Bulletin 920
The following tables give the date, Julian Day, and the photographic magnitude of the noree oa all ivilable plates.

Table I
Nova Zwicky

Data	JD 2,433	Nag.	Date	JD 2,433	Nag.
Jul 15	478.28	12.3	Aug 16	510.22	13.8
16	479.24	10.9	18	512.32	14.2
17	480.22	10.3	19	513.29	14.0
31	494.26	11.1	Sept 3	528.24	14.7
Aug 1	495.22	10.8	7	532.20	14.8
14	508.22	13.8	Oct 5	560.27	14.8

Nova $\mathbf{2 w i c k y}$ was not seen on any of three MF plates taken on July $10-11,11-12,14-15$, so that it mat have been fainter than magnitude 16 on those dates. It was, however, stilf clearly visible on a 30 -minate A plate taken on October $5-6$ and was estimated as brighter than magnitude 15 at that time. This plate was the last one taken before the dismantling of the Bruce telescope.

Table II
Nova Haro

Date	JD 2.433	Nag.	Date	dD 2,433	Nag.
Jul 31	494.26	9.5	Aug 14	508.23	9.0
Aug	1	495.22	8.0	16	510.24
	5	499.37	7.1	18	512.34
	6	500.21	8.3	19	513.32

Nora Haro was not seen on a Bruce plate of July 14-15, nor on MF plates of July 15-16. There were no plates of the region between that date and July 31-August 1 when it was of magnitude 9:5. After its rise it dropped suddenly from $m=9.5$ on Aupust 10.20 to below the plate limits on subsequent -plates. The next plates of the region taken September $3-4$ and $7-8$ show three faint stars in the region of the nova with magnitudes between 16.0 and 16.5 . These stars were also seen on plates taken before the rise of the nova, but their images were completely covered by the image of the nova during the time of its appearance. As there is no observable change on our plates in the relative brightness of the three stars, it is not possible to decide if any one of then is the nova.

Boyden Station
Harvard College Observatory

ON the light curves of rx librae and ty canis majoris
By M. K. Vainu Bappu
AX Librae: The variability of HX Librae was discovered by Mreslin and has been studied by Wella and by Parenago. From 24 observations Parenago (N.N.Y.S., 3, 106, 1931) deduced period of 24.95 days. The range of variation was from $13^{m 6}$ to $13^{\text {mh }} \mathrm{pg}$, with a value of $M-m=10.2$ daya or 410 of the period. The atar was also included in Joy's (Ap.J., 86, 363, 1937) study of the radial velocities of Copheids; velocity curve was derived from six properly spaced observations.

BULLETIN 920 .

Nearly 340 estimates were made on patrol plates taken wath 3 -inch Ross cameras az boch and southern Harvard stations during the years 1927-1948. Four comparison stars were usen wad ite eatimates of brightness were made in tems of arbitrary steps, these steps being later tranaferred to magitudes by comparison with the sequence for HR Librae, previously established in the course of the Wilton Burem survey. Parenago's period was initially adopted and the correction io this period determined from the observations of the maxima. The final elements derived are

$$
\text { Max }=\text { JD } 24319100_{:}^{d} 13+24 \stackrel{d}{932 E}^{d}
$$

The observations were arranged in order of increasing phases as determined from the new period and the mean light curve was derived by determining the mean value of the brightness and phase for groupa of ten such observations. Figure 1 shows the mean light curve along with Joy's velocity curve reduced to the present epoch. The phase lag between the minimum of brightness and of velocity of approach is

Light and velocity Curves of $R \times$ Liorae

Jarge, being 0.43 P ; the corresponding lag between maximum brightness and maximum velocity ia $0.32 P$. The variation 1 n laght is from $12^{m} 1$ to $14^{m} 1$. A slight hump appears on the descending part of the light curve. From the sham of the light curve we see, therefore, that RX Librae falls into the class of Wirginis stars, tact well confimed by'its distance from the galactic plane of over thousand parsecs.
-TV Canıs Hajorıs: The star was first studied by Florja (Tashkent Circ., No. 15, 1933), who determined a period of 4.6693 days, with a vasual range in light variation from $10 . \mathrm{mg}$ to $11^{m} 3$. It is included in Joy's (Ap.J., Bf, 313 , 1937) 1ıst of Cephesds, and a velocicy curve has been derived from seven measures.

The star was estimated on 240 plates taken with the PH and BH 3 -inch patrol cameras during the years 1928-1948. Six comparison stars were used, the estimates of brightness being made in terms of steps of brightness, which were later converted into magnitudes by way of the Milton Burean sequence
for ${ }^{W}$ Caniz Majoris. A correction to Florja's period was determined from the observed maxima, but it mounted to only 0.0005 days. The maxima could be represented by the relation

$$
\operatorname{Max}=\mathrm{JD} 2426652 \mathrm{~d}_{695}+4 \mathrm{~d}_{6698 E .}
$$

A mean light curre determined from this period is shown in Figure 2, along with Joy's velocity curve.

The maximum and minimum in radial velocity occur considerably earlier than the corresponding points in the light curve. A slight hump appears in the lipht curve on the decline from maximum, feature somewhat uncormon in elassical Cepheids of this periox.

The mathor is indebted to Drs. S. and C. P. (ıaposchkin for their valuable help and advice.

OBSERVATIONS OF SIX CFPHFII VAHIAHLES IN CYGNUS
By Margaret olmsted

During the course of investigation ol the absorption ma field in Cygnus through atudy of the colors of previously known fainc Cepheid variathes (13. J. Bok and M. Olmsted, H.R., 219, 1, 1949), photographic light curves were obtanned for five Cophends 4 rom observations on about 40 plates taken with the Jewett-Schmidt telescope at Oak Hidge in 194 : and 1948.

These variables appear also on about 17 plates of the 12 -inch Metcalf series each year from 1943 through 1948 and on few in 1926-1928, as wel] as on a few plates taken in 1935 with the 8 -inch Poss telescope. After the Metcalf plates had been shipped to the Vatican Observatory, W. J. Miller, S.J.

