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Abstract. We present a short summary of work carried out on the effects
of random magnetic fields with finite correlation length on spectral line polar-
ization. The magnetic field is modeled by a step-wise Markovian random pro-
cess defined by a probability distribution and a correlation length. Micro- and
macro-turbulent limits are recovered when this length goes to zero and infinity,
respectively. For the Zeeman effect, explicit expressions have been obtained for
the mean emergent Stokes parameters and for their r.m.s. fluctuations. Exam-
ples illustrate the dependence of the mean Zeeman propagation matrix on the
magnetic field distribution, and the dependence of mean Stokes parameters and
their r.m.s. fluctuations on the correlation length of the magnetic field. For the
Hanle effect, explicit expressions have also been obtained for the mean Stokes
parameters. We outline the approach and give an explicit expression for the
mean value of Stokes Q.

1. Introduction

For a long time, the Zeeman effect, and more recently the Hanle effect, have
been used in Astrophysics to measure magnetic fields (e.g., Stenflo 1994; Landi
Degl’Innocenti & Landolfi 2004). Observations of the solar magnetic field, and
numerical simulations of solar magneto-hydrodynamical processes, all point to a
magnetic field which is highly variable on all scales. This fact has motivated us to
consider the Zeeman and Hanle effects in a medium where the magnetic field and
the velocity field are random, with correlation lengths comparable to a typical
photon mean free-path. The importance of this problem is well recognized (e.g.,
Landi Degl’Innocenti 1994, 2003; Landi Degl’Innocenti & Landolfi 2004).

In a random medium, the mean Stokes parameters can be calculated by
averaging numerically the solutions of the radiative transfer equation for polar-
ized radiation over all realizations of the random magnetic and velocity fields.
This can be a very lengthy procedure, even with modern computers. The strat-
egy that we adopted is to employ models of magnetic and velocity fields, and
atmospheric models that are simple enough to allow us the construction of ex-
plicit expressions for mean observable quantities, but have enough flexibility to
model various kinds of physical situations that are encountered in a magnetized
medium. To satisfy these constraints, we describe the magnetic field through
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Figure 1. Left : random magnetic field H with mean value H0. H l and Ht

are its longitudinal and transverse components, respectively. Right : a sample
realization of a Kubo-Anderson process m(t) with density ν (mean correlation
length, 1/ν).

Figure 2. Dependence of the opacities 〈ϕI〉 (left) and 〈ϕV〉 (right) on various
magnetic field distributions (see text). The full line corresponds to the mean-
field solution. The frequency x is in units of the Doppler width, ∆D. For
this calculation, we used a longitudinal mean field, H0, with Zeeman shift
∆H0 = 1.0 ∆D, and H0/

√
2σ = 1. The line damping parameter is zero.

a Kubo-Anderson process (KAP). KAPs have been employed in many different
branches of physics (Brissaud & Frisch 1974) and also by Landi Degl’Innocenti
(1994) to represent random magnetic fields.

The results presented here are discussed in detail in Frisch, Sampoorna, &
Nagendra (2005a,b) for the Zeeman effect, and in Frisch (2006) for the Hanle
effect.

2. The Zeeman propagation matrix in a random magnetic field

To avoid dealing with transfer equations with stochastic coefficients, it is some-
times assumed that the magnetic field has a scale of variation much smaller than
the typical photon mean free path. In this micro-turbulent limit, the Zeeman
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propagation matrix can be locally averaged over the distribution of the field
vector. This problem was first considered in some detail by Dolginov & Pavlov
(1972) and Domke & Pavlov (1979). Fluctuations of the magnetic field intensity
and direction produce random Zeeman shifts of the σ components, and random
variations of the angular dependence of both π and σ components. When the
random field H is invariant under rotation about the direction of H0 (see Fig. 1,
left), it is possible to establish general and compact expressions for the mean
elements 〈ϕI〉, 〈ϕQ〉, 〈ϕV〉, etc., of the line propagation matrix Φ (see Frisch et
al. 2005a).

In Fig. 2, we show 〈ϕI〉 and 〈ϕV〉 for three different types of Gaussian
distributions. The curves labeled “1D”, “2D”, and “3D”, correspond to fluctu-
ations that are, respectively, along the mean field, perpendicular to the mean
field, and isotropically distributed. In the 1D case, the distribution function is
P (H) = exp[−(H − H0)

2/2σ2]/
√

2πσ. Similar definitions hold in the 2D and
3D cases. In the 2D case, only Ht is random, while H l ≡ H0. The strength
of the fluctuations is measured by the ratio f =

√
2σ/H0. Figure 2 shows a

case of moderate fluctuations (f = 1). We observe that 〈ϕI〉 is very sensitive to
the angular dependence of the distribution. For 〈ϕV〉, the averaging produces
a decrease in magnitude and a broadening of the peaks associated with a shift
of their positions away from line center, which are particularly strong for the
isotropic distribution.

3. The Kubo-Anderson magnetic field model

We modeled the magnetic field with a KAP, which is a step-wise, stationary
constant, Markov process, characterized by a correlation length and a probability
distribution function. Figure 1 (right) shows a typical realization of a scalar
KAP, m(t), where the jumping points, ti, are distributed following a Poisson law
with density ν. For our problem, the random magnetic field is characterized by
a density ν, and a distribution function P (H). Micro- and macro-turbulence are
recovered when the correlation length, 1/ν, goes to zero and infinity, respectively.

4. Mean Stokes parameters and their r.m.s. fluctuations

Frisch et al. (2005b) showed that a KAP magnetic field model, associated with
a Milne-Eddington atmosphere, yields explicit expressions for the mean Stokes
vector I, and for the r.m.s. fluctuations of Stokes parameters around their mean
values. An explicit expression for mean Stokes parameters was also given by
Landi Degl’Innocenti (1994), but their dispersion was not considered.

We recall that the ratio β of line opacity to continuum opacity is a constant
in a Milne-Eddington model, and that line and continuum have the same linear,
unpolarized source function S = (B0 + B1τc), where τc is the continuum optical
depth along the line-of-sight (LOS). The KAP model is described above. The
transfer equation for the Stokes vector I along the LOS can be written as

dI

dτc

= (E + βΦ)(I − S) , (1)
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Figure 3. Dependence of 〈rI〉 and 〈rV〉 on the magnetic field correlation
length, 1/ν. Isotropic magnetic field distribution with fluctuations of moder-
ate strength. Longitudinal mean field. Same magnetic field parameters as in
Fig. 2 (∆H0 = 1.0 ∆D, H0/

√
2σ = 1). Line strength β = 10. Gaussian line

absorption profile. Long-dashed line : Unno-Rachkovsky solution with H0.

where E is the 4 × 4 unit matrix, Φ the line propagation matrix, and S = SU

with U = (1, 0, 0, 0). It is convenient to express the results in terms of the
reduced intensity at the surface, r(0) = [Ic(0) − I(0)]/B1. Its average over all
realizations of the magnetic field can be written as

〈r(0)〉 = (1 + ν)
〈

λΦ(E + λΦ)−1
〉 [

E + ν
〈

λΦ(E + λΦ)−1
〉]

−1
U , (2)

where λ = β/(1 + ν). In the r.h.s. of Eq. (2), averages are over the distribution
P (H). In the micro-turbulent limit, one recovers the Unno-Rachkovsky (UR)
solution calculated with the mean propagation matrix, 〈Φ〉, and in the macro-
turbulent limit, the UR solution averaged over the distribution of magnetic fields.
Equation (2) shows that fairly strong lines (β ∼ 10) are needed to observe
differences between the micro- and macro-turbulent limits, and also that the
micro-turbulent limit is reached when ν ≥ β (correlation length smaller than
unity in line optical depth units).

An essential ingredient to prove Eq. (2) is that the magnetic field be piece-
wise constant with uncorrelated random values in each interval. The mean
propagation operator then satisfies a convolution equation that yields an explicit
expression for the Laplace transform of the mean propagation operator. When
the source function is linear, this Laplace transform immediately provides the
surface value of the mean Stokes vector. Equation (2) also holds if the velocity
field is a KAP with the same correlation length as the magnetic field. Then the
averaging is over the joint magnetic and velocity field distribution.

In Fig. 3 we show the dependence on ν of the mean residual Stokes param-
eters, 〈rI(0)〉 and 〈rV(0)〉, for moderate fluctuations. We remark that 〈rV(0)〉
is not very sensitive to the correlation length of the magnetic field, a property
which holds even for stronger fluctuations, and that the departure from the UR
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Figure 4. Dispersion around the mean Stokes profiles. Full lines show the
mean profiles and discontinuous lines the mean values plus or minus the square
root of the dispersion. Same model parameters as in Fig. 3, but the mean
field has an inclination of 45◦ and azimuth of 30◦ about the ray direction.

solution is very sensitive to the strength f of the magnetic field fluctuations. It
remains small when f is small, but becomes quite large already for f around
unity, as shown in Fig. 3. For Stokes I, one observes a somewhat larger sensitiv-
ity to the value of ν, roughly independent of the strength of fluctuations. Other
examples can be found in Frisch et al. (2005b).

Explicit expressions can also be obtained for the dispersion around the mean
Stokes parameters, σ2

X
= 〈X2〉 − 〈X〉2, where X stands for I, Q, U or V . They

can be established by a summation method over all possible realizations of the
random field (Frisch et al. 2005b). In Fig. 4 we show the dispersions around the
mean values for the same model as in Fig. 3. It is clear that the fluctuations
are very sensitive to the value of ν. They reach their maximum values in the
macro-turbulent limit and go to zero in the micro-turbulent limit.

5. The Hanle effect in a random magnetic field

In the Hanle effect, polarization is created by a scattering process (resonance
polarization in the presence of a magnetic field), so the photons can return
several times to the same turbulent element. Thus the method developed for
the Zeeman effect is not directly applicable. One can circumvent this difficulty
with the assumption that the magnetic field is a KAP along a photon trajectory,
as in Frisch & Frisch (1976), and study the stationary solution, as time goes
to infinity, of a time-dependent transfer equation for the six-component vector
introduced by Faurobert-Scholl (1991, also Nagendra, Frisch, & Faurobert-Scholl
1998), representing the polarized radiation in place of the usual three Stokes
parameters. This approach leads to an integral equation for a mean source
vector, conditioned by the random value of the magnetic field. This integral
equation is not easy to solve, but it yields explicit expressions for the mean Stokes
parameters when combined with some physically realistic approximations, such
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as neglecting the influence of the magnetic field on Stokes I, keeping only the
contributions from I and Q in the source terms for Q and U , and solving the
integral equation for Q with a Neumann series expansion, limited to the two first
terms. If τ is the frequency-averaged line optical depth, and Ω the direction of
the LOS defined by its polar angles θ and χ (µ = cos θ), the mean value of
Stokes Q can be written as

〈Q(τ, x,Ω)〉 ≃ 3

2
√

2
W2(1 − µ2) I2(τ, x, µ) , (3)

where W2 is the atomic depolarization factor (unity for a normal Zeeman triplet)
and I2(τ, x, µ) one of the six components of the radiation field averaged over
the random magnetic field. In the r.h.s. of Eq. (3) we ignored small terms
depending on χ. The field I2(τ, x, µ) satisfies a standard transfer equation with
a source function, S2, independent of the direction of the LOS. For complete
redistribution it can be written as

S2(τ) ≃ (1 − ǫp)〈M2
00〉CI(τ) + (1 − ǫp)

2 W2

∫

∞

0
K2s(|τ − τ ′|)CI(τ

′) dτ ′ . (4)

The first term is a generalized single-scattering approximation where ǫp is the
depolarization rate by elastic collisions, 〈M2

00〉 the average of the Hanle phase
matrix element M2

00(H) (with the notations of Landi Degl’Innocenti & Landolfi
2004) over the magnetic field distribution, and CI(τ) a measure of the anisotropy
of Stokes I (it is the dominant term in the frequency-averaged spherical tensor,
J2

0 (τ)). The second term takes into account photons that have been scattered
twice, and through the kernel K2s contains the autocorrelation of M2

00(H),
hence the correlation length of the magnetic field. This term comes as a correc-
tion to the single-scattering approximation. More general expressions including
magnetic and velocity field correlations can be found in Frisch (2006).
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