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Abstract

Extensive theoretical studies on the ground and excited state properties of sys-

tems containing heavy atoms have shown that accurate prediction of transition

energies and related properties requires the incorporation of both relativistic and

higher order correlation and relaxation effects as these effects are strongly inter-

wined. The relativistic and dynamical electron correlation effects can be incor-

porated in many-electron systems through a variety of many-body methods like

configuration interaction (CI), coupled cluster method (CCM) etc. which are very

powerful and effective tool for high precision description of electron correlation

in many-electron systems. In this thesis, we investigate the relativistic and cor-

relation effects in heavy atomic and molecular systems using these two highly

correlated many-body methods.

It is well recognized that, heavy polar diatomic molecules such as BaF, YbF, TlF,

PbO, etc. are the leading experimental candidates for the search of violation of

Parity ( � ) and Time-reversal ( � ) symmetry. The experimental detection of such

����� -odd effects in atoms and molecules has important consequences for the the-

ory of fundamental interactions or for physics beyond the standard model (SM).

For instance, a series of experiments on TlF have already been reported which

provide the tightest limit available on the tensor coupling constant C � , proton

electric dipole moment (EDM) ��� , etc. Experiments on YbF and BaF molecules

are also of fundamental significance to the study of symmetry violation in nature,

iii



as these experiments have the potential to detect effects due to the electron EDM

��� . It is therefore imperative that high precession calculations are necessary to

interpret these ongoing (and perhaps forthcoming) experimental outcome. For

example, the knowledge of the effective electric field
�

(characterized by � d) at

the unpaired electron is required to link the experimentally determined ����� -odd

frequency shift with the electron EDM ��� .

We begin with a brief review of ����� -odd effects in heavy atoms and polar di-

atomics and the possible mechanisms which can give rise to such effects, in partic-

ular, the one arises due to the intrinsic electron EDM ��� . The ����� -odd interaction

constant � d is computed for the ground ( ��� ) state of YbF and BaF molecules

using all-electron DF orbitals at the restricted active space (RAS) CI level. The

RASCI space used for both systems in this calculation is sufficiently large to incor-

porate important core-core, core-valence, and valence-valence electron correlation

effects. In addition to � d, we also report the dipole moment ( �	� ) for these sys-

tems to assess the reliability of the method. The basis set dependency of � d is

also analyzed.

The single reference coupled cluster (SRCC) method, developed by the cluster

expansion of a single determinant reference function, is one of the most sophisti-

cated method for treating dynamical correlation effects in a size-extensive manner.

The non-uniqueness of the exponential nature of the wave operator diversifies the

methods in multi-reference context. The multi-reference coupled cluster (MRCC)

strategies fall within two broad classes: (a) State-Universal (SU), a Hilbert-space

approach and (b) Valence-Universal (VU), a Fock-space approach. In this thesis,

we shall be mainly concerned with the VU-MRCC which unlike SU-MRCC uses a

single wave operator that not only correlates the reference functions, but also all

the lower valence (or the so called subdued) sectors, obtained by deleting the oc-

cupancies systematically. The linear response theory (LRT) or equation of motion

(EOM) method is another possible alternative which is nowadays extensively used

to compute the atomic and molecular properties. Although, the CCLRT or EOM-CC



method is not fully extensive in nature, this method has some distinct advantages

over the traditional VU-MRCC theory. Further, for one-valence problem like ion-

ization processes, the CCLRT/EOM-CC is formally equivalent to VU-MRCC, and

hence, size-extensive.

In this thesis, the core-extensive CCLRT and core-valence extensive (all elec-

tron) VU-MRCC methods are applied to compute the ground and excited state

properties of various atomic and molecular systems (HCl, CuH, Ag, Sr, Yb and Hg)

using non-relativistic and relativistic (for heavy atoms) spinors. The similarities

and differences in the structure of these two formalisms are also addressed.

We also investigate the ground and excited state properties of HCN which is

a system of astrophysical importance. This system has raised interest among the

astrophysicists due to its detection in the atmosphere of Titan and Carbon stars.

HCN has also been identified via radio-techniques in both comets and interstellar

atmosphere.

In the flash-photolysis of oxazole, iso-oxazole, and thiozole a transient band

system was observed in the region 2500-3050 Å. This band system was attributed

to a meta-stable form of HCN, i.e, either HNC or triplet HCN. We carry out detailed

theoretical investigations using CCLRT and complete active space self-consistent

field (CASSCF) method to characterize this unidentified band and other experi-

mentally observed transitions.
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Chapter

Survey of
� ���

-odd effects in Heavy atoms

and Polar molecules

1.1 Introduction

It was believed for a long time that the fundamental laws of nature were

invariant under space inversion, and hence the conservation of space inversion

symmetry (P) was an universally accepted principle. However, non-conservation

of this symmetry was discovered experimentally by Wu and co-workers in the �
decay of � � Co in 1957 [1]. After the discovery of P violation, the combined opera-

tion of charge conjugation C and space inversion P (CP) was thought to be a good

symmetry. In 1964, the experiment of Christenson et al. [2] provided the evidence

of a small violation of CP symmetry in the decay of neutral � �� meson. This, in

conjunction with the so called CPT-theorem [3, 4], implies the violation of time

reversal symmetry (T). Apart from this indirect evidence of the T violation, there

is no other instance where, such an effect has been observed. Lee and Yang [5]

as well as Landau [6] showed that a non-zero permanent electric dipole moment

(EDM) of any non-degenerate quantum mechanical system will be a signature of

the non-conservation of space inversion and time reversal symmetries. Thus the

experimental observation of a permanent EDM of an elementary particle, an atom

1
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or a molecule will be a direct evidence of the violation of time reversal symmetry

(T).

On the other hand, since the permanent EDM of an elementary particle van-

ishes unless the discrete symmetries space inversion (P) and time reversal (T) are

both violated. This naturally makes the EDM small in fundamental particles of

ordinary matter. For instance, in the Standard Model (SM) of elementary parti-

cle physics, the expected value of the electron EDM ��� is less than ��� �
�����

���	� � [7]

(which is effectively zero), but some extensions of the SM, predict the value of the

electron EDM in the range ��� ��� ��
 ��� ���
���
�
��� � (see [8] for details). The search

for a non-zero electron EDM is, therefore, a search for physics beyond the SM and

particularly it is a search for T violation. This is an important and active field at

present, because the prospects of discovering new physics seems possible.

It is well recognized that heavy atoms and heavy-polar diatomic are very promis-

ing candidates for the experimental search of permanent EDMs arising from vio-

lation of P and T. The search of non-zero ����� -odd effects in these systems with

the presently accessible (expected) level of experimental sensitivity would indicate

the presence of so-called ”new physics” beyond the SM of electroweak and strong

interaction (see [9] and references therein) which is certainly of fundamental im-

portance. Despite the well known drawbacks and unresolved problems of SM

there are no experimental data available which would be in direct contradiction

with this theory. In turn, some popular extensions of the SM, which allow one to

overcome it’s disadvantages, are not yet confirmed experimentally (see [8, 10] for

details).

A crucial feature of search for � � � -odd effects in atoms and molecules is that

in order to interpret the measured data in terms of fundamental constants of these

interaction, one must calculate those properties of the systems, which establish a

connection between the measured data and and studied fundamental constants.

These properties are described by operators that are prominent in the nuclear

region; they cannot be measured and their theoretical study is a non trivial task.
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During the last several years the significance of (and requirement for) ab-initio cal-

culation of electronic structure providing a high level of reliability and accuracy in

accounting for both relativistic and correlation effects associated with these prop-

erties has gained in importance. In this thesis, we will compute one of the � � � -odd

interaction constants, the so-called � d, which is a measure of the effective electric

field at the unpaired electron, for the ground state of YbF and BaF molecule with

reliable accuracy of the method. In addition to � d, we also compute some other

atomic and molecular properties for various systems in the later part of this thesis

1.2 Summary of Search for EDMs of Heavy atoms and Polar

molecules arising from
�����

-odd interactions

After the discovery of the combined charge and space parity violation, or

CP-violation, in the decay of neutral � �� -meson [2], the search for the electric

dipole moments (EDMs) of elementary particles has become one of the funda-

mental problems in physics. A permanent EDM is induced by the super-weak

interaction that violates both the space inversion symmetry and time-reversal in-

variance [11]. Considerable experimental effort has been invested in probing for

atomic EDMs induced by EDMs of proton, neutron and electron, and by the ����� -

odd interactions between them. The best available limit for the electron EDM, � �

was obtained from atomic Tl experiment [12], which established an upper limit

of � ������� ���
� � ��� �����
�
	

�	� , where
�

is the charge of the electron. The benchmark

upper limit on a nuclear EDM is obtained in the atomic EDM experiment on
����� ���

[13], � ��
�� ��� 	 � � � ��� ���
� ��	

�	� , from which the best restriction on the proton EDM,

� � ����� 

� 
 � ��� �����

��	
�	� , was also obtained by Dmitriev and Sen’kov recently [14].

The previous upper limit on the proton EDM was obtained from the molecular TlF

experiment [15].

Since 1967, when Sandars suggested the use of polar heavy-atom molecules
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in the experimental search for the proton EDM [16], molecules have been consid-

ered the most promising candidates for such experiments. Sandars also noticed

earlier [17] that the � -odd and � � � -odd effects are strongly enhanced in heavy

atoms due to relativistic and other effects. For example, in paramagnetic atoms

the enhancement factor for an electron EDM, ��� � ��� , is roughly proportional to

� ��� � ��� where �	� �
�
��
�� is the fine structure constant, � is the nuclear charge

and ��� is the atomic polarisability. It can be of the order of 100 or greater for

highly polarizable heavy atoms
	 ��
 


�
�
. Furthermore, the effective intermolecu-

lar electric field acting on electrons in polar molecules can be five or more orders

of magnitude greater than the maximal electric field accessible in a laboratory.

The first molecular EDM experiment was performed on TlF by Sandars et al. [15]

(Oxford, UK); it was interpreted as a search for the proton EDM and other nuclear

����� -odd effects. In 1991, in the last series of the � � � TlF experiments by Hinds at

al. [18] (Yale,USA), the restriction on proton EDM, � � �
	 
 
�� �

� � ��� ���
� � 	

���
was obtained. In 2002, this was recalculated by Petrov et al. [19] and obtained

the restriction as ��� �
	 
 ���
��� 	 ���

� � ��� ���
� � 	

��� .

In 1978, the experimental investigation of the electron EDM, � � and other par-

ity non conservation (PNC) effects was further stimulated by Labzowsky et al.

[20, 21] and Sushkov and Flambaum [22] who clarified the possibilities of addi-

tional enhancement of these effects in diatomic radicals like BiS and PbF due to

the closeness of levels of opposite parity in � -doublets having a ��� � � � ground state.

Then Sushkov et al. [23] and Flambaum and Khriplovich [24] suggested the use

of � -doubling in diatomic radicals with a � � � � � ground state for such experiments

and the HgF, HgH and BaF molecules were first studied semi-empirically by Kozlov

[25]. At the same time, the first two-step ab-initio calculation of PNC effects in

PbF initiated by labzowsky was completed by Titov at al. [26]. A few years later,

Hinds started an experimental search for the electron EDM in the YbF molecule,

on which the first result was obtained by his group in 2002 (Sussex, UK) [27],

��� �
	 
 � �
	���
 � 	

� � ��� ��� � � 	 �	� . Though that restriction is worse than the best
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current � � datum (from the Tl atom experiment), nevertheless, it is only counting

statistics, as Hinds et al. [27] pointed out later.

A new series of electron EDM experiments on YbF by Hinds’ group (Imperial

College, UK) are in progress and a new generation of electron EDM experiments

using a vapors cell, on the metastable a(1) state of PbO, is being prepared by the

group of DeMille (Yale, USA), The unique suitability of PbO for searching for the

elusive � � is demonstrated by the very high projected statistical sensitivity of the

Yale experiment to the electron EDM. In prospect, it allows one to detect ��� of

order of ��� ��� � 
 ��� �
� � � 	 ��� [28], two-four orders of magnitude lower than the

current limit quoted above. Some other candidates for the EDM experiments, in

particular, HgH, HgF, TeO*, and HI � are being discussed and an experiment on

PbF is planned (Oklahoma Univ. USA)

1.3 Particle physics implications for the existence of an elec-

tron EDM

As mentioned in the introduction, the observation of a non-zero EDM of an

electron would be a signature of ”new physics” beyond the Standard Model (see

[9] and references therein). It would be a more sensitive probe of the SM than

the neutron EDM which could have non-zero EDM due to CP violation in the QCD

sector of the SM.

In Table 1.1, we give estimates of the electron EDM predicted by different par-

ticle physics models [8, 9]. It can be seen from this table that the value of the elec-

tron EDM in the SM is 10-12 orders of magnitude smaller than in the other mod-

els. This is due to the fact that the first non vanishing contribution to this quantity

arises from three-loop diagrams [29]. There are strong cancellations between di-

agrams at the one-loop as well as two-loop levels. It is indeed significant that

the electron EDM sensitive to a variety of extensions of the SM: super-symmetry
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Table 1.1: Prediction for the electron EDM, � � � � in popular theoretical models.

Model � ����� (in
� 	

�	� )

Standard Model � ��� �
���

Left-right symmetry ��� ���
� 
 ��� ��� �

Lepton flavor-changing ��� ��� � 
 ��� ��� �
Multi-Higgs ��� ���

� 
 ��� ��� �
Super-symmetric � ��� ��� �
Experimental limit [12] � ��� � � ��� �����

(SUSY), multi-Higgs, left-right symmetry, lepton flavor-changing, etc. [10]. This is

particularly true for the minimal (”naive”) SUSY model, which predicts an electron

EDM already at the level of ��� ��� �
�
	

��� . However, the best experimental estimate

on the electron EDM, ���
� � ��� �����
� 	

�	� , obtained in the experiment on the Tl atom

[12], is almost two orders of magnitude smaller. More sophisticated SUSY models

have many desirable features such as their ability to explain the ”gauge hierarchy

problem” and solve the problem of dark matter in astrophysics etc. Interestingly

they predict the electron EDM at the level of ��� �����
� 	

�	� or somewhat smaller. It

is certainly remarkable that studies of the electron EDM can shed light on super-

symmetry which is one of the most profound ideas in contemporary physics.

1.4 General principle for the measurement of EDMs

The basic physics governing the measurement of the EDM of all types of elec-

trically neutral system is almost the same as we are going to discuss in this section.

If the system under consideration has a magnetic moment � and is exposed to a

magnetic field � , the interaction Hamiltonian is

��� ��� � 
�� 	 � � (1.1)
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From a classical point of view, the magnetic field exerts a torque on the system so

that the magnetic moment � and hence the angular momentum � begin to precess

about the magnetic field � . The precession frequency for a system having � �
�
�

like the neutron corresponds to the energy separation of 	 � � between � � � �
�

and � � 
 �
� states, is given by

� � � 	 � �� (1.2)

If the system under consideration also possesses an electric dipole moment � and

is exposed to an electric field � , the interaction Hamiltonian is

� ��� � � 
�� 	 � (1.3)

As a result of the so-called projection theorem [30], we know that the expectation

value of the EDM operator � , which is a vector operator, will be proportional

to the expectation value of � , in the eigenstate of angular momentum. This, in

conjunction with the previous equation above, implies that the electric field will

modify the precession frequency of the system because of the additional torque

experienced by the system due to the interaction between the electric field and

the EDM. If the applied electric field � is parallel to the magnetic field � , the

modified precession frequency will be

	 � � � 	 � � � 	 �
�

� � (1.4)

and if � is anti-parallel to � , the precession frequency will be

� � � � 	 � � 
 	 �
�

� � (1.5)

The aim of the experiment is to measure the change in the precession frequency,
	 � � 
 	 � � , as a result of flipping the � -field with respect to the � -field. From the
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above two expression, it is obvious that this change is

	 � � 
 	 � � � 
 �
�
� � (1.6)

Thus the above equation can be served to obtain the value of � , the permanent

EDM of the system. The most recent and the best limit available so far on the

intrinsic EDM of the electron was set to be � � � � � ��� � � ��� ��� �
� 	

��� by Regan et al.

[12], obtained from the atomic EDM experiment on Tl atom. The basis idea of the

experiment was based on the principle as we discussed above.

1.5 Mechanisms giving rise to permanent EDMs of atoms and

molecules

A permanent EDM of a stable atomic or molecular state can arise only when

both P and T invariance are broken. However, it is often said that molecules

known as polar molecules have a large “permanent” EDMs. However, this kind

of EDM of a polar molecule is not an indication of P and T violation [10]. If the

measurements of Stark shift were carried out with an infinitesimally weak electric

field E at zero temperature, the energy shift resulting from the interaction of this

EDM with the electric field has no linear dependence on E (see [10] for more

details), and hence is not an indication of P and T violation. What we interested is

not an EDM of this kind, but a permanent EDM which causes a linear Stark effect

even for an infinitesimally weak E. Such an EDM is a genuine signature of P and

T violation or CP violation in conjunction with the CPT theorem.

In this section, we will discuss about the possible sources of such P and T vi-

olating ����� -odd terms in the Hamiltonian, which can produce permanent EDMs

of atoms and molecules. There are several mechanisms that can give rise to such

����� -odd effects and as a result, the permanent EDMs of atoms and molecules.
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Some of them are:

(1) intrinsic electric dipole moments of electrons;

(2) intrinsic electric dipole moments of nucleons;

(3) P and T violating electron-nucleon interaction;

(4) P and T violating electron-electron interaction;

(5) P and T violating nucleon-nucleon interaction;

The second chapter of this thesis is concerned with the calculation of the � � � -odd

effects in the ground state of YbF and BaF molecules arising due to mechanism

(1) mentioned above. We have considered these effects especially for the YbF

molecule because this is one of the leading candidates for the search of effects due

to the electron EDM as a result of it’s high internal effective electric field at the

unpaired electron.

1.5.1 Intrinsic EDMs of electrons

Let us first consider the effects of the intrinsic EDM of an electron on an atom

or a molecule from the non-relativistic point of view. Let us suppose that the value

of the intrinsic EDM of an electron is ��� . The EDM operator corresponding to the
�
th electron in the atom/molecule is given by

��� � ������� (1.7)

where ��� are the Pauli spin matrices for the
�
th electron.

Therefore, in the presence of an external electric field of strength
���

in the

z-direction, the non-relativistic molecular many-body Hamiltonian is

� � � � � �
	 � � ����
 � (1.8)
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where

� � �
�
�

���
��
�
	 � �

����� � 		� � ��
 �
� ��
� � �

�� � � �
�
	 � 
 ��� �

�
��� 	 � �

�

� �

and

� ����
 � 
 � � � �
����� � � ������ � ��� �

� �

�

� is the internal electric field which the

�
th electron sees due to the other elec-

trons and the nuclei of the molecule, where the subscript � denotes the � th nu-

cleus. Clearly, we can write

�
� �

�

� � 
�� � � ��� � � 		� � � � � ��
� � �

�� � � 
 � (1.9)

so that we get

�
	 �
���� �

�
��� 	 � � � � � � � 		� � � � � ��
� � �

�� � � 
 �

But it turns out that the above Hamiltonian leads to a vanishing value of the atomic

or molecular EDM due to the Schiff’s theorem [31]. This result is most surprising

because it implies that even though the individual electrons in the molecule have

nonzero EDMs, the molecular EDM is still zero. However, Sandars [32] showed

that if the electrons in the molecule are treated relativistically, the intrinsic EDM

of the electrons leads to a nonzero EDM of the whole atom or molecule. Now we

will discuss this relativistic approach to the molecular EDM.

If we consider the intrinsic EDM of the electron relativistically then the inter-

action Hamiltonian in presence of an electric and a magnetic field can be written
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like �
� � � � 
 � � � 	 � 	

� � ��� 	�� �
(1.10)

where � and
�

are the electric and magnetic fields experienced by the electron

and
�

, � , � are the Dirac matrices.

For the case of many-electron molecular system, this can be easily generalized

to the form

� � �
�
�

�
�
� � 	�� � � � � � � �

����� � 	 � � � 
 �
� ��
� � �

�� � � (1.11)

and

� � � � � 
 � � �
�
��� 	 � � 	 � � � ��� � 	�� � �

However, the second term of above expression is of the order of � 	
	
�
�
� �
�

com-

pared to the first term because of the presence of the
�

matrix and the magnetic

field
�

. Therefore we will neglect it and consider the molecular EDM due to the

first term only, i.e.,

� � � � � 
 ��� �
�
��� � � 	 � � (1.12)

If the atom as a whole is also exposed to an external electric field
���

in the

z-direction, the total perturbation Hamiltonian will be

��� � 
 ��� �
�
��� ��� 	 � �

�

� 
 � � � �

� � � � � � �� ��� � � � � � (1.13)

Using the previous expression for
�
� �

�

� in the above equation for � � , we get the

total relativistic molecular many-body Hamiltonian to be

� � � � � �
� (1.14)
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or

� �
�
�

�
�
� � 	�� � � � � � � �

����� � 		� � ��
 �
� ��
� � �

�� � � 
 � � � �
����� � � ���� ��� � � � �

� ���� �
�
��� � � 	 � � � ����� � 		� � � � � ��
� � �

�� � � 
 �

Since we know that, in the non-relativistic limit
	 � � �

�
and this leads to a

vanishing value of the molecular EDM according to Schiff’s theorem, so we can

replace � by
	 � 
 �

�
in the expression for � � . In this case the residual EDM

interaction of an electron with internal electric field looks like [33]

� � � 
 ��� 	 � 
 �
��� 	

� �

�



(1.15)

where
�

is the 4-component Dirac matrix (defined later) and the corresponding

linear Stark splitting is

	 �
� 
 	 ���

� � � � � 
� � ��� � � � � � ��� ��� � � 	 � 
 �
��� 	

� �

�

 � � �

�
� � 
 �

�

 ��� � � ��� � � 	 � 
 �

�
� � � � �

�
�

(1.16)

where
� � and

�
�

are eigenfunction of � � corresponding to the energy eigenvalues
� � and

�
�
, respectively (see [8, 33] for details).

The high value of the electron density at the nucleus leads to the enhance-

ment of the electron EDM in heavy atom. The second term in the right hand side

of the above equation does not contain this enhancement and for this reason is

much smaller. The other possible source of the enhancement is the presence of

small energy denominators in the sum over � state in the first term. In partic-

ular, this takes place in diatomic, where
	 � � 
 �

�
�

may be of the order of the

molecular rotational constant. Moreover, in this case the Stark matrix element
	 � � � ��� � � � � � ��� � may be comparable with the energy denominator

	 � � 
 �
�
�

and

hence the non-perturbation treatment of the Stark effect is required [33]. Then
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the above equation reduces to the form (see [8, 27] for details).

	 �
�

��� � � � � � � �
�
� 
 ��� ��� � � 	 � 
 �

��� 	
� �

�

 � � �

�
� (1.17)

We have used this expression in our calculation of the � � � -odd interaction con-

stant � d for the ground � � � � � states of YbF and BaF molecules. The expression

for � d is given by [34]

� d � 	
���

� � � � � � � � � � � � � � �

�
� (1.18)

It can be clearly understood from this expression that, � d is a measure of the

effective electric field at the unpaired electrons of YbF and BaF molecules.

1.6 Some details of Computational procedure

1.6.1 Internal electric field of a diatomic molecule MF

In case of a molecule, the internal electric field experienced by an electron

can be written like

� �

�


� � ��� �� �

�
�

� �� �
� ��
� � � ��� � (1.19)

where � �� is the field due to the � th nucleus at the site of the
�
th electron and

�
��
� � � ��� � is the electric field due to the � th electron at the site of

�
th electron. For

the case of a diatomic molecule like MF (in general), the above equation reduces

to

� ��� �� � ���� � �	�� �
� ��
� � � �
� � (1.20)

In the next section we will discuss about, how to evaluate the nuclear electric

fields � �� and � �� for the spherically symmetric charge distributions.
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1.6.2 Spherically symmetric charge distribution and the electric field

If the nuclear charge distribution is spherically symmetric such as “Gaussian

nucleus”, “Fermi nucleus” or the nucleus is assumed to be a uniformly charged

spherical ball, the electric field at a point � outside the nucleus can be evaluated

using Gauss law (in SI unit) as

� 	
�
�
� �


�� � �
��
�
�
� (1.21)

where
�

is the total charge inside the nucleus (proportional to the atomic number

� of the atom) and � is the position vector of a point under consideration relative

to the center of the nucleus. [Note that, though the electric field outside the

nucleus is same for all the above mentioned charge distributions, however, the

electric field inside the nucleus may be different for different charge distributions]

If we consider the system like MF molecule, the combined nuclear electric field

at the point � which is located at � � and � � from the center of M and F nucleus,

respectively, will be

�
	
�
�
� �


�� � �
� ��
��

�
� � � �


�� � �
� ��
��

�
� � (1.22)

So, the total molecular electric field at the site of
� 
��

electron is,

� ��� �� � �

�� � �

� ��
��

�
� � � �


�� � �
� ��
��

�
� � �

� ��
� � � �
� � (1.23)

The last term of the above equation is quite small as compared to the other two

terms and can be neglected (as an approximation). So, neglecting the last term,

we get

� � � �� � �

�� � �

� ��
��

�
� � � �


�� � �
� ��
��

�
� � (1.24)

We have used this expression of the molecular electric field in our calculation

of the ����� -odd interaction constant � d for the ground state of YbF and BaF

molecules.
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1.6.3 Molecular orbitals of a diatomic molecule like MF

In general, using spherical Gaussian basic functions, all relativistic orbitals

are assumed to be of the form

�� �� �

���
		� � � � � 	 � � �

� �
���

	 � � � � � � 	 � � �
��

(1.25)

where �

���
		� �

and
�

���
	 � �

are the radial parts of the large and small component

basis functions, respectively. �
�
� are the corresponding angular parts ’spinor

spherical harmonics’ of the basis functions. Molecular orbitals can be obtained

by the straightforward generalization of the ’linear combination of atomic orbitals’

(LCAO) method, which are of the form [35].

� 	 	 � � �
��
� � � ��	��
	 ��� 
� 	 � � �� ��


	 � � 
� 	 � � �
��

(1.26)

where
� 	 	 � � is � -th four-component molecular orbital,

��

	 � and

��

	 � are complex

numbers (so called MO coefficients), and � 
� 	 � � � and � 
� 	 � � � are, respectively, the

’large’ and ’small’ two-component basis spinors,
�
� �

� 
�� � , and � � is the ’center’

of the basis function

�
(see [35, 36] for details).

The magnitude of the nuclear electric field (defined earlier) is determined prin-

cipally by contribution from the regions in and around the nuclei; here both the

electric field and the small component (relativistic effect) of the wave functions are

largest. In the absence of screen ( � ���
�
), the nuclear electric field diminishes with

the square of the distance from the center of a nucleus; screen further accelerates

the decline of the electric field with distance. The electrons of each ‘constituent

atom’ have completely screened ‘their’ nuclei at the location of any other nucleus,

for which reason, and to a very good approximation, the problem is ‘uncoupled’

for the various nuclear regions.

The single particle molecular orbital which has components at each of the two
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centers of MF molecule can be written as

� 	 	 � � �
����
� �
� ��

�

�� � �	
� �

� �
�
		�
�
� �
���

� �
�
	 �
� �

�
� ���
	

���
� �
�
		�
�
� � �

� �
� �
�
	 �
� �

�

��

�
��
� � � � ��

�

�� � �	
�
� � � � 	 � � � � � � � � � 	 � � � �� � �

	

�
� � � � 		� � � � � � � � � � 	 � � � �

��
(1.27)

In this above expression of � -th molecular orbital, we have omitted the MO coef-

ficients for our convenience. Based on the approximation mentioned above, we

will use these molecular orbitals to evaluate the matrix element of the residual

����� -odd interaction operator � � in the next section.

1.6.4 Matrix elements of the ���
	 -odd interaction operator �
�
Let us first re-write the residual ����� -odd interaction operator ��� (defined in

the previous section), using the standard representation of Dirac matrices � and
�

. According to this representation, we can write

� �

�� � �
� 
 �

��
� (1.28)

and

�
�

��
�� �
�

��

��
� (1.29)

So, the residual � � � -odd interaction operator ��� can be written as

� � � 	 � �
��
� �
�

��

��
	
��� ��� � (1.30)
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Neglecting the electric field due to electrons and replacing � � ��� by � ��� �� (defined

earlier), we can express the ����� -odd interaction operator � � as

� 	� � 	 ���
��
� �
�

�� 	 �
� �

��
�


�� � �
� ��
��

� 	 � �
��
� �
�

�� 	 �
� �

��
�


�� � �
� ��
��

(1.31)

We can see clearly that this operator couples only the small components of the

relativistic molecular wave functions. Since the small components as well as the

nuclear electric fields are prominent in and around the nuclear regions, the domi-

nant contribution to the matrix elements of ��� comes from that region. It should

be noted that, neglecting the screening term � ���
�

is likely to yield overestimate the

value of the matrix element of � � . However, the amount of overestimation should

be small.

Further, it can be realized that the evaluation of the integrals using the spher-

ical polar coordinates is relatively simpler. With a slight mathematical manipula-

tion, the matrix element of the operator ��� can be written as

� � 	 � � 	� � � 	
�

� 
 	 ���
�

�
� � � �� �� � � � �

�
�

� �
�
� � � � � � � � � ����� � 
	 � � � � � � 		� � �

�
	 � � � 


	 �
� �� � � � � 		� �

dr


 	 ���
�

�
� � � �� �� � � � �

�
�

�
� �
� � � � � � � � � � � � � 
	 � � � � � � 		� � � � 		� � � 
	 � � � � � � � � 	 � � dr(1.32)

Here we have removed the factor �
�

�� � � because in atomic unit (a.u.) it’s value

is unity. We have also used the short hand notations
�
�
		� �

� � �
���
�� and

�
�
		� �

� � �
���
�� for the nuclear electric field. Furthermore, we have made use

of the following two identities to get the above expression.

	 �� 	 �
�
� �
�
� � 
 � �

�
� (1.33)
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and �
���
�
� �
� � � � ��� �

�
�
�
� � � � � � � (1.34)

The approximate molecular wave-function � is the slater determinant of the single

particle orbitals
� 	 .

���
�
� �� ��� Det � � � � � 	 	 	 �	� � (1.35)

The expectation value of the operator ��� in a specific molecular state � can be

expressed as
� � � �

�
� �
�

�
�
�
	

� � 	 � � 	� � � 	
�

(1.36)

where

�
�
� �

�
	
� 	� (1.37)

Which means, to calculate the expectation value of this operator, we have to first

evaluate the matrix element
� � 	 � � 	� � � 	

�
at the single particle level and then sum

over all � � � to get the expectation value
� � � �

�
� ���

�
.

Some molecular codes such as DIRAC04 [37], which we have used in our cal-

culations of the � � � -odd interaction constant � d for the ground � � state of YbF

and BaF molecules, uses “Cartecian Gaussian spinors”. The procedure for evalu-

ating the matrix elements of the ����� -odd interaction operator ��� using Cartesian

Gaussian spinors is little bit complicated and somehow different from the case of

using Spherical Gaussian spinors. Some details of the procedure for evaluating the

matrix elements of � � using Cartesian Gaussian spinor are given in Appendix-A.
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Chapter

Ab-initio calculation of
� ���

-odd effects in

YbF and BaF molecules

2.1 Introduction

As mentioned in the previous chapter, heavy polar diatomic molecules such

as BaF, YbF, TlF, PbO, etc. are the prime experimental probes for the search of

violation of inversion symmetry ( � ) and time-reversal invariance ( � ). The exper-

imental detection of such effects has important consequences [1, 2] for the theory

of fundamental interactions or for physics beyond the standard model [3, 4]. For

instance, a series of experiments on TlF [5] have already been reported which pro-

vide the tightest limit available on the tensor coupling constant C � , proton electric

dipole moment (EDM) ��� , etc. Experiments on YbF, BaF molecules are also of

fundamental significance to the study of symmetry violation in nature, as these

experiments have the potential to detect effects due to the electron EDM � � . It

is imperative that accurate theoretical calculations are also necessary to interpret

these ongoing (and perhaps forthcoming) experimental outcome. For example, in

the ground ( ��� ) state of YbF and BaF, knowledge of the effective electric field
�

(characterized by � d) on the unpaired electron is required to link the experimen-

tally determined ����� -odd frequency shift with electron EDM ��� .

22
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The twin facts that heavy atom compounds like BaF, TlF, YbF, etc. contain many

electrons and that the behavior of these electrons must be treated relativistically

introduce severe impediments to theoretical treatments, i.e., to the inclusion of

sufficient electron correlation in this kind of molecules. Due to this computa-

tional complexity, calculations of ����� -odd interaction constants were carried out

with ”relativistic matching” of non-relativistic wave functions (approximate rela-

tivistic spinors) [6], the relativistic effective core potential (RECP) [7, 8], or the

all-electron Dirac-Fock (DF) level [9, 10]. For example, the first calculation of

����� -odd interactions on TlF was carried out in 1980 by Hinds and Sandars [6] us-

ing approximate relativistic wave functions generated from non-relativistic single

particle orbitals.

The ����� -odd interaction constant � d, in YbF was first calculated by Titov et al.

[7] using generalized RECP (GRECP) as this procedure provides reasonable accu-

racy with small computational cost. Titov and co-workers have also reported � d

computed using a restricted active space self-consistent field (RASSCF) scheme

[7, 8] with GRECP orbitals. Assuming that the valence-valence electron correla-

tion effect is negligible, Parpia [9] estimated � d from the all-electron unrestricted

DF method (UDF) in 1998. In the same year Quiney et al. [10] reported the

����� -odd interaction constant � d computed at the core-polarization level with all-

electron DF orbitals. Though the effect of pair correlation and higher order effects

to � d are non-negligible, these terms were not included in Quiney et al.’s calcu-

lations. The calculations cited above predict the value of the ����� -odd interaction

constant in a rather large range: [-0.62,-1.5] � ��� � � Hz/e-cm. Therefore, more

precise estimation of � d is necessary to set narrower limits on ��� .

For the BaF molecule, the first calculation of the ����� -odd interaction constant

� d was carried out by Kozlov et al. [11] using the generalized relativistic effec-

tive core potential (GRECP) at the level of self-consistent field (SCF) and a re-

stricted active space SCF (RASSCF). They have also reported � d computed using

the effective-operator (EO) technique at SCF-EO and RASSCF-EO level. The result
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of � d computed by Kozlov et al. [11] is quite consistent with the semi-empirical

result of Kozlov and Labzowsky [12] estimated from experimental hyperfine struc-

ture constants measured by Knight et al. [13]. Though the RASSCF-EO result [11]

is close to the semi-empirical result of Kozlov and Labzowsky, it is worthwhile to

compute this constant more accurately using correlated many-body methods like

the configuration interaction (CI).

In this chapter, we estimate the � � � -odd interaction constant � d for the ground

( � � ) state of YbF and BaF molecule using all-electron DF orbitals at the restricted

active space (RAS) configuration interaction (CI) level. The RASCI space used for

both systems in this calculation is sufficiently large to incorporate important core-

core, core-valence, and valence-valence electron correlation effects, and hence,

should be capable of providing a reliable estimate of � d. In addition to the ����� -

odd interaction constant � d, we also compute ground to excited state transition

energies, ionization potential, dipole moment ( �	� ), ground state equilibrium bond

length (R � ), and vibrational frequency ( � � ), for YbF molecule. Similarly, for BaF

molecule we have computed the ground state dipole moment � � along with � d.

2.2 Configuration Interaction (CI) method

In this section, we will describe the method of configuration interaction (CI)

for obtaining the exact energy of a many-electron state and the corresponding

wave function of the state. This also involves the method of obtaining the cor-

relation energy of the many-electron state. Among all the approaches developed

so far, CI method is conceptually simplest but computationally challenging. The

basic idea in this method is to diagonalize the
�

-electron Hamiltonian in a ba-

sis of
�

-electron functions (Slater determinants). In other words, we represent

the exact wave function of any state as a linear combination of
�

-electron trial

functions and use the variational method to optimize the energy of the state. If

the basis were complete, we would obtain the exact energies of ground as well as
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of all excited states of the system. In principle, CI provides an exact solution of

the many-electron system. In practice, however, we can handle only a finite set

of
�

-electron trail function; consequently, CI provides only upper bounds to the

exact energies.

The starting point of CI method is the ground state Dirac-Fock (DF) wave func-

tion ��� �
�
. Suppose we have solved Roothan’s equation in a finite basis set and

obtained a set of 2 � molecular spin orbitals � � ��� . The determinant formed from

the
�

lowest energy spin orbitals is ��� �
�
. Other than ��� �

�
, we can form a large

number of
�

-electron determinants from the 2 � spin orbitals. It might be conve-

nient to describe these other determinants by stating how they differ from ��� �
�
.

Thus the set of all possible determinants include ��� �
�
, the singly excited determi-

nants ���

�
�
�

(which differ from ��� �
�
, in having the spin orbital � � replaced by �

�
),

the doubly excited determinant ���

�
����
�

(differing from ��� �
�

by replacing � � with

�
�

and � � with � � ), etc., up to and including
�

-truply excited determinants. We

can use these many-electron wave functions as a basis to expand the exact many-

electron wave function �
� �
�
. If ��� �

�
is a reasonable approximation to ��� �

�
, then

a better approximation according to variation principle (which becomes exact as

the basis becomes complete) is

�
� �
�

� � � ��� �
�
�
�
�

�
�

�
� ���

�
�
�
�

�
	 ��
� � �

�

�
���� ���

�
����
�

�
�

	 �


� �� � � ���

�

�
� 
����� � �

�
� 
�����
�
�

�
	 ��
 � � � �� � � �������

�

�
� 
������� � ���

�
� 
������� �

�
� 	 	 	

(2.1)

This is the form of full CI wave function. The restriction on the summation

indices (i.e. 	 ��
 , � � �
, ets.) is to avoid multiple counting of a given excited
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determinant. The above expression can be simplified as

��� �
�

� � � ��� �
�
� � �

�
� � � �

�

�
�

�
� ���

�
�
�
� � �

	
� � � �

���

�
� �

�
���� ���

�
����
�

� � �


� � � �

	 
 �� � �
�

�
� 
����� � �

�
� 
�����
�
� � �



� � � �� � � �

	 
 � �

�

�
� 
������� � ���

�
� 
������� �

�
� 	 	 	

(2.2)

where a factor of
	
�
� � � � � is included in front of the summation to avoid multiple

counting in the case of unrestricted summation indices.

Now, let us analyze how many � -tuples excited determinants can arise. If

we have 2 � spin orbitals and
�

are occupied in ��� �
�
, then 2 � 
 �

will be un-

occupied. We can choose � spin orbitals from those occupied in ��� �
�

in

�� � � ��
ways. Similarly, we can choose � orbitals from the 2 � 
 �

number of virtual

orbitals in

��
	 � 
 �� ��

ways. Thus the total number of � -truply determinants

is

�� � � �� ��
	 � 
 �� ��

. Even for small molecules and moderate size one-electron

basis sets, the number of � -truply excited determinants is extremely large for all �
except 0 and 1. Therefore, doing full CI calculation even for a moderately heavy

molecule is practically impossible.

Once we have the trial functions of the above equation, we can find the corre-

sponding energies by using the linear variational method. This consists of forming

the matrix representation of the Hamiltonian in the basis of
�

-electron functions

which we have used to expand the above equation. Then we have to find the

eigenvalues of this matrix by diagonalizing the Hamiltonian matrix. This is called

the full CI matrix, and the method is referred as full CI. The lowest eigenvalue

will be an upper bound to the ground state energy of the system and the higher

eigenvalues will be upper bounds to exited states. The difference between the
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lowest eigenvalue
	 � � � and the Dirac-Fock energy

	 � � � obtained within the same

one-electron basis is called the basis set correlation energy. As the one-electron

basis set approaches completeness, this basis set correlation energy approaches

the exact correlation energy. However, the basis set correlation energy obtained

by performing a full CI is exact within the subspace spanned by the one-electron

basis.

Next, let us construct the full CI matrix and examine it’s properties. It is con-

venient to re-write the previous full CI wave function in a symbolic form

�
� �
�
� � � ��� �

�
� ��� ��� �

�
� � � ��� �

�
� � � ��� �

�
� � 
 ��� 


�
� 	 	 	

(2.3)

where ��� �
�

represents the terms involving single excitations, ��� �
�

represents terms

involving double excitations, and so on. Similarly, ��� and � � are coefficients corre-

sponding to terms involving single and double excitations, respectively. Using this

notation, the full CI matrix has the following form.

���

�
�
�

���

�
����
�

���

�
� 
�����
�

���

�
� 
������� �

�
	 	 	

��� �
�

� �
�

� �
�

� �
�

� �
�

	 	 	
� � � �
� � �
� � �
�
� �
� � �
...

��������������
�

� � � � � ��� �
�

�� � � � � �
� � � � � � � �

�

� � � � � �
�

� � � � � �
�

�� � � � � �
�

� � � � � �
�

�
� � � � �

�

�
�� � � � � �

�

�
� � � � �

�

� � � � � �
�

	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
...

�
													
�

Since the matrix is Hermitian, hence the lower triangle will be same as the

upper triangle. As mentioned earlier, we have to diagonalize this full CI matrix to

get the eigenvalues and the corresponding eigenvectors, but the following obser-

vation of the full CI matrix are important
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1. There is no coupling between DF ground state and single excitations (i.e.,
� � � � � � �

�
� � ). This is a consequence of Brillouin’s theorem which states that all

matrix element of the form
� � � � � ���

�
�
�

are zero.

2. There is no coupling between ��� �
�

and triples or quadruples. Similarly, there is

no mixing between singles and quadruples. This is a consequence of the fact that

all matrix element of the Hamiltonian between Slater determinants which differ

by more than two spin orbitals are zero. This also indicates that the blocks which

are not zero are sparse. For instance, the matrix element
� � � � � �

�
represents

� � � � � �
���

� �

�
���� � � ��� 
������� � ���

�

For a matrix element of this type to be non-zero, the indices 	 and 
 must be in-

cluded in the set � � � � �
�
� � � and also the indices

�
and

�
must be included in the

set � � � � � 	 �	� � .

3. Since there is no mixing of single excitations with ��� �
�

directly, they can be

expected to have a very small influence on the ground state energy. There effect

is not zero because they do mix indirectly, i.e, they interact with doubles which in

turn interact with ��� �
�
. Although they have almost negligible effect on the ground

state energy, still they can influence one-electron properties like dipole moment,

significantly.

4. Because the double excitations mix directly with ��� �
�
, it may be expected that,

they have important contribution. In fact for small systems they have dominant

contribution in determining the correlation energy. Moreover, it turns out that

quadruple excitations are more important than triple or single, if one concerned

solely with the ground state energy.
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As we have mentioned earlier, the number of determinants in extremely large

even for a small system and it becomes practically impossible to do full CI cal-

culation. One of the ultimate approximation is to truncate the full CI matrix or

equivalently the CI expansion for the exact many-electron wave function at cer-

tain excitation level. If one include only single excitations in the trial function for

the CI expansion, this scheme is called singly excited CI (SCI). Similarly, including

single and double excitation in the CI expansion is called singly and doubly excited

CI (SDCI), and so on.

For heavier system, doing SDCI calculation is also quite impossible. In such

kind of heavier system, a better approximation is restricted active space (RAS)

configuration interaction (CI). In RASCI method, one would consider a limited

number of occupied orbitals in ��� �
�

and limited number of virtual (un-occupied)

orbitals with respect to ��� �
�
. These orbitals are called active orbitals in RASCI

method. Within these active orbitals one could do a truncated CI calculation at

certain excitation level.

Further more, in the RASCI method, the total active orbitals are divided into

three active subspaces: (a) RAS1 with a restricted number of holes allowed, (b)

RAS2 where all possible configuration are permitted, and (c) RAS3 with an upper

limit on the number of electrons allowed. We have used this RASCI method in our

calculation to compute the ����� -odd interaction constant � d for the ground ( ��� )

state of YbF and BaF molecule. In addition to � d we have also computed some

other molecular properties of these systems.

2.3 Working equation for
�

d

We have already discussed in detail about the expression for the � � � -odd

interaction constant � d in the previous chapter. Here, we will re-cast few relevant

equations for our convenience and discuss some of the essential features.
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As given in the previous chapter, the expression for the non-vanishing part of

the ����� -odd interaction operator � � is defined as

� � � 	 � �
��
� �
�

��

��
	
� ��� �� � (2.4)

For a molecule like MF, the molecular electric field � � ���� is of the form

� � ���� � ���� � �	�� �
� ��
� � � ��� � � (2.5)

For our calculation of � d we have neglected the last term of the above equation

because it is quite small compared to the first two terms. We have also assumed

that, both M and F nuclei are uniformly charged spherical balls of negligible di-

mensions. In this case we can evaluate the nuclear electric field at r (out side the

nucleus) using the Gauss law (in atomic unit) as

�
	
�
�
�

��
�
�
� � (2.6)

where, Q is the total charge inside the nucleus and
�
� is a unit vector relative to

the center of the nucleus under consideration. Using these approximations the

molecular electric field at the unpaired electron reduces to one-body form as

� ��� � �
� ��
��

�
� � � � ��

��

�
� � (2.7)

where M will be replaced by Yb and Ba in the case of YbF and BaF, respectively.

The ����� -odd constant � d is evaluated from the following expression given by

Mosyagin et al. [8]

� d � 	
���

�
� � ��� � � � � � � � � � �

�
(2.8)

where � � ��� � represents the ground states of YbF and BaF molecules in the calcu-

lations of Nayak et al [16, 19].
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It should be noted that the expression for the nuclear electric field
��� �

�
� is

reasonable if the dimensions of the nuclei are assumed to be negligible (i.e., point

charge approximation). Since it is well known that nuclei are of finite dimensions,

the given expression will over estimate the electric field inside the nuclear region,

which can affects the accuracy of � d. In case of a uniformly charged spherical

nucleus of finite dimension, the appropriate expression for the electric field in-

side(outside) the nuclear region
��� �

(
��� �

�
� ) should be used. Some other form

of the nuclear charge distribution such as, “Gaussian nucleus” or “Fermi nucleus”

can also be used.

2.4 Results and discussion of YbF molecule

The ground and excited state properties of YbF are calculated at the opti-

mized geometry using the restricted active space (RAS) configuration interaction

(CI) method. We employ 	��
�
	��
�
� 	 � �

�
and �


 �
���
�

uncontracted Gaussian func-

tions for Yb and F, respectively. The basis employed here is almost same as that

used by Parpia [9] in his YbF calculation. The RASCI space employed in this cal-

culation comprised 31 electrons and 56 active orbitals.

The � d estimated from RASCI is compared with other theoretical calculations

[7, 8, 9, 10] in Table 2.1. As can be seen in Table 2.1 the present DF estimate

of � d is in agreement with the Dirac-Fock (DF) value reported by Parpia [9] but

� �
�

off from Titov et al.’s [7] estimate of � d. At this juncture we emphasize

that the DF estimate of � d reported by Quiney et al. differs by factor of three

from ours (as well as from those of Parpia [9] and Titov et al. [7]) because a sin-

gle combination of symmetry type is considered in their [10] calculations. While

the deviation in the estimated ����� -odd interaction constant is negligible (among

these calculations) at the Dirac-Fock level, the deviation is quite significant at the

post Dirac-Fock level. For example, Quiney et al. show that the contribution of

first order core-polarization is almost ��� �
�

. On the other hand, Parpia’s unre-
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Table 2.1: ����� -odd interaction constant � d and dipole moment � � for the ground ��� state

of YbF molecule.

Methods or � d � �
Experiment ( ��� � � Hz/e-cm) (Debye)

Experiment [2] 3.91(4)

Semi-empirical [14] -1.50
GRECP/RASSCF [7] -0.91

Semi-empirical [15] -1.26
DHF [10] -0.31

DHF+CP [10] -0.61
UDF (unpaired electron) [9] -0.962

UDF (all electrons) [9] -1.203 4.00
GRECP/RASSCF-EO [8] -1.206

DF (Nayak at al.) [16] -0.963 3.98
RASCI (Nayak et al.) [16] -1.088 3.91

MRCI (pseudo-potential) [17] 3.55

stricted Dirac-Fock (UDF) calculation indicates that the correlation contribution is

� 	

 �

. Note that though the core polarization contribution is most important,

the effect of pair correlation and higher order terms are non-negligible. We also

emphasize that the inclusion of electron correlation through the UDF is generally

not recommended as the UDF theory suffers from spin-contamination.

As we have mentioned in the previous section, inclusion of electron correlation

to � d via configuration interaction (CI) is straightforward but computationally

challenging as a large number of electrons and orbitals need to be included in

the RASCI space. In this calculation, we analyze the effect of electron correlation

using the RASCI method. There are 39 doubly and one singly occupied orbitals

in YbF of which the 25th occupied orbital of YbF corresponds to the


�

occupied

spin orbitals of Yb. As the contribution of the

 �

and


�

orbitals of Yb to � d is

quite significant [7, 15, 14], these orbitals are included in the RASCI space. The

occupied orbitals above the 25th are also included in the RASCI space from energy

consideration. [Note that the 

�

orbitals of Yb and the 	
�

orbitals of F in YbF are
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Table 2.2: Vertical ionization potential and transition energies of YbF molecule (in cm � � ),
computed using RASCI method.

State RASCI [16] Expt. [18]

IP 48537�
� � 0 0�
� � 	 �

�
	
�

18509 18090�
� � 	 


�
	
�

19838 19460

� � �
	
�
�
	
�

21505 21067

energetically quite close (see Table 12 of Ref. [9])]. Thus, altogether 31 active

electrons (16 � and 15 � ) are included in the CI space. In the present calculations

for � d and � � , we consider six sets of RASCI space which are constructed from

31 active electrons and 19, 26, 36, 46, 51, and 56 active orbitals to analyze the

convergence of � d and � � .

In Figs. 2.1 and 2.2 we plot � d and � � , respectively, against the size of the CI

space used in these calculations (summarized in the preceding paragraph). With

the exception of a very small increase between the final two calculations, the pa-

rameter � d has essentially stabilized. Figs. 2.1 and 2.2 indicate that contribution

to � d and � � from orbitals 60-75 (CSFs 2-3 � ��� � ) is most significant compared to

other unoccupied (at DF level) active orbitals.

The first ionization potential and low lying ground ( � � ) to excited ( � � and � � )

state transition energies of YbF are compared with experiment [18] in Table 2.2.

The transition energies from our largest model are quite accurate: departures from

experiment are 419 cm � � , 2.3%, for the
�
��� 	 �

�
	
�

level; 378 cm � � , 1.9%, for the
�
� � 	 


�
	
�

level; 438 cm � � , 2.1%, for the � � �
	
�
�
	
�

level; further, the
�
� � 	 �

�
	
�

-
�
� � 	 


�
	
�

gap is accurate to 97%.

The equilibrium bond length (R � ), and ground state vibrational frequencies

( � � ) computed at the DF and RASCI level are compared with experiment and with

other calculations in Table 2.3. It is evident from Table 2.3 that the RASCI offers

a more accurate estimate of R � than DF while the later method yields a more
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Figure 2.1: Plot of the ����� -odd interaction constant � d vs. No. of CSFs for YbF molecule.
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Figure 2.2: Plot of the molecular dipole moment � � vs. No. of CSFs for YbF molecule.
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Table 2.3: Ground state spectroscopic constants R � and � � of YbF molecule.

Spectroscopic Nayak et al. [16] Others Expt. [18]

constant DF RASCI

R � (in Å) 2.073 2.051 2.074 [9] 2.016
2.045 [17]

� � (in cm � � ) 504 529 492 [17] 502

accurate estimate of the vibrational frequency � � . However, the minuscule error

in � � (at DF level) is perhaps fortuitous given the larger R � error of 2.8%.

2.5 Results and discussion of BaF molecule

The ����� -odd constant � d and dipole moment � � for the ground state of BaF

molecule are calculated using the restricted active space (RAS) configuration in-

teraction (CI) method at the experimental geometry R � � 	 � � � ˚
�

[18]. We employ

	��
�
	��
�
� 	 � �

�
and �


 �
���
�

uncontracted Gaussian functions for Ba and F, respec-

tively. The RASCI space employed for BaF molecule is composed of 17 electrons

and 76 active orbitals.

The � d estimated from the RASCI is compared with other theoretical calcula-

tions [12, 11] in Table 2.4. As can be seen in Table 2.4 the present DF estimate

of � d is � 	 �
	
	

� � �
off from the SCF(RASSCF) result of Kozlov et al. [11] and

� � �
�

off from the semi-empirical result of Kozlov and Labzowsky [12] while our

RASCI result is � �
	


� �

off from the SCF-EO(RASSCF-EO) of Kozlov et al. [11]

and is in good agreement with the semi-empirical result of Kozlov and Labzowsky.

At this juncture, we emphasize that our computed ground state dipole moment of

BaF ( � � � 
 � 	 ��
 Debye) is also reasonably close to experiment � � � 
 �
	 Debye

(see Table 5 of Ref. [2]).

In this calculation also, we analyze the effect of electron correlation using the

RASCI method. There are 32 doubly and one singly occupied orbitals in BaF of
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Table 2.4: � ��� -odd interaction constant � d for the ground ��� state of BaF molecule.

Methods � d
( ��� � � Hz/e-cm)

SCF [11] -0.230
RASSCF [11] -0.224

SCF-EO [11] -0.375
RASSCF-EO [11] -0.364

Semi-empirical [12] -0.35
DF (Nayak et al.) [19] -0.293

RASCI (Nayak et al.) [19] -0.352

which the 25th occupied orbital of BaF corresponds to the

 �

occupied spin orbitals

of Ba. As the contribution of the

 �

and


�

orbitals of Yb to � d is quite significant

[7] in case of YbF molecule, in this case also we have included the

 �

and


�

orbitals of Ba in our CI space for the calculation of � d and � � for the ground

state of BaF molecule. The occupied orbitals above the 25th are also included in

the RASCI space from energy consideration. Thus, altogether 17 active electrons

(9 � and 8 � ) are included in the CI space. In the present calculations for � d we

consider nine sets of RASCI space which are constructed from 17 active electrons

and 16, 21, 26, 31, 36, 46, 56, 66 and 76 active orbitals to analyze the convergence

of � d.

In Fig. 2.3 we plot � d against the size of CI space used in the calculations

summarized in the preceding paragraph. Fig. 2.3 demonstrates that the � d de-

creases with increasing size of the CI space till it reaches -0.352 � ��� � � Hz/e-cm.

With the exception of a very small increase at the final calculation, the parameter

has essentially stabilized. Fig. 2.3 further indicate that contribution to � d from

orbitals 70-100 (CSFs 1-6 � ��� � ) is most significant compared to other unoccupied

(at DF level) active orbitals.

The present calculation shows that inclusion of 	 � ( 	 � + �

�
) functions on Ba

yields � d � 
 � � 



�
	 
 � ��




�
� � ��� � � Hz/e-cm. Our calculation (with more ac-
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Figure 2.3: Plot of the � ��� -odd interaction constant � d vs. No. of CSFs for BaF molecule.



2.5 Results and discussion of BaF molecule 39

tive orbitals/determinants in the CI space) further shows some minor oscillatory

behavior of � d, where the variation of � d is roughly � ��� 	
�

.

At this juncture, we emphasize that the ground � ��� � � � � state of BaF can mix

strongly with the low-lying � � � � � � � state in presence of an electric field because

of the small energy gap between them, which can influence the result obtained

for � d. To analyze the influence of this mixing on � d, one has to consider the

perturbative expression for the linear Stark shift given by Kozlov and Labzowsky

[11] as well as by Commins [20] (also given in chapter one), which is of the form

� �
� 
 	 ���

� � � � � 
� � ��� � � � � � � � ��� � � 	 � 
 �
��� 	

� �

�

 � � �

�
� � 
 �

�

 � � � � ��� � � 	 � 
 �

�
� � � � �

�
� (2.9)

where � �

�

 is the internal electric field and

� �
is an applied electric field along

the � -direction. The second term in this expression is quite small as compared to

the first term and can be neglected. The ratio between the Stark matrix element

(
� � � ��� � � � � � � � ) and the energy denominator

	 � � 
 �
�
�

determines the strength of

mixing between the ground state
� � ( � � � � � � � here) and excited states

�
�

( � � � ��� � �
here) of the system (see [11, 20] for more details). The same situation may arise

in the case of YbF molecule and hence these possibilities should be taken care for

more precise calculations.

Finally, we would like to point that, experiments on BaF molecule for the

detection of ����� -symmetry violation has not yet been performed, but are being

planned. So, the present estimated result of � d as well as all the previous cal-

culations [11, 12] will be useful for experimentalists to start experiments on this

system. As the experiments progress, calculations with much higher accuracies

will be performed by including the effects which are neglected/omitted in the

present calculation. Therefore, the accuracy of the present calculation is sufficient

at this moment.
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Chapter

Application of Coupled Cluster method for

one-valence problems: Ionization potential

and electron affinity

3.1 Introduction

Emergence of the high resolution probes, viz. photo-electron spectroscopy,

synchrotron radiation spectroscopy (SRS) [1] and the non-coplanar electron trans-

mission spectroscopy (ETS) [2] have lead to a wealth of accurate physico-chemical

data pertaining to ionization and electron attachment processes. The accurate

analysis and interpretation of ionization spectra have been a major challenge to

experimentalists and theoreticians. Prior to the development of post Hartree-Fock

methodologies, the independent particle model (IPM) [3] provided the theoretical

rationale for understanding the electron binding energies for electron attachment

and detachment processes. The IPM scheme usually provides a reasonable descrip-

tion of the spectrum for the outer valence region, but for inner valence region, this

simple model completely breaks-down. The photo-electron spectrum for the inner

valence region is most often very complicated and one encounters a number of

peaks -called satellites -rather than only one main peak as predicted by the IPM.
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Beside this, the IPM sometimes also predicts the wrong ordering of the main ion-

ization potential peaks, e.g. in the N � and F � [4] molecules. The failure of the IPM

strongly suggests that electron correlation has to be treated as accurate as possible

to interpret and explain these highly complex phenomena even qualitatively, and

this requires theories of matching sophistication far transcending the simple IPM.

Extensive studies have shown that for an accurate prediction of the ionization

potentials, electron affinities, etc. requires the incorporation of both electron cor-

relation and orbital relaxation effects as these effects are strongly inter-wined. The

single reference coupled cluster (SRCC) [5] method, developed by the cluster ex-

pansion of a single determinant reference function, is now considered as one of the

most sophisticated, elegant and well established methods among the vast plethora

of correlated many-body theories for treating dynamical correlation effects in a

size-extensive manner in situations where the non-dynamical correlation effects

can be sidelined, for example, the closed-shell states around the equilibrium inter-

nuclear configurations. The incorporation of the singly and doubly excited cluster

operators (SD) only within the SRCC framework provides an accurate and reliable

description of the electron correlation for non-degenerate states, and is one of the

most extensively used class of SRCC approaches.

Motivated by the initial success of the SRCC method, several endeavors have

come on to force during the past couple of decades to generalize the SRCC method

and make it suitable to encompass open-shell and/or quasi-degenerate states.

The non-uniqueness of the exponential nature of the wave operator diversifies

the methods to a host of multi-reference CC (MRCC) strategies. The traditional

MRCC methods hinge on the effective Hamiltonian approach and work within the

complete model spaces (CMS), though they are rather more varied in their scope

of applications [6]. The effective Hamiltonian based MRCC strategies fall within

two broad classes: (i) State-Universal (SU), a Hilbert-space approach [7] and (ii)

Valence-Universal (VU), a Fock-space approach [8, 9, 10, 11, 12, 13, 14, 15]. The

SU-MRCC method highlights on only one valence sector at a time, with the cluster
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operator being defined with respect to each reference function. The VU-MRCC

approach, on the contrary, uses a single wave operator that not only correlates

the reference functions of interest, but also all the lower valence (or the so called

subdued) sectors, obtained by deleting the occupancies systematically. At this junc-

ture, we recall that the cluster amplitudes in Fock-space VU-MRCC are generated

hierarchically through the subsystem embedding condition (SEC) [10, 12] which

is equivalent to the valence universality condition used by Lindgren [11] in his

formulation.

The linear response theory (LRT) or the equation of motion (EOM) methods

[16, 17, 18, 19, 20] are other possible alternatives which are used to compute the

spectroscopic energies. EOM-CC and SR-CCLRT are identical for the excited states

energies, but the approximations in the two methods differ for transition prop-

erties. The underlying physics is the same, in particular, state properties defined

as energy derivatives are clearly identical since the state energies themselves are

identical. Several models, iterative and non-iterative, have also been developed

which partially include the effects of triple excitations [21]. Recently, Nooijen and

Bartlett have developed a new method for calculating excited state energies and

properties, the similarity transformed EOM-CC (STEOM-CC) method [22]. For

singly excited states, STEOM-CC is closely related to the Fock space CC method

[22], but conceptually they are very different. In STEOM-CC, the ground state CC

calculation describes the ground state dynamic correlation very well, whereas the

differential correlation is handled through the second similarity transformation,

which is built from an active space of ionized and electron-attached states.

The main advantage of the VU-MRCC theory is that its working equation is

fully connected and hence size-extensive in nature in contrast to the LRT or EOM

method which are core extensive and not core-valence extensive due to the pres-

ence of the disconnected diagrams while considering the charge-transfer excita-

tions. Although, the LRT or EOM method is not fully extensive in nature, the

method is intruder free [23] in contrast to the traditional VU-MRCC theory due
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to the CI-like structure of the working equation of the former. It should be noted

that for the same truncation scheme of the operator manifold, VU-MRCC is equiv-

alent to the LR-based CC methods [16, 17, 18, 19, 20] in the case of one-valence

problem.

3.2 Methodology

3.2.1 Valence universal multi-reference coupled cluster theory: A core-valence

extensive theory

The basic formalism of VU-MRCC theory for energy difference is available

elsewhere [8, 9]. Here, we provide a brief overview of this method for general

model space. We choose the Hartree-Fock (HF) (Dirac-HF in relativistic regime)

solution for the closed-shell N-electron ground state � HF as the vacuum to define

holes and particles with respect to the � HF. The holes and particles orbitals are

further subdivided to introduce multi-reference aspect. We define a model space

(P) which has all possible electron occupancies in the active orbitals to be complete,

while others are said to be incomplete. In general, any second-quantized operator

has
�
-hole and � -particle destruction operators for the active holes and particles

and � particle and � hole excitation operators involving both active and inactive

holes and particles. We define an operator A of valence rank
	 � ��� � by A

�

�
� � �

where

A contains exactly
�
-hole and � -particle destruction operators.

Using the “valence-universal” [8, 9, 11, 12, 13, 14, 15] ansatz for the wave

operator � , the Fock-space Bloch equation for the CC-theory may be written as

H � P
�

�
� � �

� � P
�

�
� � �

HeffP
�

�
� � � � 	 � ��� � (3.1)

where the superscripts
	 � ��� � represents the

�
-hole, � -particle valence sector, H is
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the N-electron Hamiltonian and

Heff � P
�

�
� � �

H � P
�

�
� � �
� (3.2)

Here, the equation is taken to be valid for all
	 � � � � , starting from

�
� � � � , the

core problem to some desired parent model space, with
�

� � ��� � � , say. We

express � in normal order as

� � � exp
	 �
S
� � (3.3)

with
�
S contains only external operators (operators that connects the model space

with the complementary space
�

) of various valence ranks

�
S �

� �
���

� � � � � � S
�

�
� � �
� (3.4)

In second quantized notation, operator S for (0,0), (0,1) and (1,0) valence rank

can written as

S
� � � � �

�
�
�
� � ��
�

��� ��
�

� � � � � � � � �� � �
�
� 	 �� 	 � � � �




� � � ��
� � �

� � ��
� � �

� � � � � � � � �
�

� � � �
�
� 	 �� 	 �� 	 � 	 � � � 	 	 	

� (3.5)

S
� � � � �

� �
	

� � � ��
� � � �
� � � ��

�

� � � � � � � � � �� � � �
�
� 	 �� 	 �

�
	 � 	 � � � 	 	 	

(3.6)

for all active particles, and

S
� � � � �

� �
	

� � � ��
�

��� ��
� � � � �

� � � � � � � � � �� � � �
�
� 	 �� 	 �� 	 � 	 � � � 	 	 	

(3.7)

for all active holes, respectively. At this juncture, it is convenient to single out the

core-cluster amplitudes S
� � � � �

and call them T. The rest of the cluster amplitudes

will henceforth be called S. Since � is in normal order, we can rewrite eq.(3.3) as

� � exp(T) � exp
	
S
� � (3.8)
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Premultiplying eq.(3.1) by exp(-T) and using eq.(3.8), we get as [24]

�
H � � P �

�
� � �

� � � P �
�
� � � �

HeffP
�

�
� � � � 	 � ��� ���� 	

� � �
�

(3.9)

where
�
H � exp(-T) H exp(T) (3.10)

and

� � � � exp
	
S
� � (3.11)

Here, the core-cluster amplitudes T are assumed as solved at the lowest level of

hierarchy of
	 � ��� ��� 	

� � �
�
. Since

�
H can be split into an operator part

�
H and the

ground state energy Egr, we likewise define
�
Heff, generating the energy differences,

and write
�
Heff �

�
Heff � Egr (3.12)

and thus get the Fock-space Bloch equation for energy differences as

�
H � � P �

�
� � �

� � � P �
�
� � � �

HeffP
�

�
� � � � 	 � ��� ���� 	

� � �
�

(3.13)

Proceeding hierarchically from the lowest nontrivial valence ranks (1,0) and

(0,1), we get
�
H � � P � � � � � � � � P � � � � � �

HeffP
� � � � �

(3.14)

and
�
H � � P � � � � � � � � P � � � � � �

HeffP
� � � � �

(3.15)

for the one-hole and one-particle model space, which correspond to the IP and EA

problem.

The scheme of generating the elementary excitations (IP, EA, EE, etc.) proceed

hierarchically. We first solve the ground state problem to determine the T am-

plitudes. The S
� � � � �

and S
� � � � �

are solved in the next level of hierarchy which are
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decoupled from each other.

3.2.2 Single-reference coupled cluster based linear response theory: A

core extensive theory

In CC based LRT method the ground state CC operator is used to perform

a similarity transformation of the Hamiltonian, which is then diagonalized within

the space of excited determinants. SR-CCLRT is nowadays routinely used for the

investigation of excited states of closed-shell molecules. A major theoretical ad-

vantage of the response based method lies in the representation of the excited state

in terms of the ground state. This description thus automatically includes the com-

ponents of the correlation contribution from the ground state that remains more or

less unchanged and which largely dominates in the low-lying excited state corre-

lation. The additional differential correlations accompanying excitation can then

be incorporated in a systematic manner in the dynamic linear response function.

As a consequence, the response approach offers the flexibility for including the

differential correlation and the additional correlation effects on top of the ground

state correlation components. The common correlation terms then drop out in the

energy differences, and the excitation energies obtained are thus described in a

more balanced manner. It is thus not surprising that the pre-eminent success of

the SRCC theory for the ground state has produced in turn a very successful linear

response theory based on the SRCC wave function, and widely accepted as a major

method of choice for the excited states whose ground state is predominantly SR in

character.

The CCLRT method for energy difference was first put forward by Mukherjee

et al. [17]. In their formulation, the atom/molecule in its ground state is sub-

jected to a photon field and the linear response of the the ground state function

described CC-ansatz is computed where the poles of the response functions are the

elementary excitations. Depending on the nature of perturbation one may obtain
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IP, EA, EE, DIP etc. of the ground state. Mukherjee and co-workers [25] have also

shown that an equivalent but simpler derivation of this scheme (called coupled

cluster based linear response theory or CCLRT) is possible.

In CCLRT approach, the wave operator � in eq.3.8 is expressed as

� � exp(T) � �
�

(3.16)

where the cluster operator � �
�

are expressed as

� �
�
�

� � ��
�

� � � 	 � � �
��� ��

� � �

�
�
��� ��

� � � � � � � � 	 �� 	 � 	 � � � 	 	 	
(for IP) � (3.17)

� �
�
�
�
�
� � ��
�

� � � 	 �� � �
� � � ��
� � �

� � ��
�

� � �� � 	 �� 	 �� 	 � � � 	 	 	
(for EA) � (3.18)

and

� �
�
�
�
�
��� ��
�

� � ��
�

� � � � 	 �� 	 � � � �
	

� � � ��
� � �

� � ��
� � �

� � �� � � 	 �� 	 �� 	 � 	 � � � 	 	 	
(for EE) � (3.19)

The ionized/excited states �
�

are generated from the ground state by the action

of ionization/excitation operators � �
�

and the corresponding state energies E

�
are

obtained from an equation of the form [17, 25, 26, 27, 28, 29]:

�
H � � �

���
�
� �

�
� E

�
� �
�
��� �

�
(3.20)

Since T and � �
�

commute, premultiplying eq.(3.20) by exp(-T) we get the follow-

ing equation of motion:

� �
H � � �

� �
� � �

�
�

	
E

�

 Egr

�
� �
�
� � �

�
� �

�
� �
�
� � �

�
(3.21)

where
�
H �

�
H � Egr and �

�
is the difference energy. Projecting eq.(3.21) on to the



3.2 Methodology 50

bi-orthogonal space, we get an eigenvalue value equation of the form

� � �
���

� �
� (3.22)

It is clear from above that CCLRT has altogether a much simpler structure com-

pared to core-valence extensive CC-theory. There is no hierarchical generation of

the cluster amplitudes except for the ground state (which is common to both), nei-

ther there is any special consideration for the appropriate choice of normalization.

From the very mode of derivation it is quite clear that the energies computed via

CCLRT method is core-extensive in nature, for remaining part (valence) its behave

like a truncated CI. Thus the method is not core-valence extensive in nature. At

this juncture, we emphasize that the CCLRT not only yields the main (valence) but

also the satellite (shake-up) state energies.

3.2.3 The Fock space eigenvalue independent partitioning technique

In spite of formal rigor, the VU-MRCC equations are often plagued by the

intruder state problem [23]. This was circumvented in an elegant way by Mukher-

jee et al. [30] via “eigenvalue independent partitioning technique” (EIP). The EIP

technique converts the non-linear VU-MRCC equations for any model space into

a set of non-hermitian eigenvalue equations. Since the details of EIP scheme are

documented elsewhere [30, 31], we will only outline the essential features of this

scheme here.

Let us assume a real non-symmetric matrix H of dimension � ��� . We intend

to determine selected � � ( � ��� � ) roots ( � � ) and associated eigenvectors � � � �
of this � ��� matrix. Denoting the components of the subspace P and the rest by

Q, the associated eigenvalue problem can be written as

�
� HPP HPQ

HQP HQQ

�
�

�
� XPP

XQP

�
� �

�
� XPP

XQP

�
� � � P 	 (3.23)



3.3 Applications of CCLRT 51

where � P is a diagonal � 
 � � 
 matrix of eigenvalues and XPP and XQP are the

matrix components of the eigenvector � in the P and Q spaces, respectively. Let

us introduce a “partitioning matrix” � and an “effective” Hamiltonian matrix Heff

defined by

� � XQPX � �PP

� Heff � XPP � PX � �PP � (3.24)

� exists whenever XPP is non-singular. Using Eq.(3.24), Eq.(3.23) can be expressed

as

HPP � HPQ � � Heff � (3.25)

HQP � HQQ � � � Heff (3.26)

While Eq.(3.26) yields a set of coupled quadratic equations for the components � ,

Eq.(3.25) furnishes selected � 
 roots upon diagonalization of Heff

� 
 � X � �
PP

HeffXPP (3.27)

Since Heff does not depend parametrically on the eigenvalue � � � � , the reduction of

Eq.(3.23) to Eqs.(3.25) and (3.26) is called an “eigenvalue independent partition-

ing” technique (EIP). EIP allows us to cast Eq. (3.23) for � 
 selected roots from

� � � matrix into an � 
 dimensional matrix involving Heff. Conversely, any two

sets of equations of the form of Eqs.(3.25) and (3.26) can be cast into a single

eigenvalue problem as in Eq.(3.23).

3.3 Applications of CCLRT

3.3.1 Direct determination of ionization potentials of HCl via CCLRT: one

electron detachment process

The valence and satellite lines of HCl [32, 33, 34, 35, 36] have been stud-

ied experimentally by Adam [34, 35] and by Svensson et al. [36] who have
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recorded the HCl valence ionization spectrum up to 52 eV using XPS and SRPS

[36]. So far, eleven satellite lines have been observed of which seven peaks are

found to lie below the continuum for doubly ionized states. The HCl satellite

peaks have been studied theoretically [37] by the Green’s function (GF) method,

ADC(3) (algebraic diagrammatic construction accurate to 3rd order), approximate

ADC(4) (algebraic diagrammatic construction accurate to 4th order) [38, 39],

symmetry-adapted-cluster configuration interaction general-R (SAC-CI-general-R)

[40, 41, 42, 43, 44], and the SAC-CI-SD-R (single double-R) methods. While the

previous theoretical studies are quite successful in assigning some satellite peaks,

the computed first valence ionization potentials for the � � state deviates signifi-

cantly (by 0.3-0.4 eV) from experiment.

An aug-CC-PVTZ basis comprised 84 GTOs is employed for the CC compu-

tations. The Cl basis is constructed from the (15s9p2d1f)/[5s4p2d1f] GTOs of

Woon and Dunning [45] augmented with one
� 	�� � � � ���


 �

�
�
, one

�
	��
� � � ����
 �

� �
,

one �
	��
� � � � � 



 �
, and one

� 	�� � � � ��
 � 	
�

diffuse function. For the H atom,

the (5s2p1d)/[3s2p1d] GTO basis of Dunning [46] is augmented by one
� 	�� � �

� � ��	


	 �

�
, one

�
	��
� � � � ����	

�
, and one �

	��
� � � �
	�
 �

�
diffuse function. The ADC

[37] and SAC-CI calculations [47] employ a smaller basis of 67 GTOs constructed

from a (14s11p4d/5s2p)/[10s8p4d/3s2p] set.

The vertical ionization potentials (valence as well as satellite) of HCl obtained

from CCLRT are compared with experiment [36] and with other correlated cal-

culations [37, 47] in Table 3.1. The two main peaks � � and � � at 12.8 and 16.6

eV, respectively, in the experimental ionization spectrum are more accurately re-

produced in our calculation than the other theoretical approaches. The CCLRT

estimates the
	
	��

� � � and
	�
 � � � � states to be at 12.54 and 16.61 eV while they are

predicted to lie at 12.50 and 16.56 eV by the SAC-CI-SD-R method. The shake-up

states are mainly described as two-electron processes (often called 2h-1p process).

Theoretical investigations suggest that the 4 � orbital plays a quite significant role

in characterizing the shake-up states. On the other hand, the contribution of the
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Table 3.1: Comparison main peaks and shake-up ionization potentials (in eV) of HCl ob-

tained from CCLRT, with experiment and other correlated calculations. All these theoretical

calculations are performed at RHCl �
���������
	

Å.

State ADC [37] SAC-CI [47] CCLRT [48] Expt. [36]

� �
16.45 16.46 16.61 16.60

25.88 26.38 25.60 25.85
27.94 28.78 28.64 28.50

31.91 32.43 32.21 32.00

34.90 34.65 34.60 34.65
36.61 36.44 35.5-41.0

� �
12.43 12.41 12.54 12.80

4 � orbital to � � valence ionization potentials (VIP) is not so important.

3.4 Overview of Relativistic spinors

The relativistic VU-MRCC method is applied to compute the ionization and

excitation energies of Ag and Hg atoms, in the next section. Here, we employ

the straight forward extension of non-relativistic coupled cluster theory to the

relativistic regime by adopting the no-virtual-pair approximation (NVPA) along

with appropriate modification of the orbitals form and potential terms [49]. The

problem of “continuum dissolution” is formally avoided by introducing projection

operators to select the positive energy states or, in other words, by excluding all

summations over negative energy states [50].

The Dirac-Coulomb Hamiltonian for the many-electron system is written as

� �

��
� � � � � �� � � �� � � 	 ��� 
 �

�
� � � �

� �
� � 		� � � � � �

	
�
�


� � �
�

� �� � 
 �� � � (3.28)

in terms of the customary Dirac operators
�� and � that are represented by the
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matrices,

�� �

��
�

��
�� �

��
� �

�� � �
� 
 �

��
� (3.29)

where
�� denotes the Pauli matrices and � is the 2x2 unit matrix. The simplest

choice for
� �
� � 		� � is a point source of electric field with a Coulomb potential of the

form, � �
� � 		� � � 
 � � � (3.30)

where � is the atomic number. However, this nuclear model introduces a non-

physical singularity which is known to influence the convergence properties of

the finite basis set expansion, particularly if a Gaussian type basis set is employed

[51]. Further, the nuclear volume isotope shift, observed in heavy atoms, reflects

the finite size of the nucleus with the nuclear charge distribution depending upon

the mass number
�

. Among the various nuclear models, the “Fermi nucleus” is

a popular choice for nuclear model without a sharp cutoff. Experimental stud-

ies suggest that the nuclear charge distribution posses a “skin” of finite thickness

across which the nuclear charge density falls to zero as in the “Fermi nucleus”

model. The present work uses the “Fermi nucleus” model in which the charge

density inside the nucleus varies as,

� 		� � � � � � � ������� � 		� 
 
 � � 	 �
�
� � � (3.31)

where � � is a constant (depending on � ) [52] and 
 is the cut-off radius (also called

“half-density radius”), at which the charge density � 	 
 � � � � � 	 . The parameter 	

is related to the nuclear skin thickness ( � ) by

	 � � �
	 

�	�


�
� (3.32)

where � � 	 � 
 � fm for the “Fermi nucleus” model [53]. The relativistic orbitals are
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expressed in the form, �� � � � � � � 		� � � � � 	�� � � �
� � � � � � � 		� � � � � � 	�� � � �

��
(3.33)

where
� � � � � � 		� � and

� � � � � � 	 � � are the large and small components of the radial

wave functions, respectively, that satisfy the orthogonality condition,���

� �
� �
�

�
� 		� ��� � � � 		� � � �

�
� 		� ��� � � � 		� � � � � �

�
� (3.34)

The quantum number 	 classifies the orbital according to symmetry and is given

by,

	 �

 	 � � �

	
�
� (3.35)

where � is the orbital quantum number and � � � �
�
� is the total angular quantum

number. The spinors � � � 	�� � � � are written as,

� � � 	�� � � � � �
� �
���� �

�
� �
� � � � ��� �� � ��� � � � � �

	��
� � ��� � � (3.36)

where �
�
� �
� � � � ��� �� � � and � � � � � �

	��
� � � represent the Clebsch-Gordon coefficients and

the normalized spherical harmonics, respectively, and
� � is a two-component spinor.

The large and small component radial wave functions are expressed as linear

combinations of basis functions,

�

�
� 		� � � ��

� � � � �� � � �� � 		� � � �

�
� 		� � � ��

� � � � �� � � �� � 	 � � � (3.37)

where the summation index

�
runs over the number of basis functions

�
and

� �� � ( � �� � ) and � �� � ( � �� � ) are the basis functions and expansion coefficients for the

large (small) components, respectively. The basis functions employed in these

calculations are Gaussian type orbitals (GTOs) of the form,

� �� � 		� � � � �
�
� � � � � ���

�
�
� (3.38)
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with

� � � � � � � � � � (3.39)

where � � and � are user defined constants, � � specifies the orbital symmetries

(1 for
�
, 2 for

�
, etc.) and constant

� �
� is the normalization factor for the large

component defined as [53]

� �
� � 	

�
� � � � � �

�
� � � � ��	

	 � � 
 �
� � � �

�
(3.40)

The small component normalization factor
� �� is obtained by imposing the kinetic

balance condition,

� �� � 		� � � � �� 	 �
�
� � 	 � � � �� � 		� � � (3.41)

where
� �� � 	 � � 
 �� � � 


	 	 � ��	 � � � � 
 �
�
� (3.42)

We will also use these relavistic spinors discussed above, for the computation

of ionization potential and excitation energies of Sr and Yb atom using (0h-2p)

relativistic VU-MRCC method in the next chapter.

3.5 Applications of VU-MRCC

3.5.1 Computation of valence electron removal energy of Ag via (0h-1p) VU-

MRCC: one electron attachment process

We employ a 
 �
�

 �
�
	 � � �


 �
GTOs basis to compute the ionization potential

and excition energies of Ag using VU-MRCC method. The ground state configura-

tion of Ag is [Kr] 
 �
� � 

� �

( � S � � � ). Because of its high � value, Ag must be treated

relativistically. As because the ground state of Ag is open-shell doublet, we begin

with Ag � which defines the (0h,0p) valence sector. The ground and excited state

energies of Ag are computed through (0h,1p) VU-MRCC method.
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Ag � + e � Ag

The ionization potential (IP) and excitation energies (EE) of Ag are compared

with other correlated calculations [54, 55] and with recommended data from Na-

tional Institute of Standards and Technology (NIST) database [56] in Table 3.2.

The IP of Ag was computed by Neogrady et al. [54] using CCSD(T) method with

spin-free Douglas-Kroll [57] (DK) orbitals whereas Safronova et al. [55] employed

relativistic spinors in their IP and EE calculations using third order MBPT method.

As can be seen in Table 3.2, the ionization potential computed using the CCSD(T)

method with DK orbitals is more accurate (off by 683 cm � � ) than that obtained

from third order MBPT calculations with relativistic spinors (off by 2737 cm � � ).

This effectively indicates that higher order correlation contribution is quite signifi-

cant in IP calculations for this system. It is also evident from Table 3.2 that the rel-

ativistic effect is non-negligible for Ag. The IP computed using (0h,1p) VU-MRCC

with Dirac-Fock orbitals is off by only 283 cm � � (or 0.4%) and is in much bet-

ter agreement with experiment than the other two calculations mentioned above.

The present calculations also provide reasonably accurate estimate of the EEs and

fine-structure splittings (FSs) for Ag than the MBPT(3) estimates.

The errors in our estimated excitation energies are 227 cm � � (or 0.5%) for the

� � ��� � state, 205 cm � � (or 0.7%) for the � � ��� � state, 167 cm � � (or 0.5%) for the

� � � � � state, 232 cm � � for the � � � � � state, and 231 cm � � (or 0.5%) for the � ��� � �
state. The oscillator strengths (

�
) for


 �
�



�

transitions are also displayed in

Table 3.2. Since our estimated transitions energies are quite accurate, we believe

that our predicted oscillator strengths will be in good agreement with experiment.
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Table 3.2: Ionization potential (IP) and excitation energies (EE) of Ag (in cm � � ), computed

using VU-MRCC method. Entrees within parentheses are oscillator strengths.

Property State VU-MRCC MBPT(3) CCSD(T) Expt.

[48] [55] [54] [56]

IP


� � � �

	
� � � � �

�
60823 58369 60423 61106

EE �
� � � �

	
� � � � �

�
42329 42556

�
�
��� �

	
� � ��� �

�
29757 28073 29552

(0.2467) (0.2497)

�
�
� � �

	
� � � � �

�
30639 28946 30472

(0.5024) (0.5134)

Interval 882 873 920

� � � �

	
��� � � �

�
48512 46082 48744


� � � �
	
� � � � �

�
48533 46104 48764

Interval 21 22 20

3.5.2 Computation of ionization potentials of Hg via (1h-0p) VU-MRCC: one

electron detachment process

In this section, we will present the ground and excited state properties of

Hg using VU-MRCC method with four component Dirac-Fock orbitals. The accu-

rate estimation of electric quadrupole moment � of Hg � is important as it can

be used as possible frequency standards to test the stability of fundamental con-

stants. In fact, the transition frequency � Hg at 282 nm of
�����

Hg � , arising from the


� � � �

� 	
� � ��� � �

�
� � � � � � �

�
�



� � �

�
�
	
� � � � � �

�
� 	 � � � � �

�
electric quadrupole

transitions, is now being compared [58] with the frequency � Cs arising from the hy-

perfine transition
� � �

�
�
� 	
� � � � � �

�
� 
 � � � � �

�
�

� � �
�
�
� 	
� � ��� � �

�
��
 � � � � �

�

in the ground state of neutral Cs, to test the stability of the product of fundamental

constants � Cs

	
� �
�
� �

� � , where � is the nuclear � -factor,
	
� �
�
� �

�
the electron-to-

proton mass ratio and � is the fine-structure constant.

Here, we employ (1h-0p) VU-MRCC method to compute the electric quadrupole

moment of Hg � . Since the electric quadrupole shift is zero in the


� � � �

� 	
��� � � �

�

state, the electric quadrupole shift of the


� � �

�
�
	
� ��� � �

�
state alone determines the
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shift of the Hg � optical clock transition. To our knowledge, only two theoretical

calculations on quadrupole moment of Hg � are available in the literature. The

first one is the single reference Hartree-Fock (HF) calculation of Itano [60] and

the other is multi-configuration Dirac Hartree-Fock (MCDHF) calculation of Oskay

et al. [61]. The HF calculation estimates the quadrupole moment for the ( � � � � � )
state of Hg � to be � =-0.664 ea �� , whereas the MCDHF calculation predict � =-

0.544 ea �� ( 	 � is the Bohr radius). Though MCDHF estimates � better than HF, it

is still � �
�

larger than experimental value ( � =-0.510 ea �� ) [61]. The accurate

estimation of magnetic dipole hyperfine matrix element
�

for the


� � �

�
�
	
� � � � �

�

state of Hg � is also a non-trivial problem. For instance, using MCDHF with limited

configuration state functions, Brage et al. [62] obtain
�

to be 1315 MHz for this

state. On the other hand, employing larger configuration space, Oskay et al. [61]

obtain a value for
�

to be 963.5 MHz which is 22.5 MHz lower than experimental

value (986.19 MHz) [60].

The ground and excited state properties of Hg and its positive ion are computed

with two sets of basis functions to investigate the convergence of the computed

properties. The first basis set (Basis I) is constructed from 
�

�

 	
�

 � � 	 �

�
�

 � GTOs.

To this set ���
�

GTOs are added to construct the second basis set (Basis II). Since

the contribution from high lying unoccupied are not significant [63, 64], these

orbitals kept frozen in CC calculations.

The IPs of Hg computed using VU-MRCC method with Dirac-Coulomb Hamilto-

nian are compared with experimental results in Table 3.3. It is worth mentioning

that the Breit interaction is not included in the present calculations. We have also

quoted the results of Eliav et al. [65] where they have used the same method with

Dirac-Coulomb-Breit Hamiltonian. As can be seen in Table 3.3, the IPs computed

for


� � � �

�
and



� � �

�
� states by Eliav et al. [65] are closer to experimental values

than those obtained by us. Since the basic formalism and working equations of

Eliav et al. [65] and ours are same, we feel that the difference in the estimated

IPs may arise due to the absence of Breit interaction in our calculations. Although
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Table 3.3: Ionization potential (IP) of
�����

Hg and excitation energies (EE) of its positive ion.

All entrees are in cm � � .

Property Config. State VU-MRCC [48] AERCC [65] Expt. [59]
Basis I Basis II

IP 

� � � �

�
� � � � � 83895 83894 84237 84184

EE 

� � � �

�
� � � � � 0 0 0


� � �
�
� � ��� � � 33506 33506 35437 35514

� � � � � 48622 48622 50785 50552

Interval 15116 15116 15348 15038

� � � �

�
� � � � � 52792 52780 52030 51485
� � � � � 61607 61594 61269 60608

Interval 8814 8814 9239 9123

Table 3.4: Electric quadrupole moment � (in ea �� ) and magnetic hyperfine matrix elements�
(in MHz) for the � � � 	�� ��� ��� � � �

	
state of

�����
Hg � .

Constant VU-MRCC [48] HF [60] MCDHF [61] Experiment

Basis I Basis II

� -0.527 -0.527 -0.664 -0.544 -0.510 [61]� � � � � 40440 40464 40507 [58]� �� � � 2713 2720� �� � � 972 972 963.5 986.19 [60]

the � � fine structure splitting is better reproduced in their [65] calculations, our

present calculation represents a more accurate estimate of the � � fine structure

splitting.

We now discuss the quadrupole moment results for � ��� � � state, displayed in Ta-

ble 3.4. The large deviation in Itano’s predicted � value for Hg � primarily arises

due to the neglect of electron correlation in the calculation. The importance of

electron correlation is also evident from the MCDHF calculation of Oskay et al.

[61] which shows that the electron correlation contribution to � is � 	

 �

. Such

a huge correlation effect is, however, difficult to incorporate via MCDHF scheme
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or even through finite order many-body perturbation theory (MBPT) [66]. In

fact, CC is the most suitable scheme for such problem. Being an all-order ap-

proach, it can incorporate higher order electron correlation and relaxation effects

more efficiently than the finite order MBPT method. Our calculation estimates

the quadrupole moment for the � � � � � state of Hg � to be � =-0.527 ea �� which is

the most accurate estimate of � for the � � � � � state of Hg � , to our knowledge.

The magnetic hyperfine matrix elements
�

reported for Hg � are also in agree-

ment with experiment. The present calculations further show that contribution of�
orbitals to IP,

�
and � of Hg and its positive ion is negligible.
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Chapter

Application of Coupled Cluster method for

two-valence problems

4.1 Introduction

In the previous chapter, we have discussed and applied the core-valence

extensive, valence universal multi-reference coupled cluster (VU-MRCC) method

[1, 2, 3, 4, 5, 6, 7, 8] and core-extensive, coupled cluster based linear response

theory (CCLRT) [9, 10, 11, 12, 13] to the typical one-valence problems such as

ionization potential and electron affinity computations. Since for one-valence

problem there is no valence-valence interaction, the core-valence extensive and

core-extensive theories are formally equivalent. As the valence-valence interaction

is nonzero for two-valence and higher-valence problems, the equivalency among

these two classes of theories holds good only for one-valence problem. In this

chapter, we have selected to study the hole-particle excitation (1h-1p), double

ionization (2h-0p) and double electron attachment (0h,2p) processes, which are

typical examples of two-valence problems.

Among these two valence processes, the electronic transition phenomenon in-

volved in the excitation process is one of the oldest problems tackled by spectro-

scopists and still remains one of the most widely studied subject for experimen-

68
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talists and theoreticians. The emergence of high resolution probes such as XAFS,

XANES [14] and high resolution laser spectroscopy [15] etc. have also widened

the scope and range of applications of electronic transition spectroscopy.

The double ionization or the Auger process has also been a subject of interest

to theoretician and experimentalists. The Auger process is a radiation less reor-

ganization process [16] produced by the electron impact, synchrotron radiation,

double charge transfer, or charge stripping spectroscopy. In this process, core-hole

is created, and the core ionized state eventually reorganizes its electron whereby

the core-vacancy is filled by the higher lying electron with a simultaneous ejection

of the valence electron. The final state thus becomes a doubly ionized state, and

the kinetic energy of the ejected “Auger” electron is a measure of the double IPs

of the molecule/atom. Being a property of the system, an estimate of the kinetic

energies offers valuable insight about the electronic environment of the system

and is a property of chemical interest.

The double electron attachment scheme is primarily developed to study the

excited states of the systems whose ground state is open-shell. For instance, Kaldor

et al. [17] and Nayak et al. [18] employed the two electron attachment processes

to compute the transition energies of heavy elements. Kaldor et al. [19] have also

employed this technique to study the stability of negative ions of heavy elements.

We recall that for more than one valence occupancies in the model functions,

we have the option of maintaining size-extensive either (a) with respect to the

core electrons, whose total number N � usually far exceeds those in the valence

space, N � ; or (b) with respect to N � and N � separately. The former choice leads

to the core-extensive formalisms while the later leads to core-valence extensive

formalisms. Just as in the last chapter, we shall use CCLRT and VU-MRCC to study

excitation, double ionization and double electron attachment processes.
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4.2 Valence universal multi-reference CC method for two va-

lence problems

In the last chapter, we have presented the general structure of VU-MRCC

equations for general model space. In this chapter, we shall derive the VU-MRCC

equations for (0h-2p) and (2h-0p) valence space from the generalized Fock-space

Bloch equations.

4.2.1 Two-electron detachment process

The reference functions for the two-electron detached states � � � � �
�

ref are gener-

ated from a appropriate combination of spin-adapted functions � � � with (N � 
 	 )

number of electrons as

��� � � � �
�

ref

�
�
�

� �
C � � ��� � �

�
(4.1)

where

��� � �

�
� 	 � 	 � ��� � � � �

�
ref

�
� (4.2)

Since the excited determinants are absent in the model space, the correlation

displayed by the model space determinants is called the “non-dynamical correla-

tion”. The dynamical electron correlations are brought in by the cluster expansion

induced by the valence universal wave operator � . To incorporate the dynamical

correlation, we proceed as follows: The exact wave functions � � � � � � are gener-

ated by the action of normal ordered valence universal wave operator � on the

approximate two-hole valence functions � � � � �
�

ref

� � � � � � � � � � � � �
�

ref (4.3)

where

� � � � � � (4.4)
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with

� � � � � � � 	 S � � � �
� � � � ��� �

	
T
�

(4.5)

and

� � � � � � � 	 S � � � � S � � S
� � � � � � S

� � � � � (4.6)

We arrive at the two valence problem hierarchically i.e., starting from (0h-

0p) valence sector, we go on through (1h-0p) valence sector to (2h-0p) problem,

following the Fock-space strategy depicted in Fig. 4.1. In this procedure, the

cluster amplitudes S
� � � � �

of (0h,0p) valence sector are first solved using the closed

shell CC equations. The cluster operator S
� � � � �

for (1h-0p) valence sector are then

introduced to generate the function � � � � � � . The corresponding cluster amplitudes

S
� � � � �

are determined by solving the (1h-0p) VU-MRCC equations as discussed in

the previous chapter. For the two-hole valence situation, we write

S
�
� � ��� � S

� � � � � � S
� � � � � � � � � � (4.7)

The new cluster amplitudes entering in (2h-0p) valence sector are S
� � � � � with the

cluster amplitudes S
� � � � �

frozen at their (1h-0p) valence level. Thus, the amplitudes

of S
� � � � � are the only new amplitudes in the two-hole valence VU-MRCC equations.

We may generally write that for � -valence

S
� � � ���

� S
� � � � � � S

� � � � � � � � � � � � (4.8)

and for solving the S
�

�
� � �

amplitudes, S
� � � � �

with � � �
do not appear. Solutions of

the various
	 � � � � valence sectors are thus decoupled, which is the essence of the

subsystem embedding condition (SEC) [3].

In actual applications, the cluster expansion of the reference function � � � � �
�

ref has

to be truncated and depending upon the physics of the problem, S
� � � � � has to be

terminated after a certain electron rank. It can be shown that for a complete model

space (CMS) under the two-body truncation scheme S
� � � � � is simply equal to zero,



4.2 Valence universal multi-reference CC method for two valence problems 72

0h-0p

1h-0p 0h-1p

0h-2p

1h-1p

2h-0p

�
�

�
��

@
@

@
@@

�
�

�
��

@
@

@
@@

1

Figure 4.1: Hierarchical generation of CC equations.
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and hence,

��� � � � � �I

�
� �����

	
T
� �
� � S

� � � � � � �
	

S
� � � � �

S
� � � � �

�
��� � � � �

�
ref

�
� (4.9)

This implies that under the above approximation, no new cluster amplitudes enter

in the VU-MRCC equations for Auger calculations. The general structure of the

effective Hamiltonian H
� � � � �
eff for two-hole model space is given by

P
� � � � � H � � � �

�
eff P

� � � � � � P
� � � � � �HP

� � � � � � P
� � � � � �HS

� � � � �
P
� � � � � � �

	
P
� � � � � �HS

� � � � �
S
� � � � �

P
� � � � � (4.10)

with
�
H �

�
H � Egr (4.11)

and
�
H � ��� �

	
-T

�
HN ��� �

	
T
�
� (4.12)

The normal ordered Hamiltonian HN is defined as

H � HN � �
� �H � �

�
� HN � EHF (4.13)

where, � �
�

is the vacuum.

4.2.2 Two-electron attachment process

In this section we present the (0h-2p) VU-MRCC scheme which we will use

to compute the excitation energies of closed shell atoms like Sr and Yb. We em-

phasize that the determination of excitation energies via double electron attach-

ment process is computationally simple provided the M � � ion is closed shell or

dominated by single reference function. In our VU-MRCC formulation for (0h-2p)

valence sector, we will assume the reference state of M � � ion as the (0-hole,0-

particle) sector.

Two-electrons are then added to the correlated reference space state following

the Fock-space strategy
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M � � + e � M � �

M � � + e � M

The unperturbed function � � � � �
�

ref for the double electron attached state can be

expressed as

��� � � � �
�

ref

�
�
�
� � � � � � 	 �� 	 �� ��� � � � �

�
ref

�
� (4.14)

Following the same strategy as discussed above, the effective Hamiltonian op-

erator for two-electron attachment process H
� � � � �
eff can be written as

P
� � � � � H � � � �

�
eff P

� � � � � � P
� � � � � �HP

� � � � � � P
� � � � � �HS

� � � � �
P
� � � � � � �

	
P
� � � � � �HS

� � � � �
S
� � � � �

P
� � � � � � (4.15)

Thus, for CMS, the excited energies for the neutral species can be determined with

aid of S
� � � � �

and S
� � � � �

cluster amplitudes. We emphasize that in the procedure,

valence electron removal energies are the by-products of this scheme with no extra

cost. Some typical Goldstone diagrams for effective Hamiltonian H
� � � � �
eff and H

� � � � �
eff

are depicted in Fig. 4.2.

4.3 Applications of CCLRT

4.3.1 Direct calculation of excitation energies of CuH via CCLRT: (1h-1p)

valence problem

The ground state properties of CuH have been studied extensively by several

research groups. For instance, Hrusak et al. [20] have studied the ground state po-

tential energy surface of CuH using various CC scheme with Hartree-Fock orbitals.

On the other hand, Marian [21] and Collins [22] employed spin-free Douglas-Kroll

transformed Dirac Hamiltonian [23] and its variants in their calculations. Here,

we investigate the ground state properties of CuH using CC method with Hartree-

Fock orbitals. We also present the excited state energies computed with Hartree-

Fock orbitals using CCLRT for EE problem at the singles-doubles level. The basis
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Figure 4.2: Representative Heff diagrams for (0,1) and (0,2) valence sector.

set employed in this calculation is constructed from Roos’s [24] (7s3p)/[3s2p] (for

H) and (17s12p9d4f)/[7s7p4d2f] (for Cu) contraction scheme.

Fig. 4.3 depicts the ground and excited states potential energy curves (PECs) of

CuH is computed using CC method (CCLRT for excited states). Here, we empha-

size that the potential energy estimated from CC with perturbative triples CCSD(T)

fails badly upon dissociation (not shown in figure). However, this type of be-

havior of the CCSD(T) potential curves near the bond breaking region is com-
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Figure 4.3: Plot of the ground and excited states potential energy curves vs. inter-nuclear

distance of CuH.
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Table 4.1: Comparison of the equilibrium bond length r � (in ˚
�

), harmonic vibrational fre-

quency � (in cm � � ) and dissociation energy D � (in eV) of CuH.

Method/Experiment r � � D �
Experiment [25] 1.463 1941 2.75
SCF (Collins et al.) [22] 1.569 1642 1.42

DHF (Collins et al.) [22] 1.541 1699 1.48
DHF (Nakajima et al.) [26] 1.540 1715 1.45

DKS (Nakajima et al.) [26] 1.460 1928 2.86
HF-CCSD (Hrusak at al.) [20] 1.501 1814 2.48

HF-CC (Nayak et al.) [27] 1.492 1818 2.64

monly observed and appears even in the bond fragmentation of simple diatomic

molecules. The spectroscopic constants for the ground state of CuH computed

using the CC method are compared with experiment [25] and with other calcula-

tions [22, 26] in Table 4.1. It can be seen from the table that, the spectroscopic

constants estimated by Nakajima et al. [26] through Douglas-Kohn-Sham approx-

imation [28, 29] matches favorably well with experiment. The present HF-CC

calculation produces quite accurate ground state dissociation energy but the equi-

librium bond length and harmonic vibrational frequency deviates from experiment

by 0.03˚
�

and 123 cm � � .
Though the CC calculations overestimate the equilibrium bond length and un-

der estimates the vibrational frequency, it offers excellent estimate of excited state

energies, summarized in Table 4.2. The vertical excitation energies of CuH are

computed at the experimental geometry using CCLRT for EE problem with HF

orbitals. As can be seen from Table 4.2, CCLRT-EE provides reasonable accurate

estimate of low lying transition energies. The excitation energies computed using

CCLRT-EE are off by 0.007 eV for
� � , 0.042 eV for

� � state. The experimental

transition energy for
� � � �

	
is � 3.53 eV. According to the present calculation,

the observed
	

state lying at 3.53 eV above the ground
� � � state is 1

� 	
state.
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Table 4.2: Vertical excitation energies (in eV) of CuH computed using CCLRT and experiment.

State CCLRT [27] Expt. [25]

1
�
� 2.338

1
� � 2.899 2.905

1
� � 3.207 3.275

1
� 	

3.315

1
� 	

3.529 3.530
1
� � 3.540

2
�
� 4.981

4.4 Applications of VU-MRCC

4.4.1 Direct calculation of Auger energies of HCl via (2h-0p) VU-MRCC: two-

electron detachment process

The Auger spectrum of HCl has been measured by Svensson et al. [30]

and Aksela et al. [31]. Subsequent independent theoretical interpretations of the

high kinetic energy region of HCl by Aksela [31] and Kvalheim [32] use direct CI

and semi-internal CI. However, the CI (both direct and semi-internal) estimate is

not so accurate for the Auger energies relative to the lowest lying doubly ionized
	
	��

� ��� 	 � � � � state. Except for the first excited doubly ionized state
	
	��

� ��� 	 � � � � ,
the computed CI Auger energies deviate substantially (by 0.3 eV or more) from

experiment.

An aug-CC-PVTZ basis comprised 84 GTOs is employed for the double IP and

Auger energies computations. The basis used for Cl atom is constructed from the

(15s9p2d1f)/[5s4p2d1f] GTOs of Woon and Dunning [33] augmented with one
� 	�� � � � ���


 �

�
�
, one

�
	��
� � � � ��
 �

� �
, one �

	��
� � � � � 



 �
and one

� 	�� � � � � 
 � 	
�

diffuse function. Similarly, for the H atom, the (5s2p1d)/[3s2p1d] GTOs basis

of Dunning [34] is augmented by one
� 	�� � � � ����	



	��

�
, one

�
	��
� � � � ����	

�
and

one �
	��
� � � � 	�
��

�
diffuse function. All the calculations are performed at RHCl �

���
	���
�� Å.
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Table 4.3: Comparison of relative Auger energies with respect to the lowest lying doubly ion-

ized � ��� 	 ��� � � � � 	 state (in eV) of HCl, obtained from VU-MRCC calculations, with experiment

and other correlated calculations.

Assignment SDCI [32] VU-MRCC[27] Expt. [30, 31]

(2 �
� ��� ( � � � ) 0.0 0.0 0.0

(2 �
� ��� ( � 	 ) 1.6 1.54 1.48

(2 �
� ��� ( � � � ) 3.0 2.53 2.75

(2 �

 � � � � ( � � ) 3.9 3.67 3.29

(2 �

 � � � � ( � � ) 5.5 5.34

(5 � � ��� ( � � � ) 10.6 10.25 9.70

The Auger energies of HCl are computed using VU-MRCC method via eigen-

value independent partitioning (EIP) technique [35]. In this approach, the CCLRT

for IP problem is first solved followed by the generation of S
� � � � �

cluster amplitudes

from CCLRT-IP eigenvectors via EIP procedure. The effective Hamiltonian Heff for

(2,0) valence sector is then constructed (using the S
� � � � �

cluster amplitudes) and

diagonalized to get the desired roots. The Auger energies of HCl relative to its

lowest lying doubly ionized state
	
	��

� ��� 	 � � � � state are shown in Table 4.3. The

VU-MRCC calculations for the
	�
 � � ��� 	 � � � � transition energy (with respect to the

lowest lying
	
	��

� ��� 	 � � � � state) is, however, not as accurate as the rest of the

states, but this deficiency is also present for semi-internal CI calculations [32].

4.4.2 Computation of excitation energies of Sr and Yb via (0h-2p) VU-MRCC:

two-electron attachment process

The accurate estimation of transition energies and nuclear magnetic dipole

hyperfine constants for singly ionized metal ions, such as Sr � and Yb � is impor-

tant because these atoms can be used in cold traps as possible frequency standards.

For instance, an optical frequency standard based on Sr � has recently been devel-

oped at the National Physical Laboratory [36, 37]. In addition, calculations of the

hyperfine coupling constant are relevant to studies of parity non-conservation in
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atoms because the electro-weak interaction is also a short range force like those

determining the hyperfine coupling constant. However, the theoretical determi-

nation of the hyperfine coupling constant is, probably, one of the most non-trivial

problems in atomic physics because an accurate prediction requires precise incor-

poration of the strongly entangled relativistic and higher order correlation and

relaxation effects.

The ground and excited state properties of Sr, Yb and their positive ions are

computed using 
��
�

�

�
	�� � � 	

� 
 � GTOs with � � � � ��� �


	



and � � 	 � � 
 . [High

lying unoccupied orbitals are kept frozen in VU-MRCC calculations.] Table 4.4

compares our computed first ionization potential (FIP) and low lying excitation

energies (EEs) of Sr and Yb atoms with experimental data [38, 39, 40]. As can be

seen from Table 4.4, the VU-MRCC ionization potentials for Sr and Yb atoms are

in excellent agreement with experiment (off by 28 cm � � for Sr and 111 cm � � for

Yb).

The reference space for excitation energy calculations is constructed by allocat-

ing

 �

( �
�
) valence electrons of Sr (Yb) among


 �
�
�
�
� 

�
�
�

 �



� ( �

�
�
�
�
�
�
�
�
�


� � � )

valence orbitals in all possible ways. The computed VU-MRCC excitation ener-

gies for the low lying states of Sr atom are in agreement with experiment ex-

cept for the
� � � state of Sr. The maximum error in the estimated excitation

energy for Sr is only 71 cm � � (or 0.47%) for the
�
� �

	�

� 

�
�

state. The present

calculation using VU-MRCC method also provides a fairly accurate estimates of

the
� � � 	�
 � � � �

�
� � 	�
 � 


�
�
,
� � � 	 
 � � � �

�
� � 	�
 � 


�
�
,
� � � 	�

� � � � � � � 	�
 � �

���
, and

� � � 	 
 � � � �
� ��� 	�
 � �

���
transition energies, which deviates by 6, 31, 60, and 70

cm � � , respectively, from experiment. Compared to � and � states, our computed

excitation energies for
� � � state and

�
� � transitions are not so accurate for Sr

atom. The errors in our estimated transition energies for the � states of Sr are off

by 1.8%. It is evident from Table 4.4 (also from Tables 3 and 4 of Ref. [41]) that

accurate estimate of
�

�

�
	 � � � � transition energy is quite problematic. Inclusion

of low lying
�

orbitals in the reference space is probably necessary to improve
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Table 4.4: First ionization potential (FIP), low lying excitation energies (EE) and fine struc-

ture splittings (FS) of Sr and Yb atoms. All entrees are in cm � � .

Atom Propetry State VU-MRCC[18] CC [41] Expt. [38, 40]

Sr FIP 45954 45926
EE

[Kr]

 �
�
	 � � � � 0 0

[Kr]

 � 


�
	 �
� � � 14333 14327

[Kr]

 � 


�
	 �
� � � 14547 14514

FS 214 187
[Kr]


 � 

�
	 �
� �

�
14969 14898

FS 422 384
[Kr]


 �

 �

	 � � � � 17839 18159

[Kr]

 �

 �

	 � � �
�

17879 18219
FS 40 60

[Kr]

 �

 �

	 � � � � 17957 18319
FS 78 100

[Kr]

 � 


�
	 � � � � 22634 21698

[Kr]

 �

�
� 	�� ��� � 28978 29038

[Kr]

 �

�
� 	 � ��� � 30522 30592

Yb FIP 50552 51142 50441
EE



� � � � � � 	 � � � � 0 0



� � � � � �

�
	��
� � � 17576 17346 17288



� � � � � �

�
	 �
� � � 18424 18082 17992

FS 848 736 704



� � � � � �

�
	 �
� �

�
20218 19847 19710

FS 1794 1765 1718



� � � 
 � � � 	 � � � � 25865 24981 24489



� � � 
 � � � 	 � � �

�
25966 25229 24751



� � � 
 � � � 	 � � � � 26125 25735 25270



� � � � � � � 	 � ��� � 32967 32695



� � � � � � � 	 � � � � 34932 34351
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the accuracy of
� � � (also � ) state energies. However, this is not considered here

because of computational complexity.

The ionization and low excitation energies of Yb are also reasonably close to

experiment but are not as accurate as those obtained for Sr atom from VU-MRCC

method. The earlier CC calculation by Eliav et al. [41] estimates the FIP of Yb to

be 51142 cm � � , which is off by 732 cm � � from experiment. Like Sr, the transition

energies of Yb for
� � and

�
� states are more accurately reproduced than the �

states by VU-MRCC method. At this juncture, we emphasize that similar trend

is also observed by Eliav et al. in their CC calculations for Yb, Ba and Ra atom

[17, 41].

Based on our Sr and Sr � calculations (see Fig. 4.4), we feel that the cor-

relation contribution to the transition energies from orbitals with ��
 

will be

non-negligible for Yb ( � is the orbital angular momentum). Thus, we believe that

the inaccuracy in our computed transition energies of Yb mainly arises due to the

basis set inadequacy. The absence of Breit interaction in our calculations is also

partly responsible for the inaccuracy and efforts are underway to enable including

these effects.

Table 4.5 compares the VU-MRCC calculations for low lying valence electron

ionization energies of Sr � and Yb � with other correlated calculations [42, 43, 41,

44] and with experiment [38]. As can be seen in Table 4.5, the valence elec-

tron removal energies and associated fine structure splitting (labeled as FS) for

Sr � and Yb � are well reproduced in the present calculations. A careful analysis

indicates that, for Sr � ion, only the [Kr]5p valence electron removal energy com-

puted using VU-MRCC method is slightly poor (off by 129 cm � � ) compared to

the Martensson’s [43] estimate (off by 60 cm � � ), while the [Kr]5s valence elec-

tron removal energy and fine structure splittings (FS) are better reproduced in the

present calculations. The FS in the present calculations are off by 4 and 7 cm � �

for � � ��� �
	�

�
�

� � � � � �
	�

�
�

and � � � � �
	
�
�
�

� � � � � �
	
�
�
�

states of Sr � , respectively.

We now compare the excitation energies of Yb and its positive ion reported by
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Table 4.5: Theoretical and experimental valence electron ionization energies and fine struc-

ture splittings (FS) of Sr � and Yb � ions. All entrees are in cm � � .

Ion State MBPT [42, 44] CC [43, 41] VU-MRCC[18] Expt. [38, 40]

Sr �
5s( � � � � �

�
89631 89126 88965 88964

5p( � � ��� �
�

65487 65309 65120 65249
5p( � � � � �

�
64663 64499 64315 64448

FS 824 810 805 801
6s( � � � � �

�
41079 41228

6p( � � ��� �
�

33096 33194
6p( � � � � �

�
32801 32906

FS 295 288

Yb �
6s( � ��� � � ) 0 0 0
5d( � � � � � ) 22888 23770 23179 23285

5d( � ��� � � ) 23549 25072 24342 24333
FS 661 1302 1163 1048

6p( � � ��� � ) 26000 27868 27664 27062
6p( � � � � � ) 29005 31324 31037 30392

FS 3005 3456 3373 3330

Eliav et al. [41] with the present calculations. As can be seen in Tables 4.4 and 4.5

that, the excitation energies (also FS) of Yb are better reproduced than its positive

ion state, in the calculations of Eliav et al. whereas the positive ion state energies

of Yb are in better agreement in our present calculations. The EEs of Yb and Yb �
in the present calculations are off by � 	 �
�


 �
and � ����


�
, respectively. On the

other hand, EEs reported in Ref. [41] are off by � ��� �
�

(for Yb) and � 
 �
	
�

(for Yb � ) from experiment. This is quite interesting but is beyond the scope of the

present approach to pinpoint the underlying reason of this trend.

The theoretically determined nuclear magnetic dipole and electric quadrupole

hyperfine constants for the excited states of Sr � and Yb � are presented in Table

4.6. It can be seen from the table that our predicted nuclear magnetic dipole and

electric quadrupole hyperfine constants
�

and � are in general agreement with
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Figure 4.4: Abs. error (in %) in the computed valence electron removal energy ( � ) and

magnetic dipole hyperfine constant
�

( � ) for the ��� � � � � �
� 	

state of Sr � vs. number of basis

functions.

experiments. The nuclear magnetic dipole hyperfine constants reported here for

��� ��� � , � � � � � and � � � � � states of Sr � are off by 0.58, 1.20, and 0.5 MHz and are

more accurate (on an average) than the previously reported
�

value [43]. Similar

trend is also observed in our predicted � value for � ��� � �
	

 �

�
state, which is off by

2.0 MHz from experiment. We emphasize that unlike transition energies, accuracy

of one-electron properties such as nuclear magnetic dipole hyperfine constants

strongly depends on the choice of the basis set. Fig. 4.4 depicts the accuracy of
� � �

and � � � � �
	 
 ���

valence electron removal energy of Sr � against the size of the basis

set. As can be seen in Fig. 4.4, the error in the computed
� � � value sharply drops

from 3% to 0.5% when
�

orbitals are included in the basis set. The computed

error decreases further (from 0.5% to 0.05%) when � orbitals are also included

in the calculations. Since our computed transition energies and related properties

(for Sr � ) are quite accurate, we strongly feel that our predicted
�

constants for
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Table 4.6: Magnetic dipole (
�

) and electric quadrupole hyperfine ( � ) constant (in MHz) of

the ground and low lying excited states Sr � and Yb � .

Ion Constant State CC [43] VU-MRCC [18] Expt. [45, 46]

Sr � � � � ( ����� � � ) 1000.0 999.89 1000.47� � � ( � � � � � ) 177.0 175.12� � � ( � � � � � ) 35.3 35.60 36.80�
� � ( � � � � � ) 1.0 1.87 2.17

� � � ( � ��� � �
�

52.0 51.12 49.11
Yb � � � � ( � ��� � � ) 12386.20� � � ( � � � � � ) 2179.94� � � ( � � � � � ) 322.60

Table 4.7: Electric dipole matrix elements of low lying excited states of Sr � and Yb � . Entrees

with parentheses are semi-empirically adjusted values.

Ion Transition Guet et al. [42] Nayak et al. [18]

Sr � 

�
� � � �


 � ��� � 3.052 (3.060) 3.107

�
� � � �


 � ��� � 4.313 (4.325) 4.392
Yb �

�
�
� � � � �

� ��� � 2.781

�
�
� � � � �

� ��� � 3.914

Yb � will also be in agreement with experiment.

The electric dipole (E1) transition matrix elements for the excited states of

Sr � and Yb � are displayed in Table 4.7. It is evident from the table that,
�

��

�
����� ��� � � �

�
� � � �
	�

�
� � � ��� � � �

�
� � � �
	 ( � �



for Sr � and � � � for Yb � ) decreases as � (nuclear charge)

increases. [Note that for light atoms, the ratio
�

�
����� ��� � � �

�
� � � �
	�

�
� � � ��� � � �

�
� � � �
	 �

�
	 ]. Table 4.7

further shows that our estimated transition matrix elements and
�

for Sr � are

reasonably close to those reported by Guet et al. [42]. We also belive that, our

predicted values of transition matrix elements and
�

for Yb � are also quite reliable.
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Chapter

Theoretical study on the excited states of

HCN: A system of astrophysical interest

5.1 Introduction

The hydrogen cyanide (HCN) molecule has been a subject of several experi-

mental and theoretical investigations over several years. Being a small polyatomic

molecule, HCN is an ideal system for the development and testing models aimed to

calculate its electronic and ro-vibrational states and other related properties. The

possibility of intra-molecular isomerization HCN-HNC has also made this an im-

portant system for the study of unimolecular reactions. In recent years, HCN has

raised interest among the astrophysicists due to its detection in the atmosphere of

Titan [1] and Carbon stars [2]. HCN has also been identified via radio-techniques

in both comets [3] and interstellar atmosphere [4].

The excited singlet states of HCN were first experimentally studied by Herzberg

and Innes [5] who established the existence of three bent excited states of HCN.

The lowest excited state lying 6.438 eV above the ground state was assigned as
�� � � � � with bond angle � 	


 �
and electronic configuration


 	 � � � 	 � � � 	 � � � 	 � . Herzberg

and Innes assigned the electronic configuration of second
�

� � � � � ( � � � � � ��� eV) and

third
�� � � � ( � � � � � ��
 eV) excited singlet states of HCN to be


 	 � � � 	 � � 	 � � � 	 	 � � with

90
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bond angle ����
 �

 �

and

 	 � � 	 � � � 	 � � � � 	 � with bond angle ��
 �

�
, respectively. While the

assignment of first excited singlet state is consistent with Walsh’s [6] prediction,

there are some serious discrepancies between the theoretical and experimental

molecular structures for the
�

� � � � � and
�� � � � state of HCN. According to Walsh,

there is only one significantly bent
� � � state and the other two

� � � states are either

linear or nearly linear. Herzberg and Innes’ assignment of
�� � � � state of HCN is

also not in accord with Walsh’s prediction. According to Walsh, this state should be

strongly bent and not one with bond angle � 
 �
�
. However, subsequent theoretical

studies [7, 8] clarified the breakdown of Walsh’s rule which was based on one

electron energy diagram.

Krishnamachari and Venkatsubrahmanian [9] have observed a transient (300 � s

half life) absorption system with its origin at 32844.1 cm � � in the flash-photolysis

of oxazole, iso-oxazole and thiazole. The band system consists of a long progres-

sion involving CN stretching frequency of 1005 cm � � in the upper electronic state.

The spectrum was attributed to a meta-stable form of HCN, i.e, either HNC or

triplet HCN. For HNC, Laidig and Schaefer [10] predicted the electronic transi-

tion to occur at 46830 cm � � , with a CN stretching frequency of 1100 cm � � in the

excited electronic state and a bent excited state compared to the linear ground

state. The observed spectrum, though nearly agrees with respect to CN stretching

frequency, differs considerably with respect to transition energy by about 14000

cm � � . The absence of a progression involving the bending frequency is also not

in agreement with the theoretical expectation. Thus the assignment of the HNC is

not tenable and the alternative assignment, i.e., to triplet HCN is to be preferred.

The main aim of the present calculation is to characterize the higher triplet

states of HCN and assign the transient absorption spectrum. As shown below, the

observed spectrum could be assigned to the transition 

� � ��� �

� � � ; the observed

value of the transition energy and the CN stretching frequency agree well with

the calculated value; the occurrence of a long progression of the CN stretching

frequency and the absence of the bands involving the bending frequency are in
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conformity with calculated change in the geometry in these two states.

We also computed relevant spectroscopic data, such as ionization potentials,

vibrational frequencies, dissociation energies and dipole moments of HCN, some

of which to our knowledge have not been reported before.

5.2 Computational details

Two sets of basis functions are employed to compute the excitation ener-

gies, ionization potentials and related molecular properties of HCN. The basis set

chosen for the geometry optimization consists of (4s,1p)/[2s,1p] contracted Dun-

ning’s basis [11] augmented with a
�

(
� � � � � ��	

�

��
 � ) and

�
(
�
� � � � ��
 � ) function

for H atom. For C and N, we employ Dunning’s [11, 12] (9s,4p,1d)/[3s,2p,1d]

contractions augmented with two
�
, two

�
and one � functions. The exponents

for the augmented
�
�
�

and � functions for C (N) atom are 4.53 (6.233), 0.0469

(0.06124), 14.557 (19.977), 0.04041 (0.05611), and 0.151 (0.23), respectively.

The transition energies, ionization potentials, dissociation energies and dipole

moment (for the ground state) are computed with a basis comprised of 59 	 �
and 28 	 � � basis functions. Here, the H atom basis is constructed from Dunning’s

(5s,2p)/ [3s,2p] aug-cc-pVTZ contraction scheme. On the other hand, Dunning’s

(11s,6p,3d,1f)/[5s,4p,3d,1f] aug-cc-pVTZ basis is used for C and N atom. While

the geometry optimization is performed at the complete active space (CASSCF)

level [13], transition energies, ionization potentials and the related properties

are computed using the coupled cluster based linear response theory (CCLRT)

[14, 15, 16, 17], which is also known as equation of motion CC (EOMCC).

5.2.1 Geometries and Transition energies of HCN

The adiabatic transition energies (T � ) for the singlet and triplet states of HCN

are compared with experiment and with other correlated calculations in Table 5.1.

The computed transition energies T � of Schwenzer et al. [8] are actually 2.18 eV
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higher than their reported value. The motivation of this adjustment was based

on the position of the
�� � � � � state. In their calculations, this excited state was

estimated to be 8.22 eV above the ground state, i.e., 2.18 eV higher than the ex-

perimental value. Therefore, all the T � values reported by Schwenzer et al. were

obtained by subtracting the 2.18 eV from the computed T � values. This large error

in the estimated energy is partly due to predisposition of the calculations in favor

of closed shell ground state though the choice of basis function plays a significant

role. We emphasize that the semi-empirically adjusted T � value of Schwenzer et

al. agrees favorably well with the experiment for 
 �
� � 	 �� �

and 
 �
� � � 	 �� �

electronic

states though their predicted T � value for 3
� � � 	 �� �

is slightly off from the experi-

ment. We also adjust the position of
�� � � � � state but in our calculation the

�� � � � �
excited singlet state is only off by 0.5 eV (for both CASSCF and CC) compared to

2.18 eV of Schwenzer et al..

Regarding the second excited state, Herzberg and Innes originally assigned a

state at 6.78 eV as
�

�
	 � � � � � [5]. However, it was later shown to be an extension of

�
� � � 	 �� �

state [20]. The present as well as Schwenzer et al. calculations predict

excited singlet state �
� � � to be at 6.8 eV; though this state has not been directly

observed, the existence of this state has been inferred through perturbation in the
��

state [5]. The observed
�� 	

 �

� � � and
�
� 	

 �

� � � � electronic state energies are well

reproduced in the present calculations.

We now proceed to compare the theoretical and experimental predictions of

the excited triplet states of HCN. Excited triplet states are of special interest to the

experimentalists as these metastable states can initiate/exhibit many interesting

chemical phenomena [21]. To the best of our knowledge, nothing is known exper-

imentally about triplet states of HCN except the one reported by Krishnamachari et

al. [9]. In their flash-photolysis experiments on oxazole, iso-oxazole, and thiozole,

Krishnamachari et al. observed a transient spectrum in 2500-3050Å region with a

long progression involving CN stretching frequency of 1005 cm � � . This band sys-

tem was attributed to an excited metastable state of HCN, i.e., either triplet HCN
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Table 5.1: Adiabatic excitation energies (in eV) of HCN.

State Dominant CASSCF CCLRT Schwenzer Expt.

configuration(s) [13] [18] et al. [7] [19]

X
� � � 
 � � � � � (C

� � ) 0.0 0.0 0.0 0.0

1
� � � � � 	 � � 	 � � 6.48 6.48 6.48 6.48

2
� � � � 	 � � 	 � 6.70 6.93 6.78 6.77

�
� 	 � � 	 	 � �

2
� � � � � 	 � 	 	 � � 7.66 7.79 7.52

� 	 � � 	 � �
� 	 � 
 	 � �

3
� � � � 	 � � 	 	 � � 8.23 8.10 7.85 8.14

� 	 � � 
 	 � �
� 	 � � 	 �
 	 � � 	 �

3
� � � � � 	 � � 	 � � 8.99 8.64 8.97 8.88

1
� � � � 	 � � 	 � 4.46 4.44 4.42

1
� � � � � 	 � � 	 � � 5.42 5.47 5.46

2
� � � � 	 � � 	 	 � � 6.28 6.13 5.91

2
� � � � � 	 � 	 	 � � 7.08 7.00 6.85

3
� � � � 	 � � 	 	 � � 7.11 6.81 6.98

� 	 � � 	 �
3
� � � � 
 	 � 	 	 � � 7.61 7.47 7.41

4
� � � � 	 � � 	 � � 	 � � 	 	 � � 8.69 8.53 [9]
 	 � � 	 �	 :Estimated from the perturbation in the

��
state [5].

or isomeric HNC. The present calculation estimates the T � for �
� � � � 


� � � to be

33308 cm � � which matches favorably well with the observed value 32844 cm � � .
In addition, our predicted CN stretching frequency (1001 cm � � ) for the 


� � � state

is also in accord with the experiment.

The geometries and vibrational frequencies obtained from the CASSCF calcula-

tion for the ground and excited states of HCN are displayed in Tables 5.2 and 5.3,

respectively. To our knowledge, triplet state and high lying singlet geometries and
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Table 5.2: Comparison of experimental and theoretically computed ground and excited state

geometries of HCN. Bond distances are given in angstroms and bond angles in degrees.

State r ��
 r �
� �

HCN
Ref. Ref. Expt. Ref. Ref. Expt. Ref. Ref. Expt.

[18] [7] [19] [18] [7] [19] [18] [7] [19]

X
� � � 1.085 1.055 1.064 1.169 1.180 1.156 180.0 180.0 180.0

1
� � � � 1.140 1.096 1.140 1.331 1.318 1.297 119.4 127.2 125.0

2
� � � 1.182 1.102 1.291 1.287 113.9 124.9

2
� � � � 1.105 1.076 1.332 1.316 143.6 164.4

3
� � � 1.138 1.092 1.140 1.278 1.264 136.5 141.2 141.0

3
� � � � 1.061 1.045 1.241 1.229 180.0 180.0

1
� � � 1.125 1.081 1.313 1.294 121.9 128.6

1
� � � � 1.111 1.099 1.329 1.365 120.7 117.0

2
� � � 1.098 1.063 1.331 1.320 147.4 160.0

3
� � � 1.127 1.081 1.283 1.250 132.6 132.6

2
� � � � 1.107 1.061 1.329 1.314 143.7 157.4

3
� � � � 1.085 1.045 1.238 1.237 180.0 180.0

4
� � � 1.109 1.571 121.0

4
� � � � 1.128 1.502 117.3

the corresponding vibrational frequencies are not known experimentally. How-

ever, it is evident from Table 5.2 that our computed geometries are in agreement

with those reported by Schwenzer et al.. The slight difference in the estimated

bond lengths and bond angle between these two theoretical works arises mainly

because of the choice of basis functions and the procedure adopted in minimiz-

ing the energy with respect to its internal coordinates, i.e., with respect to r ��
 ,

r �
�

and
�
(HCN). Since our computed geometries and vibrational frequencies are

reasonably close to the experiment, we feel that our predicted geometries and

associated frequencies will also be reliable. While the calculated values for CN

stretching and HCN bending frequencies are in accord with the experiment, the

computed CH stretching frequencies for the �
� � � � and 
 �

� � � states differ apprecia-

bly from the experimental values. The reason for this deviation may be due to
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Table 5.3: Comparison of experimental and theoretically computed vibrational frequencies

(in cm � � ) of HCN. Entrees within parentheses are experimental [9, 25, 19] vibrational fre-

quencies.

State � � [18] � � [18] � � [18]

C-H Str. C-N Str. Bend

X
� � � 3351 (3312) 2101 (2098) 702 (714)

2
� � � 1987 1433 499

3
� � � 2524 (2273) 1595 (1530) 760 (869)

1
� � � � 2606 (3160) 1413 (1495) 948 (941)

2
� � � � 3095 1414 935

3
� � � � 3602 (2367) 1762 (1626) 1011 (1038)

1
� � � 2818 1525 981

2
� � � 3121 1452 875

3
� � � 2764 1814 1032

4
� � � 3038 1001 (1005) 866

1
� � � � 2605 1413 948

2
� � � � 3072 1439 966

3
� � � � 3356 1759 893

4
� � � � 2782 1462 1003

the strong vibrionic coupling of the CH stretching vibrations produced via inter-

mediate 	
� � � � state as has been pointed out by Bickel et al. [22], Lee [23] and

Meenakhsi et al. [24].

5.2.2 Ionization potential of HCN

To our knowledge, only the first and second ionization potential of HCN are

experimentally known so far. The electron impact experiment [26] estimates the

first ionization potential of HCN to be 13.91 eV (89.1 nm). Later the vacuum

ultraviolet (VUV) absorption spectrum of HCN between 62 and 148 nm was ana-

lyzed by Nuth and Glicker [25]. The VUV absorption spectra of HCN shows a weak

vibrational structure that continues to the first adiabatic ionization potential (IP)
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Table 5.4: Vertical ionization potentials (in eV) of HCN.

State Peak type Nayak et al. Experiment

Ref. [18] [25, 27]

� � valence ( � � �
�
) 13.81 13.91

� � � valence (

 � � � ) 13.94 14.01

� � � valence ( 
 � � � ) 20.42
� � satellite 24.66
� � � satellite 26.56
� � � valence ( 
 � � � ) 29.24

at 89.1 nm. It was also pointed out by Nuth and Glicker that a complex Rydberg

series starting at 122 nm converges to the first ionization potential and the series

beginning at about 116 nm converges to the second ionization potential. The adi-

abatic IP for � � (13.60 eV) estimated by Turner et al. [27] was also in agreement

with Nuth [25].

Table 5.4 reports the valence and satellite (shake-up) IPs of HCN obtained us-

ing the coupled cluster based linear response theory [17]. Both the first ( � � 	 � � � �
�
)

and second ( � � � 	�
 � � � � ) ionization potentials of HCN are in favorable agreement

(off only by 0.1 eV or less) with the experiment. Since our computed IPs (the first

and second) are in good agreement with the experiment, we strongly feel that our

predicted third valence ionization potential ( � � � 	 
 � � � � ) and satellite IPs will also

be quite accurate.

5.2.3 Dissociation energy of HCN

The HCN molecule can dissociate either into CH and N or CN and H species.

Energy required to break HCN into CH and N is much higher than that needed to

dissociate HCN into CN and H. Here, we compute the dissociation energy of HCN

only for

HCN(
� � � � � � � 	

� � � � � �
	
� � )
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Table 5.5: Spectroscopic constants of HCN (
� � � ) and CN ( ��� � ).

System Spectroscopic Nayak et al. Experiment
constants Ref. [18] [19, 28]

HCN
� (in Debye) 3.28

D � (in eV) 5.70 5.62
B � (in cm � � ) 1.44 1.48

CN

IP (in eV) 14.08 14.10

r �
�

(in Å) 1.20 1.17

channel using CC method. The dissociation energy is calculated in two steps.

First, the HCN (
� � � � ground state is computed using closed shell CC method. The

ground state of CN( ��� � � is then calculated by adding an electron to the correlated

closed shell ion CN � following the Fock-space scheme [16]

CN � 	 � � � � � �
� � � 	

� � � � .

Once the ground state energies of HCN(
� � � � and CN( � � � � are known, the esti-

mation of dissociation energy is trivial.

The dissociation energy (D � ) of HCN � � � 	
� � � � � �

	
� � ), dipole moment ( � )

and IP of CN are presented in Table 5.5. The accuracy of our estimated D � , IP of

CN and other properties of HCN (discussed above) clearly indicates the reliability

of the method.
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Chapter

Conclusion and Future Plan

6.1 Summary of Results

In this concluding section, we will summaries the important results of our

work, which are included in this thesis. It can be understood clearly that, this

thesis highlights three aspects:

1. We have studied the effects of the violation of space inversion (P) and time-

reversal (T) symmetry in heavy polar diatomics such as YbF and BaF molecules,

which is arising from the intrinsic electric dipole moment of electrons � � . As a

result of this effects, these molecules can have permanent electric dipole moment:

a signature of ����� -violation.

The ground to excited state transitions energies and some other related molec-

ular properties of YbF are calculated in addition to the � � � -odd interaction con-

stant � d for the ground state of YbF molecule, using a fully-relativistic restricted

active space (RAS) configuration interaction (CI) method. The present calculation

estimates the ����� -odd interaction constant � d to be -1.088 � ��� � � Hz/e-cm. We

emphasize that the present estimate of � d lies in between the values reported by

Parpia [1] (-1.20 � ��� � � Hz/e-cm) and Titov et al. [2] (-0.91 � ��� � � Hz/e-cm), and
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hence, appears to be quite consistent. Since our computed transitions energies

and related molecular properties are in agreement with experiment, we strongly

believe that our predicted � d is quite reasonable. The present calculation clearly

demonstrates that the correlation contribution to � d (also to � � ) from low lying

unoccupied (at DF level) active orbitals is not significant. The fact that the con-

tribution from low lying unoccupied active orbital is negligible, can be profitably

used to reduce the computational costs by discarding these orbitals from the CI

space.

The ����� -odd interaction constant � d for the ground state of BaF molecule

is also calculated using the fully-relativistic RASCI method. The present calcula-

tion estimates the ����� -odd interaction constant � d to be -0.352 � ��� � � Hz/e-cm.

We emphasize that the present estimate of � d is in perfect agreement with the

semi-empirical result of Kozlov and Labzowsky [3] as well as with the RASSCF-EO

result of Kozlov et al. [4]. The present calculation further indicates that the semi-

empirical estimate of � d by Kozlov and Labzowsky is quite reliable. In addition

to the reliable result of � d, our computed ground state dipole moment �	� is also

in agreement with experiment.

2. We have studied some properties of relativistic atoms and such as Sr, Yb,

Ag, Hg and their positive ions. Since these systems are quite heavy, the relativistic

effects are prominent in these systems.

Fully-relativistic valence universal multi-reference coupled cluster (VU-MRCC)

method is applied to study the low lying states of the Sr and Yb atoms and to

their positive ions. Satisfactory results are obtained for the transition energies,

valence electron ionization potentials and other related properties such as nuclear

magnetic dipole hyperfine constant
�

for the ground and excited states of Sr � and

Yb � , nuclear electric quadruple hyperfine constant � for the � ��� � � state of Sr � .

The present work clearly demonstrates that the accuracy of one-electron proper-
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ties strongly depend upon the choice of basis set function. It further demonstrates

that the contribution to the one-electron properties from orbital with higher angu-

lar momentum is non-negligible.

The core-valence extensive VU-MRCC method is also applied to study the ground

state as well as the low lying excited states of Ag and Hg atoms and to their pos-

itive ions. For these systems also, we obtained reliable results for the transition

energies and valence ionization potentials. In addition to that, we have also es-

timated satisfactory results for the nuclear magnetic hyperfine constant
�

and

electric quadruple moment � of
�����

Hg � . The present calculation estimates the

electric quadruple moment � =-0.527 ea � for the � � � � � of Hg � , which is the most

accurate estimate to our knowledge.

3. In addition to these above mentioned relativistic systems, we have also stud-

ied some non-relativistic molecular systems such as HCl, CuH and HCN. Because

of their low � values, the relativistic effects are not significant for these systems.

The core-extensive coupled cluster based linear response theory (CCLRT) is

applied to study the ionization potentials of HCl and excitation energies of CuH.

The vertical ionization potentials (valence as well as shake-up) of HCl are well

reproduced in the present calculations. For example, the two main peaks � � and

� � at 12.8 and 16.6 eV are estimated to be at 12.54 and 16.61 eV, respectively, in

our calculations. For CuH, estimated vertical transition energies are in agreement

with experiment. The excitation energies of 1
� � and 1

� � are off by 0.007 eV and

0.042 eV from experiment, respectively. The experimental transition energy for� � � �
	

is � 3.53 eV. According to the present calculation this
	

state is probably

the 1
� 	

state, which is lying at 3.53 eV above the ground state. The ground state

spectroscopic constants of CuH are not so good in our present calculations.

The ground and excited state properties (including geometries) of HCN are

computed using the CASSCF and CC method. The computed transition energy and
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CN stretching frequency strongly suggests that the transient band system in the re-

gion 2500-3050Åarises from 

� � � � �

� � � transitions. The present study further

suggests that the deviation of experimental bond angle from Walsh’s prediction

can be justified in terms of breakdown of single configuration picture. The first

triplet-triplet transition of HCN, i.e., �
� � � � � �

� � � occurs at 1.29 � , It would be pos-

sible to observe this transition in absorption spectrum for the photo-decomposition

of the oxazoles or thiozole.

6.2 Future Plan

We would like to continue our work on the study of such effects in heavy po-

lar diatomics. Until now, we have considered only one of the possible mechanism

which can give rise to ����� -odd effects in atoms and molecules; the effects arising

due to the intrinsic electric dipole moment (EDM) of electrons. Since, there are

several other mechanisms (presented/described in the first chapter) which can vi-

olate P and T symmetry, we would like to study the effects of those mechanisms

in future. In addition to that, we will also consider some interesting � -odd prop-

erties.

At present, we have made certain reasonable approximations in our calcula-

tions of the ����� -odd interaction constant � d for the ground state of YbF and BaF

molecules. However, those approximations can influence the accuracy of the result

obtained for � d. For example, omission of the screening term � ���
�

can overesti-

mate the effective electric field and hence the result of � d. Similarly, the point

charge approximation of the nuclei can also over estimate the ����� -odd constant.

We would like to study these effects in future. Further more, we are also interested

to analyze the influence of the mixing of ground state and low lying excited states

of the systems.

It is practically impossible to include all electron correlation for such a heavy

system via any of the correlated many-body methods and hence is quite difficult
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to claim the accuracy of the calculations without any experimental result. That is

why, it is absolutely necessary to study some other known (experimentaly) prop-

erties of the system which has also the similar kind of dependencies. For instance,

the hyperfine structure constants
�

has also the similar structure as the ����� -odd

interaction constant � d has, and the experimental results of the constants
�

are

well known for many systems. Therefore, we would like to study the hyperfine

structure constants
�

also, in addition to the ����� -odd interaction constant � d,

from which we can get an error estimate of the later depending on the error bar of

former, to a certain extent. This kind of study will be useful for experimentalists

to interpret their outcome.

We have used the method of configuration interaction (CI) in our calculations

for the ����� -odd constant � d and it is well known that, truncated CI does not

preserves the size-extensivety, which is an important property of many electron

system. On the other hand, the coupled cluster (CC) method has the main advan-

tage of preserving the size-extensivety. Most of the many-body calculations are

based on CC method now a days. We have planed to use the CC method for the

study of � -odd and ����� -odd effects, in near future. Since, the experiments on

YbF molecule are at the final stage and we can expect it’s results by the end of this

year, we are interested to study these effects in PbF and PbO, which are the prime

experimental candidates and are being planed and prepared, respectively.
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Appendix

Matrix elements of
� �

using Cartesian

Gaussian basis

A.1 Cartesian Gaussian spinor and basis function

In the first chapter, we discussed about the general form as well as the pro-

cedure for evaluating the matrix element of the ����� -odd interaction operator � �

using the Spherical Gaussian basis. As we have mentioned at the end of that chap-

ter, there are some molecular codes which uses the Cartesian Gaussian basis. In

that case, evaluating the matrix element of ��� is little bit complicated. Here, we

will discuss one of the procedure for evaluating the spatial part of the matrix ele-

ment. Further, we will consider only the atomic cases, where the Gaussian center

coincides with the operator center. In terms of Cartesian Gaussian spinor, the basis

functions can be defined as a linear combination of the following Gaussian spinors

[1] � 	 � �
�
� ���
� � � � � 	 � � 
 	 � �

�
�
��� �

� 
 � 	 � � 
 	 � � �
�
� � (A.1)

where
�
�
� � is a normalization constant,

�
�

	 � � � � � � � � � and � � is two-component

spinor (i.e. � or � spin function). The Gaussian is centered at 	 and the orbital

angular momentum quantum number is defined as � �
�
�
� � .
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Assuming the Gaussian to be centered at the origin of our coordinate system,

we can define the
�
�
�

and � type functions as

�
�

�
�
����� � ��� �����

� 
 � � � � � � ��
� �

�
�
� ��� � ��� 	 � � ����� � 
 � � � � � � ��

� �
�
�
� � � � � � 	�� � ����� � 
 � � � � � � ��

�
�

�
�
��� � � ��� 	 � � ��� � � 
 � � � � � � �

� � � �
�
�
� � � � �	�

	 � � � � � � � 
 � � � � � � �
� � � �

�
�
� � � � � �

	 � � � ��� � � 
 � � � � � � �
� � � �

�
�
� � � � �	�

	�� � � ����� � 
 � � � � � � �
� � � �

�
�
����� � �	�

	 � � � � � � � 
 � � � � � � �
� � � �

�
�
� ��� � � �

	��
�
�
��� �

� 
 � � � � � � �
� � � �

�
�
��� � � �	�

	 � � � ����� � 
 � � � � � � �
where we have used

�
� in place of � � � �

� � � � , the subscripts
�
,

�
and � denotes

the different exponents for different kind of functions.

A.1.1 Difficulty in evaluating the matrix elements of � �
If we use this form of Gaussian basis function to evaluate the matrix element

of operator � � , then we also need to write this operator using Cartesian coordinate

system and then integrate over the whole volume.

As defined in first chapter, the ����� -odd interaction operator ��� is of the form

� � �
�� 	 ���
�

(A.2)
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We can write
�
� � � � � �

� � � � and
�� 	 ��

as

�� 	 ��
�

�� 	 ��
� � � � � �

where, � � � � 	 � � � �
� � � � � ��� � and � � � � 	 � � � � � � � � � � � � ��� � . Likewise,

�� 	 �� can be

written as

�� 	 �� � � � � � � � � � � � �
which means,

� �
� � � � � � � � � � � �	 � � � �

� � � � � � � � (A.3)

Now, let us evaluate the matrix element of this above operator between
�

and

�
(

�
�

for example) type basis functions. Excluding the constant terms and the spin

part, the integral involving spatial part looks like,�
�
�

�
�
�

�
�

�
�
�

�
�

�
� � � ��� � � 
 	 � � � � � � 	 � � � �

� � � � � �	 � � � �
� � � � � � � � � � � � � � (A.4)

This integral is quite difficult to integrate and so, we have to think about some

other alternative procedure.

A.2 Cartesian Gaussian basis using Spherical harmonics

The above mentioned problem of using the Cartesian Gaussian can be re-

solved by converting the Cartesian Gaussian into spherical polar coordinates and

then expressing the angular parts, in terms of spherical harmonics � �� . The neces-

sity of expressing the angular part in terms of spherical harmonics is just to make

it convenient for the integration of the angular part. Using this procedure, we can
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express � � � � � and � as follows

� �
����� � ������� �

� 
 � 	 	��



	 � �� 
 � � �� �

�

�
����� � �
��� � �

�

 �� 	

	��



	 � �� � � � �� �

� �
������� �

�
� 	 
��



	 � �� �

� �
�

��

	 � �� �

where we have used the expressions for spherical harmonics defined as follows

� �� � ��

��

� �� �
	



��

����� �

� �� � 

	


���

� �
� ��� � �

� � �� �
	


���

� � �
� ��� � �

Some other higher order spherical harmonics are defined as

� �
� �

	 


� ���
	


�����

�
� 
 �

�

� �
� � 


	
�



���
� ��� ��� � ������� �

� � �� �
	

�



���
� � �
� ��� � �
����� �

� �� �
	

�




�	��
� � �
� ��� � � �

� ���� � 

	

�




 	��
� ��� �
� ��� � � �
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Using these expression and omitting the normalization constant as well as the spin

part, we can write the spatial part of
�
�
�

and � type functions as

�
�

�

�� � � �

	 
 � � � � � � � ��
�

�
� � 
 � 	 	��



� � �

	 
 � � � � � � � �� 
 � � ��
��

� �
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In order to obtain these above expressions, we have used the following formulas

for the products of two spherical harmonics given by Lindgren and Morrison [2].

� �
�
� �
�
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� � � �
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�
� �� (A.5)
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where, the reduced matrix element
� ��� �

�
� � �

�
is defined as

� � � �
�
� � �

�
�

	 
 �
� � � 	

	 � � �
� 	
	 � � � �

�
�
� � �

��
� � � �
� � �

��
(A.6)

It should be noted that, the 
 
 � symbol is non-zero, only when the angular

momenta � � � ��� � satisfy the triangular condition � � 
 � � � � � ��� � � � � . Furthermore,

the sum of the angular momenta, �
� � � � � must be even to have a non-zero value

of the 
 
 � symbol.

A.2.1 The � �
	 -odd operator � � in Spherical polar coordinates

Adopting the same procedure, we can also express the operator � � in spher-

ical polar coordinate. The first step is to write
�� 	 �� as

�� 	 �� � � � � ��� � ������� � � � � �
��� � ����� � � � � � ������� � (A.7)

so that, the angular part of the operator ��� ,
�� 	 ��

can be written as

�� 	 ��
�

�� 	 ��
� � � � � � � � � ��� � ������� � � � � ��� � ����� � � � � � ����� �

� � � (A.8)

where � � � is a constant quantity. The operators � � � � � and � � will act on the spin

part of the basis functions. So, the spin dependent part can be separated from the

spatial part of the integral. Here we will concentrate only on the spatial part of

the integral, where the spatial part of the ����� -odd interaction operator � � is of

the form

� � �
��� � ������� � � ��� � ����� � � � ����� ��

�
(A.9)
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A.2.2 Matrix elements of the ���
	 -odd operator �
�
Let us first consider the

�
and

�
type functions. The only non-zero matrix

element of the operator
����� � ���

� (last term of the above expression) is between
�

and

�
�
. Matrix elements of � � between functions of same parity is zero. Excluding

the normalization constants and the spin dependent part, matrix element of the

operator � � between
�

and

�
�

looks like,

� � � ����� ����� � � � � � � 
���
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� ����� � � �� ��� (A.10)

Similarly, the non-zero matrix elements of the same operator (
����� �����

� ) between

�
and � type functions can be obtained using the same procedure as
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Here, we have used the abbreviated form for the radial part of the integral as,
� 		� �

�
� �
��� �

� 
 	 � � � � � � � � � . Here also, we have omitted the spin dependent term

and the normalization constants.

Now, we can evaluate the radial and angular parts of the integrals separately.

For evaluating the radial part, we can use the following standard formula for inte-

grals. � �

�
�
�

�
� � � � �

�
�
�
�

�
� �

	 	
�
� �

where, � is a positive integer. For example, when the exponent of
�

is � , the value
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of the integral is �
�
	 	 , otherwise (for exponents 3,5,7...) we can obtain the result

of the integral from the above formula, which is a remarkable simplification.

The next step is to evaluate the angular part of the integral. For this part also,

we can use the following standard expression given by Arfken and Weber [3].�
� � � �� � � ����� � � �� ��� �
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Now, the problem of evaluating the matrix element is sorted out by using the

spherical polar coordinates and above mentioned procedure. Using this method,

we obtained the following results for the above integrals (i.e. final matrix elements

of the operator
����� �����

� ).

��� � ����� ����� � � � � � � 	��

 � �� � � � � � (A.13)
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 � �� � � � � � � (A.15)
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 � �� � � � � � � (A.16)

� � � � ����� ����� � � � � � � � 	��
�

 � �� � � � � � � (A.17)

� � � � ����� � ��� � � � � � � � 	��
 � �� � � � � � � (A.18)

Further, we can adopt the same procedure to evaluate the matrix elements of

the other terms in the expression of the ����� -odd interaction operator ��� (i.e.��� � ������� � ��� � and
��� � ����� � � � � � ) as well as between other type of functions with

higher � values (i.e. between � ,
�

and
�
, � ), and so on. There are some other

methods which can be used to resolve the above mentioned problem. We discussed

above one of them and are going to discuss one more simpler formulation below.
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A.3 An alternative formulation to evaluate the matrix elements

of � �

After going through all these procedures mentioned in the previous sections,

we found that the matrix elements of the ����� -odd operator ��� can also be evalu-

ated without using the spherical harmonics (as discussed earlier), which seems to

be a simpler formalism as discussed below.

Let us first write the
�
,

�
and � type basis functions (defined earlier) in terms

of spherical polar coordinates without using the spherical harmonics. Neglecting

normalization constants and the spin parts which can be written as
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Similarly, we can also write the infinitesimal volume element �

	
in terms of spher-

ical polar coordinates as

�
	
�
�
� �
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In the next section, we will evaluate the matrix elements of � � again, using this

alternative formulation, where the limits of integration for
�
,
�

and
�

will be ( � 

� ), ( � 
 � ) and ( � 
 	�� ), respectively.

A.3.1 Matrix elements of � � using the alternative formulation

Using this formulation, matrix element of the operator
����� �����

� ( last term of the

expression for � � ) between
�

and

�
�

can be expressed as
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Similarly, other higher order non-zero matrix elements of the same operator

����� ��� �
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�
and � type functions can be written as

� � � � ����� � ��� � � � � � � �
� �

�
� 		� �

�
� ���

�
��� � � ������� � � � �

�
�
�

�
�����

� � � �
� �

� � ����� ����� � � � � � � �
� �

�
� 		� �

�
� ���

�
��� � � ������� � � � �

�
�
�

�
��� � � � � �

� � � � ����� � ��� � � � � � � �
� �

�
� 		� �

�
� ���

�
��� � � ������� � � � �

�
�
�

�
����� � � � �

� � � � ����� ����� � � � � � � �
� �

�
� 		� �

�
� � �

�
��� � � ������� � � � �

�
�
�

�
��� � � � � �

� � � � ����� ����� � � � � � � �
� �

�
� 		� �

�
� � �

�
��� � ������� � � � �

�
�
�

� � �
Here also, we have used the abbreviated form for the radial parts of the above

integrals as,
� 	 � �

�
� �
��� �

� 
 	 � � � � � � � � � . Since the radial parts of these integrals

are exactly same as earlier, we can use the same formula as given earlier to evalu-

ate the radial integrals. Now, the angular parts of these integrals can be evaluated

by using the following generalized formulas given by Spiegel at al. [5] as follows� ��� �
�
	 � � � �
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for terms containing only powers of
��� �

function, where � 
 1.� �����
�
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��� � 	 � �����
�
� � 	 �
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 �� � �����
�
��� 	 � � � (A.21)

for terms containing only powers of
�����

function, where � 
 1.� ��� � � 	 � �����
�
	 � �

��� � � � � 	 � �����
�
� � 	 �
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 �
� � � � ��� � � 	 � �����

�
��� 	 � � � (A.22)

for terms containing both
��� �

and
�����

functions, where � � � 
 1.

Using these formulas for evaluating the angular part of the above integrals,

we will obtain exactly the same results as earlier, for the matrix elements of the

the operator
����� �����

� . Similarly, we can evaluate other operators also (i.e. first

and second terms of � � ). This formalism seems to be simpler for generalizing to

evaluate the matrix elements of � � between functions of with higher � values.

It should be noted that, both these formalisms described above are valid only

when the center of the Gaussian and the center of the operator coincides such

as atomic cases. For the case of molecules, both the centers can be different and

these methods may be extended to valid for such multi-center cases with certain

modifications (which is yet to be done). In this context, we would like to say

that the method developed by McMurchie et al. [4] is valid for both atoms as

well as molecules, which we have used in our molecular calculations implemented

through DIRAC04 [6] code.
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