (ii) corresponds to single and double excitations amplitudes respectively as given in Eq.
). The lines represented by double arrow stand for occupied valence orbital and the downward single arrows are

occupied orbitals (including the valence) ; the line with an upward arrow corresponds to particle. The dashed lines
represent inactive orbitals.

where the sum is over all the electrons and z is the coordinate of the jth electron. To calculate the quantity
we express the quadrupole operator in its single particle form as

o = Y 4. @)
The single particle reduced matrix element of the electric quadrupole operator is expressed as [19]
Grll gl l5a) = Gl G52 1lsi) / drr® (PyPi+ Q7 Qi) (23)

In Eq.(23), the subscripts f and ¢ correspond to the final and initial states respectively; P and Q are the
radial part of the large and small components of the single particle Dirac-Fock wavefunctions respectively
and j; is the total angular momentum for the ith electron. The angular factor is given in by

el C gy = (=)W [(255 + 1)/ (25 + 1)
jf 2 ]z I
x (—1/2 0 1/2)”(1”“’1) (24)
where

N [ 1ifl+k+1 even
m(l, k1) = { 0 otherwise ;

! and k being the orbital angular momentum and the rank of the interaction respectively.
Finally using the Wigner-Eckart theorem we define the electric quadrupole moment in terms of the reduced
matrix elements as

. . e 2 g, .
s O i = (=19 (185 ) o i) (25)

More details about the evaluation of the electric quadrupole moment using RCC theory is described in one
of our recent papers [20]. The electric quadrupole shift is evaluated using the relation [21]



24 [3M} — F(F + 1) (¥(1JF)[| 0 | ¥(+]F))

(U(yJFMFp)|© |V (yJFMp)) = [(2F + 3)(2F + 2)(2F + 1)2F (2F — 1)]"/?

x O(a, ) (26)

and

O(a, B) = [(3cos® B — 1) — e(cos® a — sin” a) ] . (27)

Here a and (3 are two of the three Euler angles that take the principal-axis frame of the electric field gradient
to the quantization axis and € is an asymmetry parameter of the electric potential function [21].

C. Magnetic dipole hyperfine shift

The non-zero nuclear spin gives rise to nuclear multipole moments which interact with the electric multipole
moments generated by the atomic electrons at the site of the nucleus and this interaction is collectively known
as hyperfine interaction [22]. Theoretical determination of hyperfine constants is one of the most stringent
tests of accuracy of the atomic wave functions near the nucleus. Also accurate predictions of hyperfine
coupling constants require a precise incorporation of relativistic and correlation effects. Like the 201 Hgt
isotope, 199 Hg" also has a non zero nuclear spin (I = %) and the mp = 0 levels for both the 25’1/2 and
2Dy /2 states are independent of the first order Zeeman shift.

The hyperfine interaction is given by

Hagy =S M® .70, (28)
k

where M%) and 7(*) are spherical tensors of rank k, which corresponds to nuclear and electronic parts of the
interaction respectively. The lowest &£ = 0 order represents the interaction of the electron with the spherical
part of the nuclear charge distribution.

In the first order perturbation theory, the energy corresponding to the hyperfine interaction of the fine
structure state are the expectation values of Hj¢s such that

W(J) = (IJFMp| Y M®) . TW | 1]FMF)
k
I JF (29)
= Sl D L © i oo )
k

Here I and J are the total angular angular momentum for the nucleus and the electron state, respectively,
and F =1+ J with the projection Mp.

The magnetic dipole hyperfine constant (A) comes from the magnetic dipole hyperfine operator 7}1(1) which
is a tensor of rank 1. For an eigen state |I.J) of the Dirac-Coulomb Hamiltonian, A is defined as

_ 103 (JITW )
A_“N(I)¢ﬂJ+U@J+n’ (30

where p7 is the nuclear dipole moment defined in units of Bohr magneton pn. The magnetic dipole hyperfine

operator 7:1(1) can be expressed in terms of single particle rank 1 tensor operators and is given by the first
order term of Eq. (29)

. 8w _ 0)/ ~
70 = 0 =3 eyt YU)(). (31)
q J



Table I: Electric quadrupole moment (® in ea%) of the 5d°6s2 2D5/2 state of ' Hg". Entry within the parenthesis
correspond to dressed one-body contribution. FSUCC stands for the present calculation. MCHF and MCDF corre-
spond to multi-configuration Hartree-Fock and multi-configuration Dirac-Fock (relativistic MCHF) respectively and
‘Expt.” is the experimental value.

FSUCC  HF MCHF MCDF Expt.
-0.517 -0.664 [26] -0.544 [27, 28] -0.56374 [25] -0.510 (18) [28]
(-0.739)

Here @ is the Dirac matrix and ch‘q is the vector spherical harmonics. The index j refers to the jth electron
of the atom with r; as its radial distance and e as the magnitude of the electronic charge.

The corresponding shift in the energy level is known as magnetic dipole hyperfine shift and is expressed
as

W AFF+D) = 1(12+ D-J(J+1) (32)

III. RESULTS AND DISCUSSIONS

The transition which can serve as a new frequency standard is the forbidden electric quadrupole (E2)
transition 5d%6s> 2D5/2 — 5d'%6s! 25’1/2 in 9Hgt. The possible shift which are crucial for accurate
determination of the desired transition frequency are mainly of two kinds : electric quadrupole shifts of
the 5d°6s>? D55 state and the magnetic dipole hyperfine shifts of both the 5d°6s*?Ds /o (upper) and the
5d'%6s% 1Sy (lower) states. Departure of the charge distribution from spherical nature to non-spherical in
the 5d%6s > D5 5 state will give rise to an electric quadrupole moment which eventually will produce a shift
in the energy level in the presence of an external electric field gradient. On the other hand, the non-zero
nuclear spin of the %9 Hg* which causes the non-zero nuclear dipole moment (multipole moment of the first
kind) will give rise to the magnetic dipole hyperfine effect in the presence of the electron multipole moment
at the site of the nucleus caused by the electron spin. This magnetic dipole hyperfine effect will produce a
shift in the energy levels for both (upper and lower) states and are directly related to the magnetic dipole
hyperfine constant (A) which is given by Eq. ([32).

In this paper we have calculated electric quadrupole moment (©) of the 5d°652 2D5/2 state and magnetic
dipole hyperfine constant (A) of the 5d°6s* Dy /o, 5d'%6s* 1Sy and 5d?6s* 2Dy )y states of 'Y Hg* using
relativistic Fock-space unitary coupled cluster theory. FSUCC theory, is much more rigorous than its ordi-
nary counterpart (Fock-space coupled cluster theory, namely FSCC) and other atomic many-body theories
like configuration interaction , many-body perturbation theory etc. The accuracy of our this calculation
establishes the necessity of applying a theory of this kind to calculate properties for complicated D-states.
In our calculation we have considered the ground state (5d'%6s21Sp) of "9 Hg as the Dirac-Fock (DF) ref-
erence state. We then apply the closed shell unitary cluster operator to correlate the ground state which is
followed by a core ionization calculation to produce the open shell states (5d°6s*2Ds /5 and 5d”6s® %Dy )
of 199 Hgt. The basis functions are constructed by using a large finite basis set expansion of Gaussian
type orbitals [23] with s, p, d, f and ¢ functions (34s32p30d20f15¢g). The nucleus is assumed to have a finite
structure (Fermi type). This closed shell correlation calculation is followed by OSCC-IP [9] calculations to
obtain the 5d%6s* 2 D5 /5, 5d6s* 2D3 5 states and an OSCC-EA [10] calculation for obtaining the 5d'°6s* 1S,
state of 99 HgT. Excitations from all the core orbitals have been considered to do a complete correlation
treatment. We have also studied the effects of higher angular momentum states and found that to be negli-
gible. Therefore we have omitted the higher order symmetries to generate the basis functions. In an earlier
paper by one of the authors [24], the FSCC method has been employed to estimate these quantities. In
principal, FSUCC is more rigorous than FSCC and contains more higher order effects in the same level of
approximation because of the unitary structure of the closed shell correlation operator.

This particular calculation with 19 Hg* is much more challenging than the treatment of alkal-metal atoms
and alkali like ions. The d-shell vacancies in the excited states of ' Hg" introduce additional complexities



Table II: Magnetic dipole hyperfine constant (A in MHz) of different states of ' Hg™. Entry within the parenthesis
correspond to dressed one body contribution. FSUCC stands for the present calculation. The un (“—I’) values used
in the calculation is taken from Ref. |29].

State ~ FSUCC FSCC [24] MCDF [25] Expt. [28]

5d°6s*?D5/5 995 972 963.5  986.19 (4)
(865)

5d°6s** D3/, 2780 2713 2478.3
(2734)

5d'6s' 251, 40487 40440 40507
(32963)

in the determination of atomic states and related properties. The core ionization technique has been used
in connection with the FSUCC method for the first time to study the one-electron properties of ions of this
kind.

The earlier calculation [24] by one of the authors using FSCC has estimated the electric quadrupole moment
(© in ead) of 5d%6s> 2D5/2 state of 199 Hg" as 0.527 ea3, which was off by 0.017 ea3 from the experiment
(neglecting the experimental uncertainty). The present estimate of @, on the other hand, is off by 0.007 ea?
from the central experimental value. We observe that both the results (FSCC and FSUCC) are within the
experimental uncertainty (~ 3.5%). However, it can be concluded that the accuracy obtained in the present
case using FSUCC will help to reduce the experimental uncertainty. This can be understood by observing
the fact that at a given level of approximation (for this case singles and doubles, namely SD) FSUCC theory
contains much more correlation and higher order excitation effects compared to FSCC. Therefore applying
an improved theory of this kind will give some valuable inputs to the frequency standard measurements
using 9 Hgt.

In a recent calculation Itano [25] used the multi-configuration Dirac-Fock (MCDF) method to estimate ©
(in ead) of the same state which gave the value to be 0.56374 (this disagrees with the experimental value by
~ 10.5%). The numbers of the electric quadrupole moments © (in ea3) of the 5d%6s> 2D5/2 and 5d°6s2 2D3/2
states of 199 HgT are given in table [

We have also used FSUCC to determine the magnetic dipole hyperfine constants (A) of the 5d°6s* 2 D5 s,
5d%6s> 2D53/2 and 5d'%6s? 251/2 states of "°Hg™T. Precise calculations of A values are not only theoretical
checks of the experimental determination but also provide information about the accuracies of the atomic
wavefunctions which are used in this calculation. Table [l contains the tabulated values of the A using
different methods. The previous result obtained by FSCC [24] by one of the authors, reveals that the
FSUCC is able to produce a significant improvement over all of the values calculated here and the theoretical
accuracies have been reduced by significant amounts. Experimental value of A for the 5d°6s%2D; /2 state
is not available. The accuracies of the entire calculation ensure that the prediction of the A value of the
5d%6s* 2 Dy 5 state will be able to lead to a precise measurement of the same.

From the given results in table () and ([I) the effects of electron correlation in determining electric
quadrupole moment and hyperfine constants can be estimated easily. The numbers in the parentheses
correspond to the effects of the dressed one-body operator and the difference between the two values turns
out to be the contribution from electron correlation (many-body) effects. For the electric quadrupole moment
the correlation effects turns out to be ~ 43% and for the hyperfine constants the correlation contributions
range from ~ 2% to ~ 19%. These effects clearly establish the power of the FSUCC method to very
accurately determine the atomic properties, such as electric quadrupole moment and hyperfine constants.

IV. CONCLUSION

In summary, we have used the FSUCC method to determine the electric quadrupole moment of
the 5d%6s> 2D5/2 state and magnetic dipole hyperfine constants of the 5d°6s> 2D5/2, 5d%652 2D3/2 and
5d196s" 25’1/2 states of 19 Hgt. The calculation involving ' Hg% is very complex and challenging be-
cause the excited states which are of interests involve open d- shells. The calculated values of the hyperfine
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constants can be considered as benchmarking of the determination of atomic states using FSUCC theory.
Therefore, the accuracy obtained for the electric quadrupole moments using this approach can help us to
determine the uncertainty which is very important to determine for the frequency standard studies. To
our knowledge this is the most accurate theoretical determination of these quantities to date and are very
important in the context of producing a next generation frequency standard. FSUCC along with the core
ionization method has been applied to determine any atomic properties of these kinds. This calculation will
serve not only as a supplement to the ongoing experiments but also to establish this theory in determining
different problems with atoms and ions.
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