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Steady parts of rotation and magnetic field in the Sun’s
convective envelope
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Abstract. We use the full set of Chandrasekhar’s (1956) MHD equations for
determining the steady parts of rotation and poloidal as well as toroidal mag-
netic field, in the Sun’s convective envelope assuming incompressibility. The
boundary conditions at the surface are taken from observations. A differential
rotation is assumed to be present at the base of the convection zone. The re-
sulting solution yields the isorotation contours similar to helioseismologically
inferred rotation. However, the rotation given by the present study is much
closer to the helioseismologically inferred rotation than that given by the pre-
vious study (Hiremath and Gokhale 1995b). This suggests that at the base
of the convection zone, differential rotation is more likely than a rigid body -
rotation. ~ ’

The toroidal part of magnetic field structure given by the present study is
similar to that given by the previous study, and has values ~ 1 G just below
the surface and ~ 10* G near the base of the convection zone.
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1. Introduction

Helioseismological studies show that the Sun rotates differentially with a weak depen-
dence on radius throughout its convection zone and has a nearly uniform rotation in
the radiative core (Christensen-Dalsgaard and Schou 1988; Dziembowski et.al. 1989;
Tomeczyk et.el. 1995).

Based on the earlier works of Wasiutinski (1946); Biermann (1951) and, Kippenhahn
(1963), many models were developed for the explanation of differential rotation of the
Sun (e.g references given in Hiremath and Gokhale , 1995b). Only some of these models
(Chan and Mayr 1994; Kitchatinov and Rudiger 1995) simulate satisfactorily the rotation
contours given by the helioseismology.
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Recently, we (Gokhale and Hiremath 1993; Hiremath 1994; Hiremath and Gokhale
1995a) have modeled the ‘steady’ (slowly varying on diffusion time scales) part of the
Sun’s poloidal magnetic field which isorotates as closely as possible with the helioseis-
mologically observed internal rotation. From the steady part of the poloidal field, we
modeled the steady part of the rotation. Though, the profiles of the derived rotational
isocontours are similar to the observed contours, the values of rotational velocity are
different from the ‘observed ’ values. Thus, the modeled profile may not represent the
Sun’s real rotational profile.

~ In our earlier studies (Hiremath 1994; Hiremath and Gokhale 1995a), we have shown
that the ‘steady’ part of the poloidal magnetic field varies on time scales of age of the
Sun. We expect similar order of time scales of variations for ‘steady’ part of rotation and
toroidal componant of the magnetic field.

Hence, in later study (Hiremath and Gokhale 1995b), we solved the full sét of Chan-
drasekhar’s (1956) MHD equations for ‘steady’ part of rotation and, toroidal and poloidal
components of the magnetic field . In this, we used the boundary conditions for rota-
tion and toroidal magnetic field same as those used by Nakagawa (1969) and obtained
the rotation pattern ih the convective envelope qualitatively similar to that given by
helioseismology (Dziembowski et.al 1989).

In the present study, we make similar assumptions and approximations but with the
following difference. Instead of assuming rigid body rotation at the base of the convection
2one, we assume a differential rotation. This solution also yields isorotation contours
similar to those .obtained in the previous study. However, the internal rotation given by
the previous study gave a r.m.s difference ~ 50 nHz from helioseismologically determined
internal rotation, whereas present study yields a r.m.s difference ~ 9 nHz.

2. Equations

Following Chandrasekhar (1956), the magnetic field B and the velocity V in an axisym-
metric system can be expressed as

h= —wg—fiw + (=D)L, + %a%(w-"P)i, , 1)
V= -_w‘;_gi,,' + (@I, + %586(“’2 i, @)

where h = B/(4xp)1/3, p is the density, w, ¢, z are the cylindrical polar coordinates,
with their axis along the axis of solar rotation; I, i,,,, and I, are the corresponding unit
vectors and; P, T, 2, and U are the scalar functions which are functions of @ and 2
only. As in our previous study, Chandrasekhar’s (1956) equations can be reduced to the
following equations making reasonable assumptions

AsT =0, (3)'
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A =0, . (4)
0
E[m-T’] =0, 5)

where Ay is the five dimensional Laplacian operator.
The above equations yield

T(z,p) = Z [bnz™ + cnz= "+ C3/3(y), (6)
n=0,1,3,...
z,p)= Y [Vaz" + Wz~ CHA(n), (7)
n=0,13,... :
subject to the constraint 02 =T? + f(w), (8)

where f(w) is an arbitrary function of w = zsind ; b,, c,, V,,, W, are constants;

z = r/Rg, Ro is the radius of the Sun, p = cosd, ¥ is the co-latitude and C3/ *(u) are
the Gegenbauer polynomials of order 3/2. We assume f(w) to be in the form

f@)= Y auw" 9)

n=0,1,2,..

Here the function f(w) and the constants b,, ¢,, V,, W, have to be determined from
the boundary conditions.

Nakagawa (1969) had assumed each of the functions T and Q to be a series in Legendre
polynomials and applied appropriate boundary conditions. In our model T and Q are
taken in the forms (6) and (7) which are solutions of equations (3) and (4).

3. Boundary coﬁditions

8.1 Boundary conditions at the surface

At the surface we adopt the following boundary conditions for rotation and magnetic
field, viz., '

Q= Qs and T=0, (10)
where Q,;, is the observed surface rotation expressed in the form
Qots = A+ Beos? 9+ Ccos? 9, (11)

wherein A, B, C are the coefficients of rotation determined from the observations. '

In the previous study, we assumed T' = 0 on the surface. However, this condition
can be derived from the continuity of the current at the surface, assuming that the field
outside is current free (Nakagawa and Swartztrauber 1969).
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3.2 Boundary conditions at the base

At the base of the convection zone, we assume that 2, P and T are finite and continuous.
There we assume a differential rotation of the form

0Q(0.7,9) = A’ + B’ cos® 9. (12)
4. Results and conclusions

We neglect the negative powers of z in equation (7), which are singular at the center.
Assuming rotational symmetry about the equator, we take only even values of n in
equations (6), (7) and (9). We solve equations (6)-(9) along with the afore mentioned
boundary conditions. Taking the values A,B,C, A and B as given by the helioseismology
(Goode and Dziembowski 1991), we have computed the rotation Q(z, 9) in the convective
envelope. The resulting isocontours are presented in figure 1. Note that these rotational
isocontours are similar to the helioseismologically inferred isocontours. Except for small

differences in Iﬂ(z, 19)| , the isocontours obtained here are also similar to those obtained
in the previous study.

SUN'S ROTATION SUN'S TOROIDAL MAGNETIC FIELD
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Figure 1. Steady part of Sun' s rotation Figure 2. Steady part of Sun' s toroidal
in the convective envelope. Rotational magnetic field in the convective enve—
isocontours are in nano—Hertz. lope. Isocontours of wT are in 10? gauss.

We have computed the root mean square (r.m.s) deviations between Q(z,¥) and
helioseismologically inferred rotation (Dziembowski et.al. 1989) in the domain 0.7 < z <
1.0 and 10° < ¥ < 90°.

We find that the r.m.s deviation from the present study is ~ 9 nHz and that from
the previous study is ~ 50 nHz.
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Thus, the present solution Q(z "9) gives much better fit with helioseismological rota-
tion than the previous solution. Assuming that the dominant part of the helioseismo-
logically ‘observed’ rotation is ‘steady’, this study suggests that the steady rotation at
the base of convection zone is more likely to be a differential rotation than a rigid body
rotation.

Using density values of Spruit’s model (1977) in the convection zone, we have com-
puted the steady part of the toroidal magnetic field whose iso-gauss (i.e., wT') contours
are shown in figure 2. This part of the field structure is weak (~ 1G) near the surface
and strong (~ 10*G) near the base of the convection zone.

The structure of the iso-gauss contours is dipole like (i.e one change of sign) field
near the surface and gquadrupole like (i.e three changes of sign) field near the base of the
convection zone.

It is interesting to note that, near the base of the convection zone, the strong toroidal
fields are concentrated near the Sun’s middle latitudes. Probabily, perturbatwns of these
strong fields may be the sites of sunspots formations, which are brought to the surface
by buoyant forces.
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