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Abstract. This is a review article on the general motion of N-rigid bodies. The
development of analytical qualitative methods in the study of the rigid-body
motion are presented in a systematic way starting from early researches of par-
ticular solutions to the recent development on the existence of stationary solu-
tions. The motion of two rigid bodies in general and the motion of coupled rigid
bodies about a fixed point are discussed in detail.
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1. Introduction

With the launching of artificial Earth’s satellites some old problems of Classical Celestial
Mechanics and Gyrodynamics have brought the attention of various scientists. One such
problem is the general motion of N-rigid bodies moving under the Newtonian law of gravitation.
The difficulty arises on account of the fact that so far we have not been able to separate the
translational motion of their mass centres and rotations about the latter.

Euler (1741-1766) studied various problems of Celestial Mechanics and in particular
mechanics of rigid bodies. He developed the theory of moments of inertia of a rigid body
and obtained the equations of motion for the rotational motion of a body. Euler’s work is
published in the Memories de 1’Academic Royale des sciences et Belles-Letters de Berlin,
Vols. 5-16 (1751-1767). This work was followed by the work of Poinsot who wrote the
treatise “Theoria Motus Corporum Solidorum Sen Rigidorum”. Leimanis (1958) brought
about a report ‘On some recent advances in the dynamics of rigid bodies and Celestial
Mechanics’ followed by another book in 1965 on ‘The General Problem of the Motion of
Coupled Rigid Bodies about a Fixed Point’. Duboshin (1958, 1959a, 1959b) in a series of
papers has discussed the above problem somewhat in detail. The same problem has also been
discussed by Cid (1984) and Sansaturio (1986). These papers give lot of information.

2. Motion of N-rigid bodies

(a) Statement . Suppose there is a system of independent, absolutely N-rigid bodies whose
elementary parts attract each other according to Newtonian law of gravitation. These bodies
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have definite external surfaces and definite physical matter having density at each internal
point. To describe the motion of each body is called the ‘N-rigid body problem’.

(b) Position and orientation of the N = n + 1, bodies M, (i = 0, 1, ... n) : The position
and orientation of each of the bodies M, is determined with the help of 6 parameters independent
of each other §, n,, §;, v,, ¢;, 6;, the first three representing the co-ordinates of the centre
of mass of M;, and the other three representing the Eulerian angles (figure 1).

|
%, (a) % |
'
N (ascending node)

(b)

Figure 1. Eulerian angles.

The two systems G(§, n, £) and G(§’, n’, {') are connected in the following manner
(Ralph 1963) :

& ng G
3 a1 (i) a2 (i) a3(i)
Mi ay (i) ax(i) ax(i)
G as (i) as(i) as3(i)
where ay (i) = cos ¢, cos y, — sin ¢; sin y, cos 6,

ax (i) = cos ¢, sin y, + sin ¢, cos y, cos 6,
a3 (i) = sin ¢; sin 6,

ap (i) = — sin ¢; cos Y, —cos ¢; sin y, cos 6,,
a(i) = — sin ¢, sin y; + cos ¢, sin y; cos 6,

asy(i) = cos v, sin 6;,
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ai3(i) = sin vy, sin 0,
a»3(i) = — cos vy, sin 6;,
(133(i) = COS Bi.
For detailed study of Eulerian angles, the reader may refer to Leimanis (1965).

(c) Euler’s geometrical equations : These equations connect the components p;, g;,
of the angular velocity of the rigid body M; and the rate of change of the Euler’s
angles :

p, = sin ¢, sin 8, \, + cos ¢, 6, ,
g, = cos ¢, sin 6; y; — sin ¢, 8, ,
ri=cosei\ifl+¢l. o2

(d) Kinetic energy : Referred to the principal axes of the rigid body M,, its kinetic energy

18

L=2m @ +n2 + L)+ 2 (Ap! +Ba +ar)

and the kinetic energy of the whole system is

n
T=2Tl.
i=0

(e) Potential function : The potential U,; between the rigid body M, and the rigid body
M, is given by

dm;d
U,=f ” mA ke .. (Brouwer & Clemence 1961)
1j

where f is the gravitational constant and A, is the distance between the two elements of mass
dm, of the body M, and dm, of the body M,. The integrations are to be extended over the
masses of both bodies.

The potential U for the system is

v=13 N u, it . Q22)
=0 ;=0

From the above formula Brouwer and Clemence have deduced the potential between two
rigid bodies :
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U= fM2[ (A +B, +C) — —(A1a1 + B b? + Cycf )]
+ % B (A, + B, + C)) — % (Ayai + B,b? + czcg)} , .. (23)
r

where ay, by, ¢y, and a,, b,, ¢, are the direction cosines of GG, relative to the principal axes
of M; and M, respectively.

The reader is also advised to read a paper by Paul (1988). The paper deals w1th the
expansion in power series of mutual potential for gravitating body with finite sizes.

(f) Equations of motion : Duboshin (1958) has worked out the differential equations of
translational and rotational motion of N-rigid bodies in the following form :

. _ a_U 5 a_U - _ a_(]_ ' 24
nllgl aél b mlnl anl 3 mlcl Cl ? - L ( . )
_ oU U | sin 9, U
Ap, - B, -C)qn = [a\vl cos 0, + a¢,] Sn 6, + cos 9, 20, ’
—(C — _|9U _ QU | cos 0, U
(G, —A) np, [ v, cos 6; am} sing, o0 o 20, ’
— (A - B)p.q, = gg (=0,12,...n). .. 25)

The last three equations can also be written as

\Tfi:Wi*’ 61=¢:k’ é1=e;k’

where

sin 0, y,* = élcbl — cos 6,0,V + (AL - B%j sin cpl cos O, g([a]

12
+ cosec 61 (SIDAI ¢1 COS |:a_U cOS 91 ggi|

Ci — 1
A B

CG-A) 2y [B=C 2,1

+( B )cos 0, ( A sin (1),))6,},
Ai_Bl
G

+ (cos 0,y,+ ¢,) {B‘ sin ¢, cos ¢, sin

oF = L [33 cosec 6;6,V, — cot 91\111*} +

X [sin 8, sec &,\; + cos ¢,0,] [cos ¢; sin 8;\; — sin o:8,],
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0 = — sin 6,0, + cos2¢i+sin2¢1 U (1 _ 1
L= iy A B, oo, "\a "B
X %ceolsqh [3_31 —cos 6, %%] + (cos 6,V + &)

_ — A X .
X [B‘TC‘ cos? 0, — % sin? ¢1] sin 0;¢;

(Cl _Bx Ax —Cl
+ +

i B ) sin ¢, cos 9,0,. ... (2.6)

1

Chobanov et al. (1986, 1989) have determined Lagrange and Appell equations for rigid
bodies from the known Euler-dynamical axioms. Malyshev (1988) has shown that Lagrange
equations of the first kind enable us to solve the problem of determining the motion for
certain mechanical systems of rigid body with a number of operations that is proportional
to n-degree of freedom.

(g) Ist-integrals : In the case of N-rigid bodies as well (as compared to N-point masses),
we have 10 first integrals; 6 from the motion of the centre of mass of the system, 3 from
the angular momentum and 1 from energy. If the bodies are completely arbitrary shaped,
then the equations of the translational-rotational motion will not have other first-integrals in
addition to the above 10 integrals. However in particular cases, more integrals may exist.

(h) Particular cases : Some of the rigid bodies M, M,, ..., M (K < n) are spherical
in shape. In this case A, =B, =C,, (i = 1, 2, ..., K) and the force function U does not depend
upon the angles y,, ¢,, 6, (i = 1, 2, ..., K), consequently

D =p1(0) = constant, gq; = qfo) = constant, r, = r1(0) =constant, (i=1, 2,...,K)

are supplementary integrals of our equations. One can easily conclude that the angular
velocity of each of the body My, M,, ..., Mg will remain constant in magnitude and direction
relative to the inertial system of coordinates. This means we can determine their rotational
motion exclusively by the initial conditions of the problem.

(1) Further it will be possible to reduce the order of the system by 6 K as the force function
U will not depend on the Eulerian angles of the spherical bodies.

In particular when K = n, the rotational and translational motion will be independent of
each other. And if we take the axis of rotation of each body as the Z-axis, we shall have

p,=0,q =0, r, =w, = constant

and Y, = \yl(o) = constant, 0, = Gfo) = constant, ¢, = w,f + constant.

(i1) Some of the rigid bodies My, M,, ..., Mg (K < n) are axis symmetric. In this case
A =B (i=0,1,2, ..., K) and the function U will be independent of ¢, ¢, ..., O, we will

get r, = rl(o) =const. (i =0, 1, ..., K). The order of the system, therefore, can be reduced
by 2(K + 1). We will also have
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t
o, = 00 + 5@ _ J V,sin@, dt (i=0,12,...K).
0
(iii) Ferrandiz et al. (1989) have shown that the degree of freedom for the motion of

a non-spherical rigid body satellite can be reduced with the help of a canonical
transformation.

3. Relative motion

The ten classical integrals enable us to reduce the order of the system of translational
rotational motion by ten units. For lowering down the order of the system, we take the
relative axes instead of the absolute axes. We take G, as the origin of the new system. Let
us suppose the relative co-ordinates of the body m, as x;, y;, z; thus

x =& - &, yi = Mi — No» =6 -Go-

The translational equations of relative motion of the body M, (i = 1, 2, ..., n) can be written
in the form

‘-x-,i=m0+rniU10+%, j}i=m0+n1'i_ﬂg.+%,
mom;  X; ox; mom, Y, 9y,
EI=M%+% i=1,2,...n,

mom, z 0z’
where Uj; are given by (2.2) and

z“ 1 1 U, U, oU,o
Ri = —_ U1 + — ) 1 1 8. .
[m, ' mg {l ox, ) oy, ATy

= ) 1

Equations (2.1) and (3.1) give the relative translational and rotational motion of the system
involving 6n + 3 variables

1,2, ..., n,

-~
]

Xi, Yis Zy,

v, 6, o, i=0,1,2, ..., n

Thus the order of the whole system is reduced by 6 units. In case My is a sphere, U will not
depend upon Y, 6, &y and the order of the system is further reduced.

4. Canonical form of the equations of motion

Taking for the generalised co-ordinates the absolute co-ordinates of point G and Eulerian
angles of the system, the Canonical form of the equation of motion can be written as
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2 oH : oH ' oH

=g S OH g O
T M Mo

: oH : oH : oH

1= T o i = T 91 = —
¥ oy \ obF 00}
&* oH % _ _ OH C:,* _ _OH

i=_a_§i_’ T]1= anl’ i acl,

. % oH ok dH A ¥ oH
! ay, ’ ) 29, o 20, ’ @.1)
where H=T-U,

5 'r];k , ;" v, 0F, 8F are the generalised momenta corresponding to &;, M;, {, i 0, 6
respectively. These generalised momenta can be determined from the relations

g = L e

d%;

Equations (4.1) are 12(n + 1) differential equations of Ist-order in generalised co-ordinates
& Mw o Wi 0, 6, and their corresponding generalised momenta &, n}, (¥, w*, 0, 6]
These equations also possess 10 first-integrals.

5. Motion of two and more than two-rigid bodies

(a) The finite two-body problem is still unsolved due to non-integrable nature of dynamical
systems. In the general problem of the translational-rotational motion of two rigid bodies
which experience no forces other than mutual gravitational attraction, ten classical integrals
exist expressing the conservation of the linear momentum, the angular momentum and the
energy. Only when each body is a sphere with spherical density distribution, the separation
of the equations into two systems of equations (one for the translational motion and the other
for rotational motion) is possible and each system can then be easily solved. In all other
cases the equations of motion cannot be integrated generally, since the translational and
rotational motions depend on each other. However, when only terms containing second and
third powers of the inverse distance remain in the differential equations, the equations of the
translational motion can be separated from those of the rotational motion, thus forming an
independent system. In this case, the orbital motion is not disturbed by the rotational motion,
that is, it can be assumed to be given (Duboshin 1958), whereas the rotational motion is
influenced by the orbital motion. This problem is the so-called restricted two-body problem
or satellite problem.

Many astronomers and mathematicians have worked on the motion of two rigid bodies.
Some of them are Russell (1928), Cowling (1938), Kopal (1938), Sterne (1939), Brouwer
(1946), Duboshin (1958, 1959a, 1959b, 1960), Kondurar (1963, 1969), Goodyear (1965),
Hori (1967), Johnson & Kane (1969), Lanzano (1969, 1970), Kinoshita (1970a, 1970b,
1972a, 1972b), Choudhry & Misra (1974), Belbruno (1977), Bhatnagar & Gupta (1977),
Bhatnagar (1978) and El-Saburi (1978).
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Brouwer (1946), Kondurar (1963), Johnson & Kane (1969), Lanzano (1969, 1970) and
Bhatnagar & Gupta (1977) have dealt with the motion of two rigid spheroids. Assuming that
the eccentricity and the lean angles are small, Brouwer has used a method similar to that of
the secular perturbations of elements for planetury theory and has discussed only the motions
of the pericentre and the node. Kondurar (1963) has studied the periodic soluticns of equations
of the forward rotating motion of two spheroids with non-coinciding symmetry planes.
Johnson & Kane (1969) have studied the motion of two rigid spheroids having a fixed
orbital plane. They have not imposed any restrictions on the eccentricity and the lean angles.
Lanzano (1969, 1970) has obtained the solution as a power series with respect to meridional
eccentricity of spheroidal bodies and the eccentricity of the orbit. Both Brouwer & Lanzano
have dealt with the system of two rigid spheroids in which the axes of rotation of the
spheroids are not perpendicular to the orbital plane. Bhatnagar & Gupta (1977) have studied
the resonance in the restricted problem of two rigid spheroids, depending on the mean
motion and the angular velocity of rotation of each body.

Hori (1967) has discussed the finite two-body problem with the use of suitable canonical
variables and by a method of general perturbations based on canonical transformations.
Kinoshita (1972b) has found the first order perturbations using Hori-Lie transformation of
the two finite body problem, one spherical and the other triaxial which experience no forces
other than mutual gravitational attraction. Belbruno (1977) has proved that it is possible to
establish an equivalence of the Kepler motion with the geodesic flow on the unit sphere.
Choudhry & Misra (1974) and Bhatnagar (1978) have discussed the motion of two rigid
bodies having a fixed orbital plane under certain conditions. Both the authors used the
Hamilton-Jacobi theory and the method of averaging to determine the motion of the system.
Choudhry & Misra have taken one body triaxial and the other spheroidal whereas Bhatnagar
has taken both triaxial. El-Saburi (1978) has found the first order perturbations for two-body
problem having ellipsoids of inertia with a small difference from spheres and used Delaunay-
Andoyer variables in the equations of translatory-rotatory motion. Cid er al. (1988) have studied
same properties on the rotational motion of a rigid body moving about a fixed point using
a canonical transformation. Wang ef al. (1991) have studied the Hamiltonian dynamics of
a rigid body of finite extent moving under the influence of a central gravitational field. A
principal motivation behind this paper is to reveal the Hamiltonian structure of the N-rigid
body problem. In the spirit of Arnold & Smale, exact models of spin-orbit coupling are
formulated with particular attention given to the underline Lie-group frame work. The reader
is also advised to consult the work of Duboshin (1984), Ermenko (1983), Elipe & Cid
(1985), Elipe & Ferrer (1985). All these authors have studied the Newtonian many rigid
body problem. For the basic problem of the dynamics of a rigid body or gyrostat in a central
gravitational field, we refer the reader to the work of Beletskii (1966), Duboshin (1958),
Robertson (1970), Longman (1971), Meirovitch (1968), Mohan et al. (1972), Likins (1965),
Sincarsin et al. (1983), Pascal (1985) and Sarychev et al. (1975). All these authors are concerned
with large earth satellites dealing with gravity gradient torque and its effect on the stability
of earth-pointing satellite attitude. Bloch er al. (1990) while studying the stabilization of
rigid body dynamics by the Energy-Casimir method has shown that the angular momentum
equations of the rigid body can be stabilized by feedback about the intermediate unstable
axis of inertia by a single torque by its major or minor axis. The authors show that the
system under feedback is a Lie-Poisson (Hamiltonian) system. The reader may also refer to
the works of Grandos Garcia (1991) and Sudakov (1991).
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During the past several years, a number of papers have been written on two-body
problem besides the above mentioned. Burniston & Siewert (1974), Gaida (1974), Mison
(1974), Verhulst (1975), Glikman (1976, 1978), Hut & Verhulst (1976) have further studied
the two-body problem. Glikman (1976, 1978) and Verhulst (1975) have discussed the two-
body problem with variable mass while Hut & Verhulst (1976) have studied the two-body
problem with a decreasing gravitational constant. Gaida (1974) has dealt with the three
dimensional Larangian formulation of the relativistic two-body problem in classical mechanics.
The reader may also refer to the works of Patrick (1989), Huber (1990), Stronge (1990),
Robertson et al. (1988) and Belyaev (1988).

Besides Duboshin (1958), papers have been written on the soluticns of the differential
equations of translational-rotational motion of two rigid bodies by Shinkarik (1971), Barkin
(1975a, 1975b, 1977a, 1977b, 1977c, 1977d), Barkin & Zeldakova (1978), and Barkin & El-
Saburi (1979). Shinkarik has dealt with the analytical and numerical integration of the
equations of motion of a dynamically symmetric body in the gravitational field of a spherical
body. Barkin (1977b) has studied the existence of plane periodic Poincare solutions of two
solid bodies. Barkin (1977c) has deduced the equations of translational-rotational motion of
Celestial bodies in oscultating elements using Hamilton-Jacobi theory and variation of the
constant method. Barkin & El-Saburi (1979) have examined the approximate analytical
solution of the plane motion equations of a rigid body under the attraction of a sphere in the
resonance case. Vidyakin (1974, 1975, 1976, 1977) has studied the Lagrangian, near-Lagrangian
and Euler solutions in the problem of the translatory-rotatory motion of three rigid bodies,
besides the plane restricted circular problem of three spheroids. Barkin (1980) has studied
the resonance and periodic motion of a solid satellite relative to its mass centre. Ruzanova
(1983) has studied the stability of stationary motions of symmetrical rigid body, Macijewski
(1986) and Macijewski et al. (1990) have studied the periodic rotation of a rigid body located
at the libration point for the restricted three body problem. El-Shaboury (1991) has discussed
the equilibrium solutions of the restricted problem of 2 + 2 axis symmetric rigid body. Six
of these solutions are located at the colinear point of the restricted problem of three axes
symmetric ellipsoid. In a special case he has found sixteen stationary solutions in the
neighbourhood of triangular lagrangian points.

The existence and stability of the particular solutions of the restricted two body problem
have been investigated by Pringle (1964), Kane (1965), Meirovitch & Wallace (1967), Robertson
(1968) and Kinoshita (1970b) and those of the unrestricted two-body problem by Duboshin
(1959a, 1959b, 1960) and Kinoshita (1970a, 1972a). Besides this Ucerasnjuk & Eremenko
(1974) have studied the stability of motion of a body of variable composition with one
stationary point in a Newtonian force field. Recently, Mavraganis (1979) has studied the
stationary solutions and their stability in the planar magnetic-binary problem by taking into
consideration the oblateness of the primaries. Yehia (1981, 1987) has discussed the stability
of the planar motion of a rigid body about a fixed point in a Newtonian field of force.
Rsymbetov (1988) has discussed the stability of relative equilibrium on a circular orbit of
rigid body with two rods. The reader may also refer to the work of Eprikashvili (1987).

On the restricted two-body problem, more work has been done. Crenshaw and Fitzpatric
(1968) have discussed the gravity gradient effects on the rapid rotational motion of an axi-
symmetric satellite in the spherical field of the Earth and have investigated the locus of the
angular momentum vector. Osipov (1969, 1970) has discussed a solution analogous to the
regular motion of the ‘float’ type for the problem of an axi-symmetric satellite around a
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spherical earth. Hitzl & Breakwell (1971) have studied the rotational motion of a triaxial
satellite around a spherical earth and have investigated the phenomenon of resonance whereas
Colombo (1966), Holland & Sperling (1969), Peale (1969) and Giacaglia & Jefferys (1971)
have investigated the rotational motion of a triaxial satellite around an axi-symmetric earth.
Beletsky (1975) has discussed the motion of a satellite about its centre of mass in a gravitational
field. Kammeyer (1976) has studied periodic and quasi-periodic earth satellite orbits. Volkov
(1975) has discussed the quasi-periodic solution of the translational-rotational motion of
Celestial bodies. For further studies of the motion of a satellite the reader may refer to the
works of Gol’tser et al. (1990)

Duboshin (1959a) has considered the most simple case of the general two-body problem,
when one of the two bodies is a homogeneous material rod. Particular solutions of this two-
body problem are investigated. Duboshin (1959b) has dealt with the motion of an artificial
satellite around the earth, which is assumed to be a homogeneous sphere, the satellite itself
having an arrow-like form and can, dynamically be likened to a rectilinear homogeneous
material segment and is described as a rod. Under the attraction of the earth, three special
solutions of the satellite, called the regular motions and designated as ‘arrow’, ‘float’ and
‘spoke’ (figure 2) are found and their stability is discussed in Lyapunov’s sense. In the
‘arrow’ case, the rod is always tangential to circular orbit of its centre of inertia, in the
‘float’ case the rod is always perpendicular to the plane of the circular orbit and in the
‘spoke’ case the rod is always along the radius of the circular orbit.

& Rof

(a) (b) (c)

Figure 2. (a) Arrow, (b) spoke, (c) float.

Duboshin (1960) has also studied the problem of the motion of an artificial Celestial
body revolving around a central planet and possessing rotational motion about its centre of
inertia. He has found three particular solutions analogous to the points ‘spoke’, ‘arrow’ and
‘float’ and has discussed their stability.

Kinoshita (1970a) has discussed the existence and stability of the stationary motions of
an axisymmetric body moving around a spherical body. He has found three particular solutions
corresponding to the stationary motions and has designated them as ‘spoke’, ‘arrow’, and
‘float’. He had discussed both secular stability and ordinary stability (Lyapunov’s sense). He
has defined motion to be secularly stable, if the configuration is such that the total mechanical
potential takes an absolute minimum value. Kinoshita (1972a) has discussed a similar problem
for a system consisting of two bodies, one spherical and the other triaxial. He has obtained
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six possible combinations of 8, ¢ and 8 = y — v for the stationary motions. Here v, 6, ¢ are
the Eulerian angles of the triaxial body. Further, he has discussed the stability of these

stationary solutions.

Bois (1986, 1988) has discussed the first order and second order theory of satellite
attitude motion with a dominant solar radiation pressure torque. He has also compared his
results with numerical integration based upon a HIPPARCOS model.

(b) Equation of motion : Let us consider two rigid bodies My and M with the masses my,

m (figure 3).

Figure 3.

If €, n, { be the co-ordinate of the centre of inertia G of the body M referred to an inertia
frame at the centre of inertia Gy of the body My; v, ¢, 6; yo, ¢, 8y, the Eulerian angles of
the bodies M and M,, then the equations of motion of the general two body problem can be
written in the form (Duboshin 1959).

_m0+ma_U
~ mgm OE
Ap - (B -C)qr =
Bg - (C-A)rp =
Cr—-(A-B)pg =

=mo+ma_U _m0+mQQ_
mom omn ’ " mem 9o(
Sin¢ | 9U _ au 104
sine[a\v cos § a¢]+cos¢ae’
cos¢ | gU U | U
5in 0 [aw cos a¢] S 3
U .
00 ’
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. sin
Aopo — (By — Co)qony = sin qe)g [g\llf]o cos 9 gg—o} + cos §g géi)

Boqo—(co—Ao)ropo=‘;i%(‘i’g[aa\ff0 cos B gq‘f]—smcn ggo

Cofo — (Ap — Bp)poqo = ai(i

do
p = sin ¢ sin By + cos ¢6 , Po = sin §q sin g\, + cos ¢060 ,
g = cos ¢ sin B — sin 00 , o = cos O sin Og\p — sin ¢o0 ,
r=cos Oy + ¢, ro = cos BV + o

where

+ By + Cy — 31
U=f@+fm[‘4° °2r3° °i|+fm0[A+Bz+rC 31] ...... :

Here, rr =8 +n?+ {2 = (GoG)’

Iy, I = moment of inertia of the body M, and M relative to G,G.

These equations, are very much simplified if the body M is very small in comparison to the
(c) Stationary solutions : In the case of two rigid bodies a maximum of 36 stationary
solutions exist (table 1).

Table 1

S1.  Nature of rigid No. of stationary Solutions

No. bodies solutions

1. Both triaxial 36 L;i=12..,6
(Bhamagar 1986) j=12,..,6

2.  Spheroid, triaxial 18 L;1=135
(Bhatnagar 1986) j=12,..6

3. Both spheroid 09 ;=135
(Bhamagar 1980a)

4.  Spherical, triaxial 06 L;i=1
(Kinoshita 1972) J=1,2 ..,6

5. Sphere, spheroid 03 o= Ll+1 V=
(Kinoshita 1970) Lbj=1315

(d) Special cases : Bhatnagar and Gupta (1980a, 1980b, 1986) have studied :
(i) The motion of two rigid bodies under the gravitational influence of each other.
(i) The existence and stability of the libration points of an axi-symmetric body
moving around another axi-symmetric body.
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(1i1)) The existence and stability of the libration points of a triaxial body moving
around another triaxial body.
These problems have been studied under certain special conditions. The result of Johnson
& Kane (1969) and Bhatnagar (1978) are modified. They have found that g, e are constants
and Eulerian angles 0,, ¢;,, ¥, (j = A, B), T and w are linear functions of time .

(e) Regions of motion : Chapsiadis et al. (1988) have studied the bounded motion in a
two body system consisting of a solid body and a material point for different values of the
energy or the angular momentum. Sergysels (1988) has studied the regions of motion in
configurational space under certain conditions.

(f) Rigid body dynamics of unidirectional spin : Bondi (1986) has discussed the spin of
a boat-shaped toy in one direction only. Its sophisticated rigid body dynamics is examined
in some detail. It is interesting to see how complex a subject the rolling motion of a rigid
body is. Yet more general cases, where the rest position does not have a principal axis of
inertia vertical, amount examination.

6. Motion of coupled rigid bodies about a fixed point

We can briefly discuss this problem in the following three categories :

(a) It concerns with particular cases of integrability of the equations of motion of a
single rigid body moving around a fixed point. Major countributors to this problem are Euler
(1707-1783), Lagrange (1736-1813), Poinsot (1777-1859), Kovalevskaya (1850-1891),
Mozalevskaya (1988) and many others.

For detailed study, one should refer to Domogarov (1893), Klein & Sommerfeld (1897),
Greenhill (1914), Gray (1918), Grammel (1950), Routh (1892, 1897, 1898a, 1898b), Scarborough
(1958), Golubev (1960), Starzhinskii (1990), Dovbysh (1990), Zitterbarth (1991), Moshchuk
et al. (1992) and Lewis er al. (1992).

In this category, one can also study the motion of a symmetric as well as an asymmetric
self-excited or externally excited rigid body. (Def. : A body is said to be self-excited if the

_torque applied is either fixed in the body or moves in a particular manner). Wiebelitz (1955)

has discussed the motion of a rigid body when it is subjected to a periodic torque. It has its
application in astronomy and atomic physics. In astronomy we are concerned with the
perturbation on Earth’s rotation about its axis due to the phenomenon of precession and
nutation. This is discussed in detail by Woolard (1953) and Poison (1830). In atomic physics
we come across gyroscope which are subjected to periodic torques. Reader is advised to
refer to the works of Bloch, Hansen & Packard (1946), Bloch & Siegert (1940), Wangsness
& Bloch (1953) and Kirchner (1955).

(b) Research in rotational motion of a rigid body got a new direction with the invention
of gyroscopic compass, of gyro horizon and rate gyro. These instruments are used for
guidance and control of ships, air-craft, missiles and space-craft. Much work has been done
in this direction by Foucault (1819-1878), Krylov (1863-1945), Schuler (1927, 1951), Grammel
(1889-1964), Draper (1963) and many others. For detail study one may refer to Ferry (1932),
Grammel (1950), Krylov & Krutkov (1932), Richardson (1954), Draper, Wrigley & Grohe
(1955), Siff & Emmerich (1960), Bulgakov (1960), Arnold & Maundder (1961), Savet
(1961) and Ziegler (1962).

(c) In this category falls the work of Kelvin & Tait (1912). They were concerned with
the classification of various types of forces, such as gyroscopic forces, i.e. forces which
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depend on the generalized velocities gy. Linear terms containing g, do appear in non-linear
equations of motion containing gyroscopes and holonomic systems. Effect of gyroscopic
forces are generally studied with the help of a parameter H. Reader may refer to the work
of Merkin (1956). For gyroscopic stabilization one may consult the work of Metelieyn.
Yehia (1986) in his two papers I and II has studied the motion of a rigid body about
a fixed point under the action of stationary, non symmetric potential and gyroscopic forces.
The problem has been modeled by the motion of an electrified, magetized, gyrostat under
the action of a combination of Newtonian, Coulomb, and Lorentz forces. This work of Yehia
is an extension of his own work of (1985, 1986) and of Beletsky er al. (1985). Sansaturio
et al. (1988) have discussed the translatory and rotatory motion of a system made of two
gyrostats attracting one another according to Newton’s law using modified canonical variable
of Delauny and Serret-Andoyer. Pascal et al. (1991) have studied the equilibrium orientation
of a gyrostat satellite in the gravity field of a point mass. They have solved the semi-inverse
problem when some parameters giving orientation of the satellite are chosen arbitrarily.
Burov (1986) has discussed the motion of a gyroscope in a Cardano suspension and the
motion of the gyroscope with two degrees of freedom. He proved theorems on the nonexistence
of an additional first integral. Sarychev er al. (1988) has studied the steady motion of a
gyrostat suspended from a string. Guelman (1988) deals with gyrostat trajectory and core
energy. This paper deals with energy-sink method to obtain qualitative and quantitative
information regarding attitude motions of space-craft. Rubanovskii (1988) has studied branching
and stability in a field of Newtonian gravitation. For further studies of the motion of a
gyroscope the reader is advised to refer to the works of Grioli (1988), Sidoreko er al. (1989),
Gashenenko (1990), Kharlamova (1990), Panayotounkos (1990), El-Sabba (1991), Rubanovskii

(1991), Storozhenko er al. (1991), Saccomandi (1991), Gashenenko (1991), Savchenko (1991),
and Kharlamova (1991).

7. Multiple and connected rigid bodies

Blazer (1990) has studied a multibody system consisting of a set of rigid bodies interconnected
by joints. He has determined a matrix form of Kane’s equations. Tokad (1992) has discussed
a network model for rigid body motion. This article is devoted to the derivation of such a
mathematical model of a rigid body as a (k + 1)-port components. Rodriguez et al. (1992)
has described a new spatial operator algebra for the dynamics of general-topology rigid
multibody system. Reader may also consult the works of Agop et al. (1991) and Jean (1991).

8. Free motion of a single rigid body

Fuchs (1991a, 1991b) has discussed in two papers the motion of a rotating ball flying
through the Earth’s atmosphere. In these papers he also considers applications to games such
as volleyball, tennis or golf but not football and compares theoretical and experimental
results. Both papers list a number of relative papers and books. The reader may also refer
to the works of Mirer er al. (1991) and Sidorenko (1991).
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