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The improved virtual orbital-complete active space configuration interaction �IVO-CASCI� method
is extended to enable geometry optimization and the calculation of vibrational frequencies for
ground and excited states using numerical energy gradients. Applications consider the ground state
geometries and vibrational frequencies of the Be2, LiF, H2S, and HCN molecules, as well as excited
state properties for HCN, systems that are sufficiently complex to access the efficacy of the method.
Comparisons with other standard approaches �self-consistent field, second order Möller-Plesset
perturbation theory, complete active space self-consistent field, and coupled cluster singles and
doubles methods� demonstrate that the numerical gradient version of the IVO-CASCI approach
generally fares comparable to or better for all systems studied. The accurate estimates for the Be2

bond length and vibrational frequency are notable since many other computationally facile methods
produce poor results. © 2007 American Institute of Physics. �DOI: 10.1063/1.2566692�

I. INTRODUCTION

Molecular geometries and vibrational frequencies are es-
sential ingredients in finding the reaction paths and in iden-
tifying the end products of a chemical reaction. The theoret-
ical determination of optimized molecular geometries and
vibrational frequencies requires the computation of deriva-
tives of the total energy with respect to all internal coordi-
nates, something which becomes a daunting task for excited
states, highly open-shell systems, and transition states where
multiconfigurational treatments are necessary to describe the
important contributions from nondynamical electron correla-
tion.

Ideally, energy gradient should be determined analyti-
cally. However, the analytic evaluation of energy gradients
requires the direct computation of the derivatives of molecu-
lar orbitals and of the expansion coefficients in the configu-
ration interaction �CI� wave function with respect to all
nuclear degrees of freedom. Considerable effort has enabled
evaluation of these derivatives for various self-consistent
field �SCF�, CI, and single reference configuration second
order Möller-Plesset perturbation theory �MP2� methods.1–5

Typically, energy gradient calculations are performed for the
ground electronic state, but these gradient calculations can,
in principle, be accomplished for excited states as well.
However, methods have been lacking for the evaluation of
analytic energy gradients for multireference perturbation
theory �MRPT� methods because of the complexity of the
MRPT methods.

As a potential avenue for including these nondynamical
contributions to energy gradients, we have previously pre-

sented the general theory for the evaluation of analytical en-
ergy derivatives6 for the effective valence shell Hamiltonian
�Hv� �Ref. 7� method, a complete active space �CAS� MRPT
approach of the “perturb then diagonalize” variety that has
been demonstrated to generate highly accurate, correlated ab
initio predictions for electronically excited states and their
global potential energy surfaces.8 This ab initio energy de-
rivative formulation of MRPT is facilitated by special fea-
tures of the Hv method. The use of CAS implies that Hv

computations proceed by diagonalizing an effective valence
shell Hamiltonian Hv, and therefore the analytical derivative
may be represented through the Hellmann-Feynman
theorem9 in terms of analytical derivatives of Hv.

While the theory for analytical energy gradients is
available,6 we apply the “improved virtual orbital-complete
active space CI” �IVO-CASCI� geometry optimization
method here using numerical derivatives in order to test the
accuracy before coding the much more complicated analyti-
cal derivative routines. Thus, the present work provides the
first application of energy gradients to the problem of geom-
etry optimization and the computation of vibrational frequen-
cies for both ground and excited electronic states using the
IVO-CASCI approach, which is the first order approximation
within the Hv method.

The IVO-CASCI scheme is computationally simpler
than the CI-singles �CIS� and complete active space SCF
�CASSCF� methods. The latter arises because the IVO-
CASCI method does not require iterations beyond those in
the initial SCF calculation, nor does it possess features that
create convergence difficulties with increasing size of the
CAS in CASSCF calculations. Since the IVO-CASCI ap-
proach contains both singly and doubly excited configura-
tions in the CAS �in addition to higher order excitations�, it
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provides descriptions of both singly and doubly excited
states with comparable accuracy to CASSCF treatments.10

The latter contrasts with the CIS method which cannot treat
doubly excited states.

The IVO-CASCI scheme differs from the traditional CI
and MP2 approaches in the evaluation of orbitals and orbital
energies. The traditional CI and MP2 methods determine
both the occupied and unoccupied orbitals and their orbital
energies using a single Fock operator in which the unoccu-
pied orbitals describe the motion of an electron in the field of
N other electrons. Consequently, the virtual orbitals are, at
best, more appropriate for describing negative ion states than
the low lying excited states of interest. The IVO-CASCI
method obtains the unoccupied orbitals and their energies
from a set of VN−1 potential Fock operators in order to opti-
mize the CASCI predictions of low lying electronic states
and thereby to minimize the higher order perturbative correc-
tions. The generation of the improved virtual orbitals re-
sembles the approach proposed long ago by Silverstone and
Yin11 and Huzinaga and Arnau12 which is a special case of
the extended Hartree-Fock method of Morokuma and
Iwata.13

The IVO-CASCI method has been demonstrated to be
accurate for calculating atomic spectra,14,15 diatomic poten-
tial energy curves,16 and the electronic spectra of complex
molecular systems17,18 such as porphin. The method has also
been adopted in multireference Möller-Plesset studies by
Choe et al.19 Here, we extend the IVO-CASCI approach to
enable the determination of optimized ground state �and
some excited state� geometries and vibrational frequencies
using numerical energy gradients. Applications are provided
to the Be2, LiF, H2S, and HCN molecules, systems which are
sufficiently complex to access the efficacy of our method.
The computed geometries and vibrational frequencies are
compared with those obtained from SCF, CASSCF, MP2,
and coupled cluster with singles and doubles excitations20

�CCSD� methods. The IVO-CASCI method is one portion of
the latest generation of effective valence shell Hamiltonian
computer codes that have been interfaced to the GAMESS

program.21

As in all ab initio electronic computations, when choos-
ing a computational method, a trade-off must be made be-
tween computational convenience and ultimate achievable
accuracy. This principle, of course, applies to the problem of
geometry optimization. The computationally most facile ap-
proaches are the SCF and MP2 optimizations, which are lim-
ited to single determinantal ground states; CASSCF optimi-
zations, which include nondynamical correlation and may be
applied to excited states but often with convergence difficul-
ties; and the IVO-CASCI method described here, which has
the same range of applicability as CASSCF treatments but
without convergence difficulties. Because these methods for
geometry optimization require at least an order of magnitude
less computer time than the various coupled cluster ap-
proaches, a meaningful test of the IVO-CASCI geometry op-
timization involves comparison with the other computation-
ally facile methods. However, for completeness, coupled
cluster calculations are also included in the comparison.

Section II provides a brief outline of the scheme for

generating the improved virtual orbitals along with relevant
equations describing the IVO scheme, and the calculated re-
sults are presented and compared with other methods in the
subsequent section. The calculated ground state geometries
for the Be2, LiF, H2S, and HCN molecules are generally
comparable or superior to those of the SCF, CASSCF, MP2,
CASCI �with canonical HF orbitals�, and CCSD �sometimes
even the CCSDT� methods, as are the ground state vibra-
tional frequencies. Excited state geometries and frequencies
for HCN outperform those from CASSCF. The inclusion of
nondynamical contributions is clearly responsible for the im-
proved behavior of the IVO-CASCI method over the single
reference SCF and MP2 methods for these molecules, while
the improvement over the CASSCF results is suggestive that
the energy derivatives are more accurately described when
the CAS better represents the low lying electronic states, as
in the IVO-CASCI approach, rather than when the CAS is
oriented towards describing correlation in one �or the aver-
age of a few� specific states as in the CASSCF approach.

II. GENERATION OF IMPROVED VIRTUAL
ORBITALS

One portion of the CASSCF procedure effectively in-
volves a CASCI computation using orbitals optimized for a
single state or for some weighted average of several states. A
CI computation of dimension D is well known to provide
rigorous upper bounds to the energies of the D lowest elec-
tronic states,22 but, of course, accurate bounds are expected
only for the lowest few of these states, which, fortunately,
are generally the states of interest. However, the use of or-
bitals optimized for one �or for the average of a few� states
generally yields a poor representation of the other states, and
this feature is partially responsible for the poor convergence
of the CASSCF procedure as the dimension of the CAS
grows. Our alternative approach involves directly choosing
orbitals that simultaneously provide a good representation
for several of the lowest lying electronic states. This proce-
dure is followed in Hv computations in which the CAS or-
bitals are defined as comprising the highest occupied orbitals
�perhaps, only for certain symmetries� in the SCF approxi-
mation to the ground �or a low lying� state and a set of the
lowest lying IVO orbitals constructed from the remaining
unoccupied space in the basis set. This approach is designed
to maximize the accuracy of the first order Hv approxima-
tion, which is equivalent to a CASCI, for the low lying elec-
tronic states in order to minimize the required perturbative
corrections.8 Earlier Hv computations use a computationally
complex sequence of SCF computations to obtain the IVOs,
but more recently they employ a simple direct method for
generating the IVOs for several common situations.18 The
significant improvement in computational efficiency for de-
termining the IVOs is one important feature contributing to
the packageability of the IVO-CASCI method and its use for
geometry optimization.

Since the basic philosophy of generating the IVOs is the
same for both restricted and unrestricted HF orbitals, we
only present the restricted HF case, which is used herein.
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A. Closed-shell ground state

When the ground state of the system is a closed shell, we
begin with the Hartree-Fock �HF� molecular orbitals �MOs�
for the ground state wave function, �0

=A��1�̄1�2�̄2¯�n�̄n�, where A is the antisymmetrizer.
Let the indices i , j ,k , . . . refer to the occupied HF MOs ��i�
and u ,v ,w , . . . to unoccupied HF MOs. All the HF MOs are
determined by diagonalizing the one electron Hartree-Fock
operator 1F,

1Flm = ��l�H + 	
k=1

occ

�2Jk − Kk���m
 = �lm�l, �1�

where l and m designate any �occupied or unoccupied� HF
MO and �l is the HF orbital energy. The operator H is the
one-electron portion of the Hamiltonian, and Jk and Kk are
Coulomb and exchange operators, respectively, for the occu-
pied orbital �k.

An excited state HF computation would provide a new
set ��� of MOs that produce the lowest possible energies for
the low lying singly excited ��→� state,

��� → �� = A��1�̄1�2�̄2 ¯ ����̄� ± ���̄�� ¯ �n�̄n� ,

�2�

corresponding to an excitation of an electron from the orbital
�� to ��, where the 	 and 
 signs correspond to triplet and
singlet states, respectively. The new MOs ���� and ���� may
be expressed as a linear combination of the ground state
MOs ��i ,�u�. If, however, the orbitals are restricted such
that the ���� are linear combinations of only the occupied
ground state MOs ���� and the ���� are expanded only in
terms of the unoccupied ��u�,

�� = 	
i=1

occ

a�i�i, �� = 	
u=1

unocc

c�u�u, �3�

then the new orbital set ��� ,��� not only leaves the ground
state wave function unchanged but also ensures the orthogo-
nality and applicability of Brillouin’s theorem between the
HF ground state and the ��→� excited states. In addition,
this choice also benefits from using a common set of MOs
for the ground and excited states, a choice which simplifies
the computation of oscillator strengths, etc. However, we
avoid the computationally laborious reoptimization of the oc-
cupied orbitals by setting ���������, i.e., by choosing a�j

=��j, thereby simplify enormously the procedure for gener-
ating the IVOs. Hence, the coupled equations determining
the coefficients a�j and c�� reduce to a single eigenvalue
equation of the form F�C=C�, where the operator F� is
given by

Fvw� = 1Fvw + Avw
� , �4�

where 1F is the ground state Fock operator and the additional
term Avw

� accounts for the excitation of an electron out of
orbital ��,

Avw
� = ��v�− J� + K� ± K���w
 . �5�

The minus sign in Eq. �5� applies for 3��→� a triplet state,
while the plus sign is for the singlet 1��→� state.12,16 The
corresponding transition energy is

1,3E�� → �� = E0 + �� − 1F��, �6�

where E0 is the HF ground state energy and �� is the eigen-
value of F�C=C� for the �th orbital.

Special care is required for systems where the highest
occupied HF MOs are doubly degenerate. In order that the
���� retain molecular symmetry, the construction of F� must
be modified from Huzinaga’s scheme. If �� and �� are the
highest occupied degenerate HF MOs, then the matrix ele-
ment Avw

� in Eq. �5� is replaced for these degenerate systems
by Avw

�,�, where

Avw
�,� = 1

2 ��v�− J� + K� ± K���w


+ 1
2 ��v�− J� + K� ± K���w
 . �7�

III. RESULTS AND DISCUSSION

Unless otherwise noted, the basis sets employed in these
calculations are listed in Table I. The geometry optimization
is effected by interfacing the IVO-CASCI method into the
GAMESS program which also supports numerical gradient cal-
culations for the CCSD scheme. The SCF and MP2 opti-
mized geometries and vibrational frequencies are also com-
puted using GAMESS, whereas the CASSCF data are obtained
using the DALTON package.23 We emphasize that all the
schemes except CCSD and IVO-CASCI compute energy de-
rivative analytically and hence execution times are not com-
pared.

A. LiF

The equilibrium bond length for the X 1� state of LiF is
determined within the cc-pVQZ basis set.24 The CASSCF
and IVO-CASCI geometry optimizations are performed with
a �10,10� CAS. The CCSD method provides the most accu-
rate estimate of the equilibrium bond length for the ground
state �see Table II�. The geometries and vibrational frequen-
cies obtained from SCF and IVO-CASCI geometry optimi-
zations are almost identical and deviate from experiment by
only 0.01 Å. The CASSCF and MP2 methods offer more
accurate estimates of the vibrational frequency than for the
equilibrium bond length, but the SCF and IVO-CASCI fre-
quencies are too high by �37 cm−1.

TABLE I. Basis sets used for Be2, LiF, H2S, and HCN molecules.

Atom Basis

LiF cc-pVQZ
Be2 6-311+ +G�3df ,3pd�
H2S cc-pVTZ
HCN aug-cc-pVDZ

114103-3 Improved virtual orbitals J. Chem. Phys. 126, 114103 �2007�

Downloaded 17 Nov 2008 to 220.227.207.12. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



B. Be2

The valence configuration of the Be2 ground state is
�2�g�2�2�u�2, with an equal number of bonding and anti-
bonding electrons. This indicates a lack of tendency for bond
formation between the two ground state Be atoms. However,
weak bonding is expected to arise due to the near degeneracy
of 2s and 2p orbitals. Thus, the ground state geometry of Be2

has been the subject of several theoretical studies,25 includ-
ing the restricted Hartree-Fock �RHF� calculations of White-
side et al.,26 the CI work of Bender and Davidson,27 the
coupled electron pair-approximation study of Dykstra et
al.,28 and the relativistic calculations of Malli and Oreg.29

Among these studies, Dykstra et al. find binding for the
ground state of Be2, while the CI calculation of Bender and
Davidson exhibits a shallow minimum in the potential en-
ergy curve. The RMP4�SDQ� /6-31G* calculations of White-
side et al. estimate the Be–Be bond length to be 3.999 Å,
which is 1.6 times the experimental bond length of 2.46 Å.30

Computationally expensive CCSDT calculations of Sosa et
al. estimate the Re of Be2 to be 2.65 Å �from a 7s3p1d
basis�,28 which deviates by 0.19 Å from experiment. �In con-
trast, IVO-CASCI calculations with the same basis underes-
timate the Be2 equilibrium bond length by 0.16 Å.� A subse-
quent MRCI treatment by Gdanitz31 obtains the most
accurate estimates of Re=2.44 Å and �e=269.9 cm−1.

The ground X 1�g
+ state geometry of Be2 is optimized

using the 6-311+ +G�3df ,3pd� contracted Gaussian basis of
Krishnan et al.32 Table II compares the equilibrium bond
length and vibrational frequency of the ground state of the
Be2 molecule, computed using various perturbative and non-
perturbative schemes. The complete active space used in the
CASSCF and IVO-CASCI calculations is constructed from
eight active electrons and nine active orbitals �4�g, 3�, 1�u�.
As evident from Table II, the IVO-CASCI approach is the
only one of the computationally facile methods that provides
a reasonably accurate estimate of the ground state bond
length and vibrational frequency. �The CCSD treatment takes

at least order of magnitude more CPU time than the IVO-
CASCI calculation.�

C. H2S

The ground and excited state properties of H2S have
been extensively studied both theoretically and experimen-
tally. The system is sufficiently complex for benchmarking
the ability of the IVO-CASCI method for describing the
ground state geometry and vibrational frequencies. We em-
ploy a cc-pVTZ basis for the sulfur and hydrogen atoms and
a CAS comprising six active electrons �in the 5a1, 2b1, and
2b2 orbitals� and seven active orbitals �5–7a1, 2–3b1, and
2–3b2�.

Table III compares the optimized ground state geometry
and vibrational frequencies obtained from the IVO-CASCI
scheme with experiment and with other calculations. The
IVO-CASCI calculation offers the most accurate estimate of
the ground state vibrational frequencies, while slightly over-
estimates the S–H bond distance by 0.02 Å but reproducing
the HSH bond angle quite accurately. The bond distances and
bond angles are better described in the MP2 approach, but
the MP2 stretching frequencies deviate significantly from ex-
periment. The geometrical parameters obtained from the
CCSD and CASSCF schemes exhibit similar trends. CASCI
calculations with canonical HF orbitals �HF-CASCI� offer
reasonably accurate estimates of S–H bond lengths and the
corresponding stretching frequencies, but the scheme, how-
ever, fails to reproduce the HSH bond angle and the corre-
sponding bending frequency.

D. HCN

The hydrogen cyanide �HCN� molecule has been the
subject of several experimental and theoretical investigations
and, thus, is ideal for developing and testing models de-
signed to compute electronic and rovibrational properties of
electronically excited states because the ground and excited
state properties of HCN are well documented in the litera-
ture. Moreover, interest in HCN has recently been height-
ened among astrophysicists due to the detection of HCN in
the atmosphere of Titan33 and of Carbon stars.34

The optimized geometries for HCN from each of the
theoretical methods are presented in Table IV. The calcula-
tions all use the aug-cc-pVDZ �Ref. 24� Gaussian basis set.
The CAS for both the CASSCF and IVO-CASCI geometry
optimizations comprises ten active orbitals and eight active

TABLE II. Ground state equilibrium bond lengths �in Å� and vibrational
frequency �� in cm−1� of LiF and Be2.

Method

LiF Be2

Re � Re �

Expt. 1.564a 910b 2.46c 275.8c

RHF 1.553 949 5.52 47
IVO-CASCI 1.553 946 2.42 281
CASSCF 1.578 904 1.88 599
MP2 1.582 899 2.77 101
CCSD 1.563 4.40
MRCId 2.44 269.9
CCSDTe 2.65
IVO-CASCIf 2.30

aReference 35.
bReference 36.
cReference 30.
dReference 31.
eReference 37.
fFrom the same basis set as used in CCSDT �Ref. 28�.

TABLE III. X 1A1 state equilibrium bond lengths �in Å� and vibrational
frequencies �� in cm−1� of H2S.

Method Re �HSH �1 �2 �3

Expt.a 1.328 92.2 2615 1183 2628
RHF 1.330 94.2 2844 1319 2853
MP2 1.335 92.2 2771 1217 2790
IVO-CASCI 1.346 92.6 2668 1263 2669
HF-CASCI 1.344 100.5 2666 1542 2710
CASSCF 1.334 91.7 2792 1226 2852
CCSD 1.330 94.2 2803 1208 2821

aReference 38.
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electrons. Tables IV and V demonstrates that the IVO-
CASCI predicted geometries and vibrational frequencies for
the ground 1�+ state of HCN are in close agreement with
experiment. The MP2 method offers a reasonably accurate
estimate of the vibrational frequencies and C–H bond dis-
tance, but its predicted C–H bond length differs by 0.008 Å
from experiment. The CASSCF and CCSD methods overes-
timate both the C–H and C–N bond lengths, and the
CASSCF vibrational frequencies are high. The excited state
geometrical parameters are also well reproduced in the IVO-
CASCI approach, apart from the C–H bond length of the
1 3A� state which is in error by 0.05 Å.

Table IV also presents the ground state geometrical pa-
rameters obtained using the larger cc-pVQZ �Ref. 24� Gauss-
ian basis set to indicate the variation due to basis set exten-
sion. Table IV indicates that the larger cc-pVQZ basis set
calculation improves the accuracy of the CCSD and IVO-
CASCI predicted C–H and C–N bond distances. Interest-
ingly, the geometrical parameters from the IVO-CASCI �and
the HF-CASCI� calculation with the cc-pVQZ basis are more
accurate than from the CCSD.

IV. CONCLUSIONS

The IVO-CASCI method is extended to enable geometry
optimization and the calculation of vibrational frequencies
for the ground and excited states using numerical energy
gradients. With few exceptions, the calculated ground state
geometries for the Be2, LiF, H2S, and HCN molecules are
generally comparable or superior to those of the SCF,
CASSCF, MP2, and even the CCSD methods as are the
ground state vibrational frequencies. The accurate IVO-
CASCI estimate for the notoriously difficult Be2 bond length
and vibrational frequency is significant since all other com-
putationally inexpensive approaches produce poor results for
this system. Excited state geometries and vibrational fre-
quencies for HCN outperform those from CASSCF, thereby
demonstrating the viability of the IVO-CASCI scheme for
excited state geometry optimization. While the accuracy of
the IVO-CASCI and HF-CASCI predicted geometries and
frequencies is comparable in certain cases, in general, the
IVO-CASCI offers a more reliable estimate of the computed
quantities.

The inclusion of nondynamical contributions is clearly
responsible for the improved behavior of the IVO-CASCI
method over the single reference SCF, MP2, and CCSD
methods for these molecules, while the improvement over
CASSCF results is suggestive that energy derivatives are
more accurately described when the CAS better represents
the low lying electronic states, as in the IVO-CASCI ap-
proach, than when the CAS is oriented towards describing
correlation in one �or a few� specific states as in the CASSCF
method. Moreover, the IVO-CASCI scheme involves no self-
consistent field iterations beyond an initial restricted self-
consistent field calculation at each geometry and thus is not
susceptible to the convergence problems that often plague
the CASSCF approach. In addition, while not detailed
herein, accurate geometries are generally obtained using
smaller reference spaces for the IVO-CASCI treatments than
for CASSCF calculations, although the description of vibra-
tional frequencies requires the use of comparable sized CASs
for both methods. Hence, it will be worthwhile to implement
the analytical derivative formulation of the IVO-CASCI
method.

The numerical gradient procedure is computationally ex-
pensive because the energy is computed twice along each of
the totally symmetric modes �backward and forward dis-
placements�. The computation of vibrational frequencies is
even costlier in this scheme. For example, 81 single point
energies are computed to calculate the vibrational frequen-
cies of HCN. The numerical treatment of energy gradients,
though computationally expensive, has been used here as a
prelude to test the IVO-CASCI geometry optimization before
coding the analytical gradient version. The high quality re-
sults from the numerical approaches provide strong impetus
for coding the analytical treatment.
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TABLE IV. Ground and excited state geometrical parameters of HCN. Bond
lengths and bond angles are given in Å and deg, respectively.

State Method R�CH� R�CN� �HCN

X 1A1 Expt.a 1.064 1.156 180.0
RHF 1.057 1.125 180.0
IVO-CASCI 1.078 1.156 180.0
HF-CASCI 1.066 1.155 180.0
CASSCF 1.085 1.169 180.0
MP2 1.065 1.167 180.0
CI 1.055 1.180 180.0
CCSD 1.079 1.168 180.0
IVO-CASCIb 1.067 1.155 180.0
HF-CASCIb 1.063 1.157 180.0
CCSDb 1.065 1.149 180.0

1 1A� Expt.a 1.14 1.297 125.0
IVO-CASCI 1.137 1.293 125.2
HF-CASCI 1.116 1.288 125.2
CASSCF 1.14 1.331 119.4
CI 1.096 1.318 127.2

3 1A� Expt.a 1.14 141.0
IVO-CASCI 1.082 1.245 138.0
HF-CASCI 1.113 1.252 134.5
CASSCF 1.138 1.278 136.5
CI 1.092 1.264 141.2

aReference 38.
bFrom cc-pVQZ basis.

TABLE V. Ground state vibrational frequencies �in cm−1� of HCN.

Method C–H stretch C–N stretch H–C–N bend

Expt.a 3312 2098 714
RHF 3631 2410 878
MP2 3476 1998 704
CASSCF 3570 2133 765
IVO-CASCI 3287 2137 764
HF-CASCI 3418 2152 741

aReference 38.
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