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The effects of parity and time reversal violating potential, in particular the tensor-pseudotensor
electron nucleus interaction are studied. We establish that selected terms representing the interplay
of these effects and the residual Coulomb interaction in the coupled-cluster method are equivalent
to the coupled perturbed Hartree-Fock. We have shown that the normal CPHF diagrams have a
one-one correspondance in the coupled-cluster theory, but the CPHF pseudo diagrams are present in
a subtle way. We have studied the pseudo diagrams in great detail and have shown explicitly their
origin in coupled-cluster theory. This is demonstrated by considering the case of the permanent
electric dipole moment of atomic Hg and our results are compared with the results of an earlier
calculation.
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I. INTRODUCTION

The observation of a non-zero intrinsic electric dipole
moment(EDM) of a non-degenerate quantum system is
an evidence of parity(P) and time-reversal(T) symmetry
violations [1, 2]. Among the two, T violation is of particu-
lar interest as it is less understood and has important im-
plications for physics beyond the standard model. In the
experiments where CP violation has been observed so far
[3, 4, 5], T violation is inferred [6] by invoking the CPT
theorem. However, the observation of an EDM would
be a direct evidence of T violation in nature. Atoms are
suitable and promising candidates to measure permanent
EDMs due to their sensitivity to the P and T violating
phenomena in the nuclear (hadronic), electron-nucleus
(semi-leptonic) and electron (leptonic) sectors [7]. In
this paper, we study the atomic EDM arising from the
tensor-pseudotensor electron-nucleus interactions, which
is semileptonic in nature. The coupling constant CT of
this interaction is zero within the standard model but it
is finite in some theories which are extensions of the stan-
dard model [8]. The closed shell atoms are sensitive to
this interaction due to its dependence on the nuclear spin
and heavier atoms are more sensitive to this interaction
since it scales as Z2 [9]. The closed shell atoms on which
EDM experiments have been performed to date are 199Hg
[10] and 129Xe [11, 12, 13] and efforts are underway to
improve the results. In addition, new experiments are
planned for Yb[14, 15] and Ra [16]. The 199Hg experi-
mental data has been used to provide improved limits on
important P,T odd coupling constants at the elementary
particle level[10]. These have been extracted by combin-
ing atomic calculations [17] and experiments [10]. The
coupled-perturbed Hartree Fock (CPHF) [18] effects are
extremely important in the calculation of atomic proper-

ties and it is particularly true in the case of the atomic
EDMs [19]. It is important to analyze these effects in
the framework of an all-order many-body method like
the coupled-cluster method[20], one of the most accurate
many-body methods for the study of atomic properties
[21]. The main thrust of this work is to demonstrate
that all the CPHF effects are subsumed in the coupled-
cluster method. This is an important step towards im-
proving the accuracy of the existing atomic calculations
of closed-shell atomic EDMs, which is necessary for ob-
taining better limits on the P and T violating coupling
constants. A similar study has been done for parity non-
conservation effects in open shell atoms [22]. This pa-
per is organized as follows : In Section II we present
the theoretical background, in Section III, we discuss the
coupled-cluster equations with/without the T-PT inter-
action, in Section IV we discuss the atomic EDM in the
coupled-cluster and the CPHF framework, in Section V
we discuss our results and finally we present our conclu-
sions in Section VI.

II. THEORETICAL BACKGROUND

A. Dirac-Fock equation

For heavy atoms, the relativistic effects cannot be ne-
glected and should be incorporated in the atomic Hamil-
tonian. An approximate relativistic atomic Hamiltonian,
appropriate for our calculations is the Dirac-Coulomb
Hamiltonian HDC. For an N electron atomic system in
atomic units

HDC =
N∑
i

[
cαi · pi + βic

2 + VN (~ri)
]

+
N∑
i<j

1
~rij

, (1)
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where c is velocity of light, α and β are the Dirac ma-
trices and ~rij is the separation between the ith and jth
electrons. This Hamiltonian is an approximation to the
general atomic Hamiltonian, which consists of additional
terms arising from the interaction of electron spin with
nuclear spin, interaction between spins of electrons, mag-
netic interactions, etc. However, these interactions are
neglected as their strength is negligible compared to the
electron-electron Coulomb interaction and the nuclear
potential energy.

The single electron equations are obtained by approx-
imating the two-electron Coulomb interaction by the
Dirac-Fock central potential UDF(~ri). Then

HDC =
N∑
i

[
cαi · pi + βic

2 + VN (~ri) + UDF(~ri)
]

+ Ves,

(2)
where the residual Coulomb interaction

Ves =
∑
i,j,i<j

1
~rij
−
∑
i

UDF(~ri).

The residual Coulomb interaction embodies the non-
central or correlation effects, which can be incorporated
in the atomic theory calculations as a perturbation. The
single electron wavefunctions satisfy the Schroedinger
equation[

cα · p+ βc2 + VN (~r) + UDF(~r)
]
|ψ0
a〉 = ε0a|ψ0

a〉, (3)

where |ψ0
a〉 is the single electron wavefunction and a de-

notes the quantum numbers which specify the wavefunc-
tion uniquely and ε0a are the single electron energies. We
can group the operators in the equation and rewrite the
equation as (

t+ g0 − ε0a
)
|ψ0
a〉 = 0. (4)

In the above equation t = cα · p + βc2 + VN (~r)
and the Dirac-Fock potential g0|ψ0

a〉 =∑Nocc
b=1

[
〈ψ0
b |v|ψ0

b 〉|ψ0
a〉 − 〈ψ0

b |v|ψ0
a〉|ψ0

b 〉
]
, here

v = 1/(~r1 − ~r2), ~ri being the position coordinate
of the ith electron and the summation is over all the
occupied orbitals in the reference state. If an atom has
a non-zero EDM, then it is an indication of P and T
violating interactions within the atom. In this paper, we
consider the atomic EDM arising from the tensor-pseudo
tensor P and T violating electron-nuclear interaction

HT−PT = i 2
√

2CTGFβα · Iρ(~r), (5)

where GF and ρ(~r) are the Fermi coupling constant and
nuclear density respectively, β and α are the Dirac matri-
ces and I is the nuclear spin. This interaction perturbes
g0 and the orbitals acquire an admixture from the op-
posite parity orbitals. At the single electron level, these
effects are incorporated in the CPHF calculations.

B. Coupled-perturbed Hartree-Fock

The introduction of the P and T violating interaction,
hT−PT, as a perturbation modifies the atomic Hamilto-
nian. The corresponding single electron wavefunctions
are the mixed parity states

|ψ̃a〉 = |ψ0
a〉+ λ|ψ1

a〉, (6)

where λ is the perturbation parameter and |ψ1
a〉 is the

first order correction, which is opposite in parity to |ψ0
a〉.

However, there is no first order energy correction as
hT−PT is parity odd. Then the perturbed Dirac-Fock
equation is[

h0 + λhT−PT +
Nocc∑
b=1

〈ψ̃b|v|ψ̃b〉 − ε0a

]
|ψ̃a〉 −

Nocc∑
b=1

〈ψ̃b|v|ψ̃a〉|ψ̃b〉 = 0. (7)

Selecting terms linear in λ and rearranging we get the
CPHF equation(

h0 + g0 − ε0a
)
|ψ1
a〉 =

(
−hT−PT − g1

)
|ψ0
a〉. (8)

The perturbed Dirac-Fock operator

g1|ψ0
a〉 =

Nocc∑
b=1

[
〈ψ0
b |v|ψ1

b 〉|ψ0
a〉 − 〈ψ0

b |v|ψ0
a〉|ψ1

b 〉+

〈ψ1
b |v|ψ0

b 〉|ψ0
a〉 − 〈ψ1

b |v|ψ0
a〉|ψ0

b 〉
]
. (9)

In the present work, to solve Eq.(8), we expand |ψ1
a〉 in

terms of a complete set of unperturbed opposite parity
orbitals. Then, |ψ1

a〉 =
∑
p Cpa|ψ0

p〉, where Cpa are the
mixing coefficients. Substituting this in Eq.(8) and pro-
jecting by 〈ψ0

p|, we obtain a set of linear algebraic equa-
tions

Cpa
(
ε0p − ε0a

)
+
∑
bq

[
ṼpqabC

∗
qb + ṼpbaqCqb

]
+

〈p|hT−PT|a〉 = 0, (10)

where Ṽpqab = 〈pq|v|ab〉 − 〈pq|v|ba〉 and Ṽpbaq =
〈pb|v|aq〉−〈pb|v|qa〉. Another approach to calculate |ψ1

a〉
is to solve Eq.(8) self-consistently [17]. Hereafter, for
brevity, an orbital |ψi〉 is represented as |i〉. Eq.(10) can
be written as the matrix equation

AC = −B, (11)

where Apa =
∑
bq(Ṽpqab + Ṽpbaq +

(
ε0p − ε0a

)
δpqδab) and

Bpa = 〈p|hT−PT|a〉. This equation is solved iteratively
starting with the zeroth order (in v) contribution

C(0,1)
pa = − Bpa

ε0p − ε0a
(12)
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FIG. 1: CPHF diagrams at zero and one order Coulomb interaction, v . The diagrams (ii,iii) are the pseudo CPHF diagrams
and (iv,v) are the normal CPHF diagrams. The dotted line is the Coulomb interaction and the line attached with � is the
T-PT interaction. Pseudo diagrams are the diagrams with local energy denominators, note the direction of b and q orbitals.

as the initial guess. The coefficients in the kth iteration
are

C(k,1)
pa =

−Bpa −
∑
bq

(
ṼpqabC

(k−1,1)
qb

∗
+ ṼpbaqC

(k−1,1)
qb

)
ε0p − ε0a

.

(13)
The superscripts in C

(k,1)
pa refer to the order of v and

hT−PT respectively. The diagrams arising from the above
equation in zero and one order of v are shown in Fig.1.
In this paper, the diagrams of the second and the third
terms in Eq.(13) are referred to as the pseudo and normal
diagrams respectively.

III. COUPLED-CLUSTER EQUATIONS

In the coupled cluster theory, the exact atomic state

|Ψ〉 = eT
(0)
|Φ0〉, (14)

where T (0) is the cluster operator and |Φ0〉 is the ref-
erence state. For the ground state, |Φ0〉 is the Slater-
determinant of all the occupied orbitals. The cluster op-
erator T (0) =

∑
i T

(0)
i , where T (0)

i are the i-tuple exci-
tation operators. The cluster amplitude equations are
obtained from, after applying the operator e−T

(0)
and

projecting on excited states, the Schroedinger equation of
|Ψ〉. Restricting to the approximation T (0) = T

(0)
1 +T (0)

2 ,
the cluster operators are hence solutions of the equation
〈Φ∗|HN |Φ0〉 = 0, where |Φ∗〉 denotes singly and doubly
excited states |Φra〉 and |Φrsab〉 respectively. For any oper-
ator O, O = e−T

(0)
OeT

(0)
is the dressed operator. It is to

be noted that HN is the normal ordered atomic Hamil-
tonian, which is HDC in the present calculations. Let the
HT−PT perturbed atomic state

|Ψ′〉 = eT
(0)+λT (1)

|Φ0〉, (15)

where T (1) is the HT−PT perturbed cluster operator and
λ as defined earlier, is the perturbation parameter. The
perturbed coupled cluster equations are

〈Φ∗′|
[
HN , T

(1)
]
|Φ0〉 = −〈Φ∗′|HT−PT

N |Φ0〉, (16)

where |Φ∗′〉 are opposite in parity to |Φ0〉 and H
T−PT

N

is the normal ordered dressed HT−PT. Defining {O1O2}

as the contraction and normal order of two operators O1

and O2, then

[HN , T
(1)] = {HNT

(1)}. (17)

Consider T (1) = T
(1)
1 , the singles equation from Eq.(16)

is

〈Φpa
′|{HNT

(1)
1 }|Φ0〉 = −〈Φpa|H

T−PT

N |Φ0〉. (18)

The cluster operator T (1)
1 =

∑
a,p a

†
paat

p
a and tpa is the as-

sociated cluster amplitude. Retaining only HT−PT
N from

H
T−PT

N , in terms of matrix elements∑
bq

Ṽpb aq t
q
b
(1) +

(
ε(0)
p − ε(0)

a

)
tpa

(1) = −Bpa. (19)

Then the perturbed cluster amplitudes tpa
(1), are solu-

tions of the iterative equation

tp(k,1)
a =

−Bpa −
∑
bq Ṽpb aqt

q(k−1,1)
b

ε
(0)
p − ε(0)

a

. (20)

This is equivalent to the Eq.(13), the equation of the
CPHF mixing coefficients without the pseudo diagrams.
This formally establishes that the normal diagrams in the
CPHF approach are equivalent to a subset of terms in the
coupled-cluster theory. However, a similar comparison
of the pseudo diagrams in the CPHF and the coupled-
cluster theories is done later as it requires the dressed
electric dipole operator D, defined in the next section
through the atomic EDM.

IV. ATOMIC EDM

A. General expression

The atomic EDM in the CPHF approximation is

Da =
∑
ap

〈a|d|p〉 C(∞,1)
pa + Cpa

∗(∞,1)〈p|d|a〉,

= 2
∑
ap

〈a|d|p〉 C(∞,1)
pa , (21)
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where d is the single particle electric dipole operator and
the first superscript on the mixing coefficients refers to
all order in v. The diagrams which contribute to Da are
shown in Fig.2. The mixing coefficients in Eq.(13) has
v to all orders in the limit k → ∞. Substituting the
expression of C(∞,1)

pa , we have

Da = −2
∑
ap

〈a|d|p〉
ε0p − ε0a

Bpa +
∑
bq

(
ṼpqabC

(k−1,1)
qb

∗
+

ṼpbaqC
(k−1,1)
qb

)]
. (22)

In coupled-cluster theory, the atomic EDM

Da = 〈Φ0|T (1)†D +DT (1)|Φ0〉. (23)

It should be noted that Da has linked terms only [23], the
unlinked terms cancels the normalization factor. For the
normal diagrams, the two terms in Eq.(23) are equivalent
and arise from D(T1

(1)
eff ). Here T1

(1)
eff is the contraction of

T
(1)
1 with v-see Fig.1(iv),(v).

B. Pseudo diagrams

The diagrams in the Fig.2 (ii) and (iii) are the sum of
two many-body perturbation theory diagrams. We now
show that, in coupled-cluster theory these are subsumed

in Da = 〈Φ0|[DT1
(1)
eff +T (1)

1

†
DT

(0)
2 ]|Φ0〉. Unlike in normal

terms, here, T1
(1)
eff = HT−PTT

(0)
2 . The operator T (0)

2 has
correlation effects arising from the two-particle and two-
hole as well as the other forms of v, to all orders. Hence,
the CPHF pseudo diagrams do not have a one-one cor-
respondence with the above CCEDM terms, rather the
pseudo diagrams are part of terms in CCEDM.

The algebraic expressions of the EDM diagrams shown
in Fig. 2 (ii,iii) are,

〈a|D|p〉〈pq|v|ab〉〈b|hT−PT|q〉
(εp − εa) (εb − εq)

, (24)

and

〈a|D|p〉〈pq|v|ba〉〈b|hT−PT|q〉
(εp − εa) (εb − εq)

, (25)

respectively. The diagram in Fig .2(ii) is the sum of the
two MBPT diagrams topologically equivalent to Fig. 3-
I(a) and I(b), algebraically

〈a|D|p〉〈pq|v|ab〉〈b|hT−PT|q〉
εa + εb − εp − εq

[
1

εa − εp
+

1
εb − εq

]
. (26)

On simplification, this is same as Eq. (24) multiplied by a
phase (-1). Similarly, the exchange diagram Fig. 2(iii) is

the sum of the topologically equivalent MBPT diagrams
of Fig.3 II (a) and (b), algebraically

〈a|D|p〉〈pq|v|ba〉〈b|hEDM|q〉
εa + εb − εp − εq

[
1

εa − εp
+

1
εb − εq

]
, (27)

which is equivalent to Eq. 25, apart from a phase = (-
1). To calculate the cluster amplitudes which has similar

correlation effects, retain HT−PT and HT−PTT
(0)
2 in Eq.

(18). Then cluster amplitude equation is

T pa
(k,1) =

−B′ap −
∑
bq Ṽpbaqt

p
a

(k−1,1)

εp − εa
. (28)

where B′ap = (HT−PT +HT−PTT
(0)
2 )ap. The cluster am-

plitudes calculated from the above equation has effects
of direct and exchange pseudo diagrams.

To analyse the atomic EDM arising from the pseudo
diagrams within the coupled-cluster theory, consider the

two terms DT1
(1)
eff and T

(1)
1

†
DT

(0)
2 . After Introducing

complete set of eigen functions, the contribution to Da

from these terms

Da =
∑
I

[
〈Φ0|D|ΦI〉〈ΦI |T (1)

1 |Φ0〉+

∑
J

〈Φ0|T (1)
1

†
|ΦI〉〈ΦI |D|ΦJ〉〈ΦJ |T (0)

2 |Φ0〉
]
.(29)

The first term on the right hand side, in terms of deter-
minantal states, the contribution to the pseudo diagram
is ∑

a,p

〈Φ0|D|Φpa〉〈Φpa|(T
(1)
1 )eff |Φ0〉, (30)

this follows as D and T
(1)
1 are single particle operators.

It is to be mentioned that, the (T (1)
1 )eff represents the

component of T (1)
1 arising from the term (HT−PTT

(0)
2 )ap

in Eq.(28). Similarly, the second term in Eq.(29) is∑
ap,bq

〈Φ0|T (1)
1

†
|Φpa〉〈Φpa|D|Φ

pq
ab〉〈Φ

pq
ab|T

(0)
2 |Φ0〉. (31)

In this expresion, the pseudo diagram contributions are
present in the component of T (1)

1 arising from the term
(HT−PT )ap in Eq.(28). Using Slater-Condon rules, the
matrix elements of single and two-particle operators be-
tween determinantal states are: 〈Φpa|D|Φ0〉 = 〈p|D|a〉 ;
〈Φpqab|T

(0)
2 |Φ0〉 = 〈pq|t2|ab〉−〈pq|t2|ba〉 and 〈Φpa|D|Φ

pq
ab〉 =

〈b|D|q〉. Then,

Da =
∑
a,p

〈p|D|a〉〈a|(T (1)
1 )eff |p〉+

∑
ap,bq

tbq
(1)†〈a|D|p〉 [〈pq|t2|ab〉 − 〈pq|t2|ba〉] .(32)
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bq
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( i ) ( ii ) ( iii ) ( iv) ( v)

FIG. 2: CPHF diagrams contributing to EDM. (ii,iii) and (iv,v) are the EDM diagrams arising from pseudo and the normal
CPHF diagrams respectively. The lines with ⊕ denote dipole operator. When Ves is treated to all orders, the EDM interaction
vertex is equivalent to the mixing coefficients in CPHF and singles cluster amplitude in CC.

p a
q b

)
( 1 )

1 eff
D ( T(a)

ba p
q

(1)
2
( 0 )

T
  

1 D  T

   

(b)

)
( 1 )
1 effT(D

1

(1)

2D  T
( 0 )

T

q b

a p

p a

b q

p a

q b

I.

II.

p a

qb

(a) (b)

FIG. 3: Diagrams contributing to EDM - Solid interaction
lines in I(a)&(b), II(a)&(b) and III(a)&(b) represent the
Coulomb interaction treated to all orders. The operator

T
(1)
1 eff is a result of the contraction T

(0)
2 T

(1)
1

†
, which, when

contracted with the induced dipole operator (D), gives the
diagram contributing to Da.

The the effects of the pseudo diagrams are distributed
among various terms with the T

(0)
2 cluster amplitude.

Hence, it is difficult to establish one-one correspondence
between the CPHF pseudo diagrams and the correspond-
ing diagrams in CCEDM in orders of v. This is a conse-
quence of the structure of CCEDM and CPHF equations
where the perturbed cluster amplitudes are computed us-
ing the converged values of the T (0)

2 amplitudes, which
treat the residual coulomb interaction to all orders. How-
ever, the converged results which includes all orders of
v and one order of HT−PT, where the sequence of the
perturbations has all possible combinations, should be
identical. It is possible to establish the equivalence by
choosing only the two-particle two-hole terms of v in the
T

(0)
2 equations.
In this paper, we calculate the normal and the pseudo

diagrams simultaneously, this couples the normal and
pseudo contributions. This is evident from the Eq.
(13), where the CPHF coefficients are iterated with both
the normal and the pseudo diagrams. But within the
coupled-cluster theory, in particular CCEDM formalism,
this inclusion is more subtle. This is due to the structure
of Eq. (23), where the converged T (1) amplitudes contain
the effects of the EDM from both the terms shown in Eq.
(28).

V. RESULTS

A. Symmetrywise contribution

From the expression of HT−PT, the presence of nu-
clear density ρ(r), s1/2 − p1/2 is expected to have the
largest contribution. This is indeed observed in our cal-
culations. The variation of Da for a small basis con-
sisting of 68 Gaussian type orbitals [24]: (1-12)s1/2, (2-
13)p1/2,3/2, (3-10)d3/2,5/2, (4-7)f5/2,7/2 and (5-8)g7/2,9/2,
are given in Table.I. It lists the value of Da when or-

TABLE I: Variation of Da with the inclusion of higher an-
gular momentum virtual states.The first column implies that
virtuals only upto the orbitals indicated have been included
in the calculation, in addition to s1/2 and p1/2 symmetries.
The normal and the two pseudo diagrams are calculated in-
dependently.

Virtual states EDM ( ×10−22 e-m )
Normal (Normal+Pseudo)

upto p3/2 -6.411 -6.024
upto d5/2 -6.415 -6.127
upto f7/2 -6.399 -6.142
upto g9/2 -6.399 -6.144

bitals are added symmetrywise. According to the table
Da, the contribution from the higher angular momentum
d and f virtual orbitals are small and opposite in phase.
Next, we consider an optimal basis set, with which we get
converged Da, it consists 112 Gaussian type orbitals: (1-
18)s1/2, (2-18)p1/2,3/2, (3-16)d3/2,5/2, (4-13)f5/2,7/2 and
(5-10)g7/2,9/2. The results from the optimal basis are

TABLE II: Variation of Da with the inclusion of higher angu-
lar momentum virtual states. The first column implies that
virtuals only upto the orbitals indicated have been included in
the calculation, in addition to s1/2 and p1/2 symmetries. The
normal and the two pseudo diagrams have been calculated
together.

Virtual states EDM ( ×10−22 e-m )
upto p3/2 -5.83
upto d5/2 -5.90
upto f7/2 -6.75
upto g9/2 -6.75

given in Table.II. It lists Da arising from the normal and
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pseudo, where these are calculated simultaneously. It can
be seen that the contribution from the virtual orbitals
enhances Da and changes the value −5.83× 10−22em to
−6.75× 10−22em.

For a more detailed analysis, the dominant contribu-
tions from 6s1/2-p1/2 and 6s1/2-p3/2 are listed in Table.
III. The total contribution from the 6s1/2−np1/2,3/2 from

TABLE III: Dominant contributions to Da = T
(1)
1 D +

T
(1)
1 DT

(0)
2 (in units of 10−22CT emσN ) from the terms shown

in Eq. 28 for np intermediate states calculated using the
coupled-cluster theory for EDMs.

Occ. np T
(1)
1 D Da

T
(1)
1 D

6s1/2 6p1/2 104.69 0.872 -1.010
6s1/2 7p1/2 -254.88 -1.821 -5.139
6s1/2 8p1/2 262.28 1.388 -4.032
6s1/2 9p1/2 -202.37 -0.344 -0.771
6s1/2 10p1/2 -113.94 0.068 0.0858
6s1/2 11p1/2 -56.22 0.692 0.0431
6s1/2 6p3/2 13.85 0.995 0.153
6s1/2 7p3/2 -36.27 -2.372 0.953
6s1/2 8p3/2 -36.80 -2.211 0.901
6s1/2 9p3/2 15.91 0.771 0.0135
Total -8.2026

the term T
(1)
1

†
DT

(0)
2 is −.337× 10−22CT emσN and from

the term DT
(1)
1

†
is −8.20× 10−22emCTσN .

B. Cluster amplitudes and Da

The calculated normal T (1)
1 amplitudes are in excellent

agreement with the corresponding CPHF mixing coeffi-
cients. Calculating the normal and the pseudo diagrams
together, the Da of atomic Hg is −6.75× 10−22em. It is
enhanced to −6.92×10−22em when the two pseudo terms
are calculated separately. A previous calculation [17] re-
ported the CPHF Da of atomic Hg as −6.0 × 10−22em.
We attribute the difference of our result from the pre-
vious calculation to the inclusion of correlation effects
in CC, beyond those present in CPHF, which are dis-
cussed in Section.IV. The different numerical methods
used can also contribute to the discrepancy, however this
would be small. The different results, when the pseudo
terms are calculated together and separately with the
normal terms, is the effect of the coupling between the
two terms. Comparing the contributions from the normal
and the pseudo diagrams, the pseudo diagrams though
important, are just ∼ 9 % of the normal diagram con-
tribution. The portion of the pseudo diagram contribu-
tion is however dependent on the size of the basis set.
For example, with the basis (1-14)s1/2, (2-14)p1/2,3/2,(3-

12)d3/2,5/2, (4-8)f5/2,7/2 and (5-9)g7/2,9/2, the contribu-
tion from the pseudo diagrams is 4 %. This indicates that
the contribution from the pseudo diagrams increases till
it converge. The phase of the normal diagrams is deter-
mined by the phase of most domininant term, the Dirac-
Fock contribution. For 199Hg this is negative. On the
other hand, the phase of the pseudo diagrams cannot be
ascertained easily. Unlike the normal terms, the lead-
ing contribution from pseudo diagrams has T (0)

2 which
contributes to two terms – HT−PTT

(0)
2 and DT

(0)
2 . The

phases of the dominant HT−PTT
(0)
2 and DT

(0)
2 contri-

butions determines the overall phase of the pseudo di-
agrams. That is, the relative phase of the normal and
pseudo diagram is not a general trend. It depends on the
phase of the of the dominant T (0)

2 cluster amplitudes and
hence it is atom specific.

VI. CONCLUSION

In this paper, We have numerically tested and demon-
strated the inclusion of CPHF effects in coupled-cluster
for atomic 199Hg. We have shown that there are cer-
tain terms in the coupled-cluster theory for EDMs which
are equivalent to the normal diagrams in the CPHF the-
ory. This is demonstrated in the context of the EDM
of 199Hg arising from the T-PT electron-nucleus interac-
tion, a property which is sensitive to the accuracy of the
wavefunctions in the nuclear regions. The equivalence of
the pseudo diagrams is more subtle and unlike normal
cannot be shown explicitly. However, we identify the
terms in coupled-cluster which correspond to the pseudo
diagrams based on an analysis using many-body pertur-
bation theory. The pseudo diagrams are the sum of two
many-body perturbation theory diagrams [19]. Hence, in
the coupled-cluster expression of Da in Eq.(23), the di-
rect and the conjugate terms when added give exactly the
pseudo diagrams of CPHF. This shows that the coupled-
cluster theory contains all the CPHF effects . The rela-
tive phases of the pseudo and the normal diagrams are
atom-specific and hence cannot be generalized. An opti-
mal basis consisting of 112 orbitals gives converged result
and is in good agreement with the result of Martensson-
Pendrill [17]. We have studied and analysed in detail the
various many-body effects that play an important role
in EDM of atomic Hg and impact of coupling between
normal and pseudo diagrams.
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