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ABSTRACT

We model solar activity cycle as a forced and damped harmonic oscillator consisting of two parts, sinusoidal and transient. The
amplitudes, frequencies, phases and decay factors of such a harmonic oscillator are determined by fitting the equation of the sinusoidal
and transient parts to the sunspot data for the years 1755–1996 (cycles 1–22) with the results: (i) there is a long-term decreasing trend
in the phase, while the amplitude and the frequency (or period of ∼11 yr) of the sinusoidal part remain constant for all the solar cycles;
(ii) the amplitude of the transient part is phase locked with the phase of the sinusoidal part; (iii) for all the cycles, the period and decay
factor (that is much less than 1) of the transient part remain approximately constant; (iv) except in cycles 6 and 15, the phases of the
transient part are approximately constant with a magnitude of ∼π/2 radians and; (v) for cycles 6 and 15, the simultaneous change in
magnitude of phase difference (∼2π radians) between the transient and sinusoidal parts and of very low sunspot activity may be due
to the Maunder minimum type of oscillations.
The constancy of the amplitudes and the frequencies of the sinusoidal part and a very small decay factor from the transient part
suggests that the solar activity cycle mainly consists of a persistent oscillatory part that might be compatible with long-period (∼22 yr)
Alfven oscillations.
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1. Introduction

Since the discovery of sunspots by Galileo and their 11 year
cyclic activity by Schwabe, the physics of their origin and phe-
nomena of their cyclic activity have not yet been understood
completely. The persistence of the 11 year solar cycle is often
debated in the literature. From the analysis of available sunspot
data, most of the previous studies demonstrate the presence of
the 11 year sunspot activity or 22 year magnetic activity. Using
different mathematical tools, several studies show that the solar
activity is a regular phenomenon and not a chaotic one. Dicke’s
(1978) analysis of sunspots and solar-terrestrial weather indi-
cated a regular clock inside the sun. The 22 year magnetic ac-
tivity can be due to long period Alfvenic perturbations of the
underlying magnetic field structure in the solar interior that may
be of primordial origin. The importance of such a fossil field on
the dynamo generated magnetic field in the convective envelope
was examined by Boyer & Levy (1984). Long-term solar activ-
ity and prolonged periods of low solar activity can be explained
(Pudovkin & Benevolensky 1985) by taking into account the ef-
fect of a quasi-stationary internal magnetic field.

Since the ancient varves’ records are influenced by the
changing earth’s climate due to the influence of the sun, analysis
of the varved rocks show a persistent 22 yr solar effect (Sonett &
Trebisky 1986). From the Hurlst analysis of C14 data of 6000 BC
- 1950 AD, Ruzmaikin et al. (1994) found the persistence of the
long-term solar activity. Hurlst analysis of rotation rates param-
eters (A, B and C) measured from the Mount Wilson Doppler
velocity data shows a persistent behavior of the solar activity on

time scales of 20 days to a few thousand years (Komm 1995).
Polygiannakis et al. (1996) developed a model based on a non-
linear RLC circuit that yields physical characteristics of the solar
cycle and show the Maunder minimum type behavior of the so-
lar cycle. A Fourier spherical harmonic analysis of the magnetic
field (Stenflo & Vogel 1986; Knaack & Stenflo 2005) and of
the field inferred from the sunspot groups (Gokhale et al. 1989;
Gokhale & Javaraiah 1990) show the dominant 22 year period-
icity. Recent analysis (Mursula et al. 2001) of the group sunspot
number (GSN) series of Hoyt & Shatten (1998) shows persis-
tent 22 year periodicity through out the 400 years of sunspot ac-
tivity that includes the Maunder minimum period. Compared to
the Wolf sunspot number series, the GSN series includes all the
known archival records of sunspots that include the observations
by Galilei in 1610. Most of these studies strongly suggest that
the solar cycle and activity phenomena may originate in the long
period (∼22 yr) Alfven perturbations of magnetic field structure
in the solar interior (see for example Hiremath & Gokhale 1995).
Verdes et al. (2004) considered long-term solar magnetic activity
as a nonstationary time series that incorporates secular changes
into the modeling process through an external driving parameter.
Compared to standard stationary methods, their method predicts
the characteristics of the solar cycle very well.

Most of the studies that search for periodicities in sunspot
activity assume that the solar cycle is a sinusoidal variable.
Although the rising part (minimum to maximum) of the curve
of the solar activity cycle appears to be sinusoidal, its de-
clining part (maximum to minimum) shows behavior similar
to that of a damped harmonic oscillator (see the Fig. 14 of
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Tipler & Moska 2003). Thus solar cycle amplitude variations
can be described by the combined solutions of a natural (sinu-
soidal) and a damped harmonic oscillator. However such natural
oscillations of 22 yr periodicity that excite in the solar interior,
while traveling towards the surface, ultimately must be damped
by strong dissipation in the convective envelope. Hence, in order
to re-excite and maintain 22 year oscillations, a persistent per-
turbation (of the poloidal magnetic field structure of primordial
origin that pervades the solar interior) is necessary.

Thus keeping in mind that shape of the sunspot activity cycle
may be described as a forced and damped harmonic oscillator,
using long-term series (1755–1996) of sunspot data, we test our
proposition and present the amplitudes, phases and decay con-
stants for each solar cycle. In Sect. 2, we present our model of
the solar cycle as a forced and damped harmonic oscillator. The
data and results are presented in Sect. 3 and, conclusions are
presented in Sect. 4.

2. Forced and damped harmonic oscillator

In order to understand the physics of the solar cycle, we make the
assumption that the shape of the solar cycle can be described by
the combined solution of a forced and damped harmonic oscil-
lator. From any standard physics text book (ex., Tipler & Mosca
2003), one obtains the following solution for such a non-linear
harmonic oscillator:

y = A1 cos(ωt − φ1) + A2 cos(ω′t − φ2)e−γt, (1)

where y is displacement (in the present context we consider the
Wolf sunspot number), A1, A2 are amplitudes, ω(2π/T , where T
is the period in years) is the sinusoidal frequency, ω′ (2π/T ′,
where T ′ is the period in years) is the damping frequency, φ1
and φ2 are the phases, γ is the decay factor and t is the time
variable in months. Note that the first term in the above equation
is the steady-state solution whose natural oscillations are main-
tained by an external force and the second term is related to the
transient solution dictated by the damping of the system.

3. Data and results

For the present study, we consider the monthly means of the
Wolf sunspot numbers. For the years 1755–1960 we consider the
data collected by Waldmeier (1961) and for the years 1961–1996
we consider the data collected from Solar Geophysical Data
(USA). For the period 1755–1996, in the upper part of Fig. 1,
the monthly Wolf number means (hereafter called the monthly
mean) are presented. In the lower part of Fig. 1, we illustrate the
number of data points in each solar cycle. For example, the pe-
riod of the solar cycle 1 (1755–1765) is 11 years (or 132 months)
and thus we get 132 monthly mean values. Similarly the period
of solar cycle 2 (1766–1774) is 9 years (108 months) and we
get 108 monthly mean values of the sunspot activity and so on.

Since the monthly mean of the sunspot data is noisy, before
fitting the data to Eq. (1), we smooth each set of data by com-
puting the 12 data points running mean. For example, if the data
consists of n data points and j is the number of data points used
to compute the running mean, then we have n − j smoothened
data points. Thus for cycle 1, we have 120 smoothened monthly
means. After smoothing, for each cycle, we compute the average
of the smoothened monthly means. We call this average of the
smoothened monthly mean as the cycle mean of the sunspot ac-
tivity. For each cycle of the smoothened monthly mean, using the

Fig. 1. The upper figure illustrates the monthly mean of the Wolf
sunspot number for the period 1755–1996 and the lower figure il-
lustrates the number (before smoothening) of data points for the
cycles 1–22.

cycle mean, we compute the standard deviation. Then we com-
pute the normalized deviation data as follows. First we compute
the deviation of the cycle mean from the smoothened monthly
mean and then the resulting data is normalized by the stan-
dard deviation. Thus, if xi are the smoothened monthly means
for different i months, x is the cycle mean of all the data points
and σ is the standard deviation, then the normalized deviation
of the sunspot data is represented by yi = (xi − x)/σ. For the
year 1987–1996, the normalized deviation of the smoothened
monthly means of the sunspot data is illustrated in Fig. 2a.

For all the 22 cycles, the normalized deviation data is
subjected to a non-linear least square fit by the Levenberg-
Marquardt method (Press et al. 1992), which is an iteration pro-
cess that derives unknown coefficients (like A1, φ1, etc.), from
an initial reasonable guess of the coefficients. In order to have a
fast convergence of the iteration process, we adopt the following
method. By neglecting the second, transient part of Eq. (1), we
determine the coefficients A1, ω, φ1 from the linear least square
fit of the normalized deviation data. We assume that the coeffi-
cients (A2, ω

′, φ2 and γ) of the transient part of Eq. (1) are equal
to the values of coefficients A1, ω, φ1 and γ = 1. Using these
coefficients, the iteration process leads to fast convergence and
finally we get the correct values of the unknown coefficients in
Eq. (1). We compute a non-linear least square fit (the Levenberg
Marquardt algorithm) using standard IDL software and obtain
different parameters (with their uncertainties) and as well as the
value of χ2.

To test the goodness of the fit, we compute the value of χ2.
Since the measurement errors are not available for the monthly
sunspot data, according to IDL software, we assume the square
root of sunspot numbers as the measurement errors. In this way,
we fit the sunspot data of each solar cycle (from 1–22) to Eq. (1)
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Fig. 2. a) The left figure illustrates the normalized deviation of
smoothed monthly mean. b) The right figure illustrates the monthly
mean. The continuous line is the observed monthly mean and the dashed
line is obtained from the non-linear least square fit to Eq. (1) of the
forced and damped harmonic oscillator.

and obtain the amplitudes, the frequencies and the phases of the
forced and damped harmonic oscillator. For the sunspot cycle
1987–1996, a typical non-linear least square fit of Eq. (1) to the
sunspot data is presented in Fig. 2b (dashed line).

In Fig. 3, we present the parameters (and their uncertainties)
of the sinusoidal part (the first term on the right hand side of the
Eq. (1)). In Fig. 3 for all the solar cycles, the amplitudes and
the frequencies remain almost constant except for a decrease in
phase as cycle number increases. In fact the mean frequency of
such a forced oscillator for all the solar cycles is ∼0.55 (or a
period of ∼11 yr). Using the group sunspot numbers of Hoyt &
Shatten (1998), on average, the same 11 yr cycle period was ob-
tained in the previous studies (Hathaway et al. 2002; Hathaway
& Wilson 2004).

In Fig. 4, we present the parameters (and their uncertainties)
of the transient part (the second term on the right hand side of
Eq. (1)). Both amplitudes of the sinusoidal and transient parts
are negative. This is due to the fact that for all the solar cycles
data, we obtain nearly 67% of the normalized deviation values as
negative; the rest are positive. Thus derived amplitudes of both
the sinusoidal and transient parts of Eq. (1) are weighted towards
large numbers of negative values. The typical deviation of such
data is presented in Fig. 2a. Using the cycle mean x and standard
deviation σ, one can transform the normalized deviation data
into monthly mean data (the continuous curve in Fig. 2b; in the
same figure the dashed line superposed on the continuous line
is obtained from the non-linear least square fit). In Fig. 5a, we
present the observed (the difference between the maximum and
the minimum of number of sunspots) and computed amplitudes.
The amplitudes obtained from the fit are similar to the observed
amplitudes.

For each solar cycle, we have at least 120 monthly means
of the sunspot data. When we smoothed each solar cycle data
with a 12 point running mean, we have at least 108 data points
in each cycle and with the 7 unknown parameters, the degrees
of freedom for each value of χ2 is n − 7 (where n is the num-
ber of smoothed data points) yielding 101 degrees of freedom.
For comparison, in the right part of Fig. 4 we plot values of
the χ2 (dash with three dotted line). In Fig. 4b the maximum
value of χ2 is ∼10 and thus the reduced value χ2

ν is ∼10/101
(∼0.1). From standard statistical tables (see for example Table
C4 in “Data reduction and error analysis for the physical sci-
ences”, by Bevington & Robinson 1969), the significance of the
χ2 is >99% yielding that for all the solar cycles χ2 fits have very
high significance.

The results for the damped (transient) part of the oscillator
are: (i) the frequencies ω′ remain approximately constant and

Fig. 3. For solar cycles 1–22 (1755–1996), the coefficients obtained
from the non-linear least square fit of sunspot data to the first term (sinu-
soidal part) of Eq. (1) are shown. The continuous line is the cycle mean
(normalized to the maximum value in all the solar cycles). The dash
with dotted line is the amplitude A1, the dotted line is the frequency ω
and the dashed line is the phase φ1.

Fig. 4. For solar cycles 1–22 (1755–1996), the coefficients obtained
from the non-linear least square fit of sunspot data to the second term
(transient part) of Eq. (1). In both the plots the continuous line is the
cycle mean (normalized to the maximum number in all the solar cy-
cles). a) In the left figure, the dashed line is the amplitude A2 and the
dash with dotted line represents the decay factor γ respectively. b) In
the right figure, the dotted line is the frequency ω′ and the dashed line
is the phase φ2. The dash with three dotted line represents the values of
χ2 for each cycle.

are in the range of 1–1.5 (or a period of 5–6 years); (ii) the am-
plitude A2 is phase locked with the phase of the sinusoidal part
of the forced oscillator (this conclusion is based on the result of
a significant correlation (64%) between A2 and φ1); (iii) except
during the cycles 6 and 15 (when the phase reaches its maximum
value of ∼2π radians), the phase remains almost constant and is
on average ∼π/2 radians; (iv) the decay factor that determines
the shape of the latter part of the solar cycle is approximately
constant and is much less than 1; and (v) for the cycles 6 and 15,
the change of magnitude of the phase (from the minimum val-
ues to 2π radians) φ2 occurs and correspondingly the solar cycles
have very low sunspot activity.

The present analysis also shows negative phases for the si-
nusoidal part and positive phases for the transient part which
might indicate different arrival times of waves towards the sur-
face. As already outlined, except for cycles 6 and 15, the av-
erage phase of the transient part is ∼π/2 radians. Thus except
for cycles 6 and 15, the transient part can be represented as
A2 cos(ω′t − π/2)e−γt ∼ A2 sin(ω′t)e−γt and the Eq. (1) is modi-
fied into the following form:

y ≈ A1 cos(ωt − φ1) + A2 sin(ω′t)e−γt. (2)
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Fig. 5. a) The left figure illustrates the comparison between the ampli-
tudes of the observed sunspot cycle and the amplitudes obtained from
the non-linear least square fit of Eq. (1) of a forced and damped har-
monic oscillator. The continuous line is the observed sunspot ampli-
tudes obtained by smoothing the raw data. The dotted line shows the
amplitudes obtained from the non-linear least square fit. The correlation
between the two variables is found to be 99% with high significance. b)
The right figure represents the phase difference (φ2 − φ1) between the
transient and the sinusoidal parts of a forced and damped harmonic os-
cillator.

Thus there is a phase lag between the transient part and sinu-
soidal part of the forced and damped harmonic oscillator. The
phase difference (φ2 − φ1) between the transient and sinusoidal
parts is illustrated in Fig. 5b. Note the gradual changes in the
phase difference (∼2π radians) during the cycles 6 and 15.

In order to investigate whether the result (v) concerning
cycles 6 and 15 might be interpreted as a signature of the
80 year Gleissberg cycle or as due to a Maunder minimum
type of oscillation, we performed the FFT analysis for the de-
tection of the periodicity followed by the wavelet analysis. To
obtain the FFT and wavelet power spectra, we adopted the
following procedure. First we compute the overall mean and
standard deviation (This overall mean and standard deviation
is for the 242 yr and should not be confused with the cycle
mean and standard deviation) from the monthly means of the
sunspot data. Then we compute the normalized deviation (sim-
ilar to method of the normalized deviation of monthly means)
of the 242 year data. In Fig. 6, we present the power spectra
of both the FFT (upper figure) and wavelet (lower figure) anal-
yses. Note that the 11 year cycle is the only dominant period-
icity in both FFT and wavelet power spectra. The power con-
centrated in the hatched region of the wavelet power spectrum
is the result of adding zeros to the data set before computing
the wavelet spectrum and is not considered to be significant (see
the method of obtaining the wavelet transform at the website:
http://paos.colorado.edu/research/wavelets/ devel-
oped by Torrence and Compo). Thus one has to consider the
concentrations of the power above the hatched region as real pe-
riods. Although there appears to be a 100 yr periodicity in the
low frequency side of the FFT analysis, in the wavelet analy-
sis the 80–100 yr period is not as regular as the 11 yr period
and moreover most of the power in the range of the 80–100 yr
periodicity is concentrated in the hatched region which is statis-
tically not significant. Thus with the present data set we cannot
unambiguously state that there is an 80 year Gleissberg cycle.
Previous studies also show that an 80 year Gleissberg cycle need
not be 80 year long and may be a cycle of 100 years (Rozelot
1994; Bonev et al. 2004).

We can further justify our conjecture that the gradual change
of phase of 2π radians between the transient and sinusoidal parts
leads to a Maunder minimum type of oscillations as follows. If
these 100 year Maunder minimum type of oscillations are real
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Fig. 6. Power spectrum analysis of the monthly mean of the sunspot
data. a) The upper figure represents the FFT power spectrum, b) the
lower figure represents the wavelet power spectrum. The detected peri-
ods from the FFT analysis have powers greater than the 3σ level.

(that is, around 1810–1822 and 1914–1923 the sunspot activ-
ity is low), then we should expect that in the past (around the
years 1710–1722, 1610–1622,1510–1522, 1410–1422, 1310–
1322, 1210–1222, 1110–1122, 1010–1022, 910–922, 810–822
and so on) the sunspot activity was low. When we checked these
years from the reconstructed sunspot data (Usoskin et al. 2004,
see their Figs. 5 and 6) surprisingly around these years we get
very low sunspot activity. Moreover the FFT analysis of the re-
constructed sunspot data by the same authors shows a statisti-
cally significant period of 100 years. However, we have to fur-
ther verify the validity of our conjecture by using reconstructed
sunspot data and using the methods presented in this study.

4. Conclusions

The conclusions of the present study are: (i) the solar cycle
can be described as a forced and damped harmonic oscillator,
(ii) there is a long-term decreasing trend in the phase, while the
amplitude and the frequency of the sinusoidal part of the forced
oscillations are almost constant for all 22 solar cycles, (iii) ex-
cept during cycles 6 and 15, the phases of the transient part re-
main approximately constant and are ∼π/2 radians; (iv) the am-
plitude of the transient part is phase locked with the phase of
the sinusoidal part of the forced oscillations, (v) the decay fac-
tor γ in each solar cycle is negligible (<1) and remains constant
for all 22 solar cycles; (vi) simultaneous change in magnitude
of the phase difference (∼2π radians) between the transient and
sinusoidal parts of cycles 6 and 15 that of very low sunspot ac-
tivity may be due to the Maunder minimum type of oscillations
and; (vii) constancy of the amplitudes and frequencies of the si-
nusoidal part and very low dissipation (γ < 1) of the damping
oscillator indicate that the solar activity cycle might be described
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by persistent MHD oscillations due to long-period (∼22 yr mag-
netic activity) Alfvenic perturbations.
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