Effects of rotation on the colours and line indices of stars : 4 -The effect on broad band UBV colours

Annamma Mathew \& R. Rajamohan
Indian Instilute of Aistophisics, Bangaloie 560034

Abstract

Analysis of the available observational data for the members of Alpha Persel, Pleades, and Scorpio-Centaurus association shows that rotation effects on the broad band colour indices $(U-B)$ and $(B-V)$ are considerable. These effects are found to ha ve a spectral type dependance as in intermediate band indices. For Alpha Persei and Pleiades B stars, which are mostly of spectral type B5-B9, the observed effect in $(U-B)_{0}$ and $(B-V)_{0}$ is 0.042 and 0.011 magnitudes per $100 \mathrm{~km} \mathrm{~s}^{-1}$ of rotation respectively. For Scorpio-Centaurus association which contans an equal number of early and late B stars, the effect found in $(U-B)_{o}$ and $\left(B-V_{0}\right.$ is 0.032 and 0.007 magnitudes per $100 \mathrm{~km} \mathrm{~s}^{-1}$ of rotation. These observed effects in broad band colours are found to be consistent with theoretical predictions by Collins \& Sonneborn but are much larger than the prediction by Maeder \& Peytremann.

Key words: stellar rotation-colour indices-UBV

1. Introduction

We have already discussed the need for determining the effects of rotation on the colours and line indices of stars. (Rajamohan \& Mathew $1988 \equiv$ Paper 1; Mathew \& Raja mohan $1989 \equiv$ Paper 2). In this paper we analyse the effects of rotation on UBV and H β for $\alpha-$ Persei, Pleiades and the Scorpio-Centaurus association. A comparison of the observed effects is made with the theoretical photometric effects due to rotation predicted by Maeder \& Peytremann (1970) and Collins \& Sonneborn (1977).

2. The data and analysis

The factors other than rotation that affect the colours of stars are differential reddening across the cluster, binary nature, peculiarity, evolutionary effects, and systematic errors in photometry. A detailed discussion of these is given in paper 1 . These are taken into account before analysing for rotation effects. The B type stars alone were considered and the colour indices were dereddened using the Q-method originally set up by Johnson \& Morgan (1953). Double lined spectroscopic binaries and close visual doubles with a

[^0]magnitude difference less than two magnitudes were excluded. Emission lined objects and known peculiar stars were in general excluded and only luminosity class IV and V stars are included for data analysis so that the reddening effect found can be completely attributed to rotation alone. References to the cluster data used in this study is given in table 1.

Table 1. References to $U B V, H \beta, V \sin t$ data for clusters

Cluster	Data	Reference
$\alpha-$ Persei	$U B V$	Mitchell (1960)
	$H \beta$	Crawford \& Barnes (1974)
Pleiades	$V \sin i$	Kraft (1967)
	$U B V$	Johnson \& Mitchell (1958)
	$H \beta$	Crawford \& Perry (1976)
Sco-Cen	$V \sin i$	Anderson, Stoeckly \& Kraft (1968)
	$U B V, H \beta$	Moreno \& Moreno (1968)
	$V \sin i$	Rajamohan (1976)
		Slettebak (1968)
		Uesugi \& Fukuda (1982)

3. Results

3.1 The effect of rotation on the colours of α-Persei stars

Amongst the 23 B stars used for the analysis of $u v b y$ photometry four stars having $V \sin i$ values $<50 \mathrm{~km} \mathrm{~s}^{-1}$ are excluded from the analysis of $U B V$ photometry. For the rest of the 19 B stars $\Delta(U-B)_{o}$, the colour excess in $(U-B)_{\text {。 }}$ derived from the mean relationship between β and $(U-B)_{\text {o, }}$, is plotted against $V \sin i$ in figure 1 and is represented by open circles. For the α-Persei members alone a least square solution for

Figure 1. The deviations in $(U-B)_{o}$ from the observed mean relation between β and $(U-B)_{a}$ of Alpha Perset and Pleades B-stars are plotted aganst V sin t, Open circles: α-Persel members, filled circles: Pleiades members.
the residuals give.

$$
\begin{aligned}
& \Delta(U-B)_{\mathrm{o}}=0.486(\pm 0.059) \times 10^{-3} V \sin i-0.102(\pm 0013) \\
& \Delta \beta=-0.164(\pm 0.020) \times 10^{-3} V \sin i+0.034(\pm 0.004)
\end{aligned}
$$

From β, $(B-V)$, we derive

$$
\begin{aligned}
& \Delta\left(B-V_{0}=0.130(\pm 0.016) \times 10^{-3} V \sin t-0.027(\pm 0.003)\right. \\
& \Delta \beta=-0.164(\pm 0.020) \times 10^{-7} V \sin i-0034(\pm 0.004)
\end{aligned}
$$

The colour excess $\Delta(B-V)_{0}$ derived from this is plotted against $V \sin t$ and is shown in figure 2 a as open circles.

Figure 2. Ihe deviations in ($B-V_{0}$ derived from $\beta_{,}\left(B-\eta_{0}\right.$ for (a) Alpha Perset and Pleades and (b) Scorpio-Centaurus assoctation are plotred against $V \sin$ a for B stars, filled squares: lower-Centaurus, Open squares upper-Centaurus, Crosses upper-Scorplus.

The $\Delta \beta$ values derived from $\beta,(U-B)_{\mathrm{o}}$ and $\beta,(B-V)_{\mathrm{o}}$ relationships are shown as open circles in figures 3 a and 4 a respectively. From a plot of $(U-B)_{\mathrm{o}}$ versus ($B-V_{\mathrm{o}}$ for B stars in α-Persei cluster, we find that the deviations $\Delta(U-B)_{o}$ are not related to the rotational velocity of the star. The residuals in $(U-B)_{o,}, \beta$ and $(B-V)_{\mathrm{o}}$ for the α-Persei B stars are listed in table 2. The identification numbers given in column 1 , for the stars are from Heckmann, Dieckvoss \& Kox (1956).

3.2. The effect of rotation on the colours of Pleiades stars

After excluding the giants, double lined binaries, emission lined stars, and close visual pairs with $\Delta m<2.0 \mathrm{mag}$ we are left with only eight stars which can be considered as normal main sequence objects whose colours are free from effects other than that due to rotation. Even though this sample is small, we have analysed it independently and derived the residuals in $\beta,(U-B)_{\mathrm{o}}$ and $(B-V)_{\mathrm{o}}$. The residuals are listed in table 2 . The identification numbers for the stars are from Hertzprung (1947).

Figure 3. Ihe deviations in β derived from obseived $\beta,(U-B)$, for B starh of (a) Alpha Perser and Plerades (b) Scorpio-Centaulus assoctation

Figure 4. Same as figure 3. $\Delta \beta$ derived from $\beta,(B-V)_{0}$ relation is plotted agarnst b in z.

The residuals in $(U-B)_{\text {o }}$ for Pleiades B stars are superposed (in figure 1) over those derived for the members of the α-Persei cluster. Similarly $\Delta \beta$ for B stars in Pleiades are superposed (in figure 3a) over those derived for the members of the α-Persei cluster. From the combined data points, we derive

$$
\begin{aligned}
& \Delta(U-B)_{o}=0.418(\pm 0.052) \times 10^{-3} V \sin i-0.087(\pm 0.011) \\
& \Delta \beta=-0.156(\pm 0.018) \times 10^{-3} V \sin i+0.032(\pm 0.004)
\end{aligned}
$$

Table 2. Effect of rotation for α-Persel and Pleades B stars

Hz	HD	Sp.	$V \sin l$	From $\beta,(U-B)_{0}$		From $\beta,(B-V)$	
				$\triangle(U-B){ }_{0}$	$\triangle \beta$	$\Delta\left(B-V_{0}\right.$	$\Delta \beta$
α-Perse!							
212	49876	89 V	280	0.041	-0.012	0011	-0.012
333	50731		230	-0.016	0.008	-0.004	0008
383	49899	B3V	145	-0.054	0012	-0.014	0012
401	49902	B5V	320	0.082	-0.031	0.022	-0031
423	48886	A0Vn	280	0.024	-0,007	0.006	-0.007
557	48899	B5V	250	-0.018	0.002	-0005	0002
575	51728	A0V	85	-0.049	0.019	-0.013	0019
581	48903	B9V	200	-0.003	0003	-0.001	0.003
675	48913	B7V	70	-0.078	0024	-0.021	0.024
729	47826	B9V	225	-0.021	0009	-0005	0.009
775	47831	B8 5V	200	-0.019	0.009	-0005	0.009
780	49938	AlVn	230	-0.024	0.010	-0006	0.010
817	48927	AlVn	270	0.035	-0.012	0009	-0.012
831	47835	B9V	135	-0.001	0.002	0000	0.002
835	49945	B3V	190	0.006	-0007	0.002	-0.007
868	48933	AllVn	180	0.001	0.001	0.000	0.001
875	47840	A 0 V n	250	0053	-0.018	0.014	-0018
965	48943	B8V	225	0.038	-0.012	0010	-0012
1082	48949	B9V	205	0003	0.001	0.00I	0.001
Pleiades							
255	23432	B8V	220	-0.011	0.003	-0003	0003
323	23480	B6V	75	0.008	-0.011	0.002	-0011
722	23753	B8V	270	0.011	-0.008	0.003	-0.008
910	23873	B9.5V	120	-0.012	0004	-0.003	0004
977	23923	B9V	310	0.045	-0.024	0.012	-0.024
1129	24076	A2V	155	0.031	-0.011	0.008	-0.011
508	23629	AOV	160	-0.051	0.023	-0.014	0023
510	23632	AIV	235	0.032	-0.004	0.008	-0004

Similarly from the combined data for Pleiades and α-Persei, B stars (figure 2a and 4a) we derive from β, $(B-V)$ orelation

$$
\begin{aligned}
& \Delta\left(B-V_{0}=0.111(\pm 0.014) \times 10^{-3} V \sin i-0.023(\pm 0.003)\right. \\
& \Delta \beta=-0.156(\pm 0.018) \times 10^{-3} V \sin i+0.032(\pm 0.004)
\end{aligned}
$$

3.3. The effect of rotation on colours of Scorpio-Centaurus association stars

If the sample does not confirm to a homogeneous coeval group this would introduce a spread in the observed colour magnitude diagrams. This is illustrated in paper 2. In order to take into account such evolutionary effects even on the main sequence, the data analysis was carried out independently for the lower Centaurus, upper Centaurus and upper Scorpius subgroups. Among the 35 stars from lower Centaurus for which β values are given by Moreno \& Moreno (1968), 28 are of luminosity class IV and V. Removing the known binaries, peculiar and emission lined stars whose colours may be affected due
to reasons other than rotation, we are left with 19 stars. Out of these HD 93163, HD 93607 and HD 108483 deviate considerably in $\Delta(U-B)_{0}$ vs $V \sin i$ dagrams. They may probably belong to peculiar, variable or emission lined stars (Rajamohan \& Mathew \equiv paper 3). The rest of the 16 stars from lower Centaurus subgroup are used in the analysis. Amongst the 36 stars in upper Centaurus subgroup for which β values are available, HD 120908 is classified as B5V by de Vaucouleurs while in Bright star catalogue (Hoffleit \& Jaschek 1982) it is given as B5 III. This object deviates considerably in $\Delta(U-B)_{0}$ vs $V \sin i$ plot indicating that the classification as giant is probably appropriate. We are left with 24 stars of luminosity class IV and V of which only 11 belong to the sample of probable normal single stars and single lined spectroscopic binaries at the same stage of evolution. From the upper Scorpius subgroup β values of 68 stars are known. Two stars HD 144661 and HD 170523 appear to be giants from their position in the colour-magnitude diagram which agrees with the classification given in the Bright star catalogue. Amongst these 57 are of luminosity class IV and V and 36 out of the 57 seem to be normal single stars and single lined spectroscopic binaries.

The colour excesses $\Delta(U-B)_{o}, \Delta\left(B-V_{0}\right.$ and $\Delta \beta$ due to rotation are derived independently for lower Centaurus, upper Centaurus and upper Scorpius subgroups and are given in table 3. The deviations $\Delta(U-B)_{\mathrm{o}}$ for the 16 lower-Centaurus, 11 upperCentaurus and 36 upper-Scorpius members are plotted in figure 5 using different symbols for the three subgroups. A least square fit excluding HD 142114 and HD 143600 yields

$$
\Delta(U-B)_{\mathrm{o}}=0.323(\pm 0.052) \times 10^{-3} V \sin i-0.068(\pm 0.011) .
$$

Similarly $\Delta \beta$ derived from β, $(U-B)_{\text {o }}$ relation is ploted in figure 3b. From this we derive

$$
\Delta \beta=-0.121(\pm 0.029) \times 10^{-3} V \sin i+0.255(\pm 0.006)
$$

For the same sets of stars the relationship between β and ($B-\eta_{0}$ was denved. The deviations $\Delta\left(B-\eta_{0}\right.$ are plotted in figure 2 b . A least square fit gives

$$
\Delta\left(B-\eta_{0}=0.070(\pm 0.013) \times 10^{-3} V \sin i-0.015(\pm 0.003)\right.
$$

$\Delta \beta$ is also derived from $\beta,(B-V)_{0}$ and is plotted in figure 4 b . We derive

$$
\Delta \beta=-0.108(\pm 0.029) \times 10^{-3} V \sin i-0.024(\pm 0.006)
$$

The slopes of the observed relation between colour excess and $V \sin i$ for the α Persei, Pleiades and Scorpio-Centaurus association are given in table 4.

4. Discussion

Maeder \& Peytremann (1970) have computed the energy distribution of uniformly rotating stars for 5,2 and 1.4 solar masses, for various rotational velocities and orientations. The $5.0,2.0$ and $1.4 M_{\Theta}$ models approximately correspond to spectral type B4, A0, and A9 respectively. The $(U-B),(B-V)$ predicted colours from Maeder \& Peytremann (1970) together with the β values taken for the corresponding spectral types from Collins \& Sonneborn (1977) were analysed the same way as we did our cluster data. The β values for $i=30^{\circ}$ and 60° models were used for $i=36^{\circ}$ and 54° model predictions of colours by Maeder \& Peytremann (1970). For each model and for different ω values 0 ,

Table 3. Effect of fotatoon for Sob-Cen Absoutation B stars

HD	sp	411	From $\beta,(U-B)$,		From $\beta .(B-)_{0}$	
			$\Delta(l)-b)$,	$\triangle \beta$	$\Delta(B-)_{0}$	$\Delta \beta$
			Lower-Cen			
76161	HoVn		0.078	-0014	0020	-0013
80094	H715		0065	-0003	0018	-0001
85980	B4V	165	-0006	0010	0003	0005
93194	B 5 V n	299	0100	-0042	0027	-0045
93845	B3V	60	-00030	0007	-0006	0007
99264	B2IV		-0030	-0012	-0012	-0009
103079	B4IV	140	-0036	0016	-0007	0013
103884	B3V	150	0008	0001	0000	0003
105937	B3V	210	- 01027	0013	-0005	0012
106983	B2.5V	140	- 0010	-000)4	-0002	-0004
108257	85 Vn	150	0.034	-0.011	0007	-0009
10902h	B5V	180	0033	-0004	0009	-0003
110956	B3V	75	-00.032	0014	-0011	0016
113703	B5 ${ }^{\circ}$	160	- 00056	0020	-0016	0019
113791	B2IV	50	-0100)	0.005	-0.022	0002
115823	Hov	101	0009	0.007	-00031	0008
	Upper-Cen					
120307	H2IV	100	1) 044	0006	- 00008	0010
121743	B2IV	120	0062	0.030	-0014	0031
124.367	132 V	270	0000	-0.110	0.000	-0.108
124771	B4IV	240	0091	0000	0020	0005
125238	B3V	235	0070	-0.001	0015	0.001
126981	B6IV	225	0023	-00002	00008	-0003
129116	H2 5 V	170)	0027	01119	$0 . \mathrm{K} 17$	0015
132955	H3V	50	0 018\%	00.45	-0.023	0.037
136664	33 V	220	--1)(K) ${ }^{\text {(1) }}$	0029	-000.5	0027
138690	B2V	250	0.012	-0.0.01	0.004	-0.008
143118	B2V	230	-00027	-0014	-0005	-0.008
	Upper-Sco					
138764	H6IV	50	$\cdots 0.040$	0016	- 0.013	0.017
139094	B8IV	180	0.038	-0.011	0.015	-0.016
139160	B7IV	$2(1)$	0.040	0.014	-0.049	0012
141637	132V	270	$\cdots 0.007$	-0.003	- 00001	-0.00)4
142114	83 Vn	330	- 0.040	0.009	-0.006	0.005
142165	BbIVn	250	0.14.3	-0.012	0.006	-0.004
142.315	B8V	250	0 (0)X	0.006	0.001	0.003
142.378	B3, V	240	0035	0.010	--0.009	0009
142669	B2IV-V	120	0.021	-0.001	- 00002	-0003
14288.3	13.3 V	110	0.094	0.027	-0023	0.025
142990	HKV	150)	0.018	0.0004	-0.009	0.007
14.3567	B99	2\%)	0.007	0.006	-0.007	0.018
14.3600	H9\%	320	-0,04, 3	0.029	0.006	0.000
						(Continued)

Table 3. (Continued)

HD	Sp	$V \sin 1$	From $\beta,(U-B)_{\text {, }}$		From $\beta .(B-1)^{\prime}$	
			$\Delta(U-B)_{0}$	$\Delta \beta$	$\Delta(B-1)$	$\Delta \beta$
143699	B5V	180	0047	-0011	0.012	-0011
144294	B3IVn	300	-0.010	0003	0000	-0001
144470	BIV	130	-0043	-0004	-0007	-0006
145353	B9V	220	0051	-0016	0012	-0012
145482	$B 3 \mathrm{Vn}$	220	0.019	-0007	0000	- 0004
145554	B9V	180	-0003	0008	-000)	0008
145631	B9 5Vn	200	0007	0009	-0004	0015
145792	B5V	50	-0051	0016	-0015	0017
146001	B7IV	240	-0.038	0.013	0009	0013
146285	B8IV	200	-0034	0017	-0010	0018
146416	B9V	330	0055	-0018	0013	-0014
147010	B9P	50	-0068	0024	-0023	0030
148579	B9V	250	0018	-0001	0002	0003
148605	B2V	270	-0001	-0001	-0.007	() (0)2
148703	B2IV	50	-0.047	0005	-0009	0003
149438	B0V	50	-0048	-0.010	-0017	-0007
149711	B3IV	-	-0072	0018	-0023	0021
153716	B5V	190	-0013	0005	-0.004	0005
156325	B6IV	-	0250	-0064	0067	-0064
168905	B3Vn	330	0049	-0013	0012	-0012
172910	B3V	70	-0098	0022	-0024	0020
175362	B8IV	190	-0042	0.010	-0010	0008
186837	B5V	-	0038	-0009	0009	-0008

Figure 5. The deviations in $(U-B)_{0}$ are plotted against V sin i for Scorpio-Centaurus members. Symbols have the same meaning as in figure $2 b$.

Cluster	sp	$\begin{aligned} & \mathrm{N}_{1} \\ & 0 \end{aligned}$	1rom $\beta_{\text {, }}\left(l^{\prime}-B_{6}\right.$ 。		Foom $\beta,(8-1)$	
		Stas	1180	β	$(B-1)$	β
α-Per	B0-83	2	0049	-0016	0013	-0016
	B5-89	10	± 00006	± 0002	± 00002	± 0002
	All-A?	6				
α-Per ${ }^{\text {H }}$	B0-133	2	11042	0016	0011	-0016
Pleades	B5-89	15	± 00005	100002	± 0 (01)	± 0002
	10-A2	9				
Sco-	B0-B4	33	0032	- (0) 012	0 (0)7	-0011
Cen	(45-39	33	± 0005	- 00003	$+0001$	± 0003

$0.5,0.8,09,099$ and 1 values 0, 36, 54 and 90 , a sccond order polynomal fit was determined for the $\beta,\left(C^{\prime}-B\right)$ and $\beta,(B-V)$ relations and the devations $\Delta(U-B)$, $\Delta(B-\emptyset)$ and $\Delta \beta$ were determined The slopes of the relation between I sin i and the colour excess derived tor the two models conterpondeng to the spectral types B4 and A0 are given in table 5 , whech can be compared with table 4 . It can be noticed that the theoretical predicton of Maeder \& Peytiemann (1970) do not agree with the observed results and that they are much lowe than the obseived results
 19701

$$
\text { Irom } \beta, 1 l \quad B)_{1} \quad \text { Itom } \beta,(\beta-\zeta)
$$

$S p$
$B 4$

$(1 \quad B)$	β
0014	0000
+0014	± 0003
00008	0050
+0004	± 0006

$(B-b)$	β
0006	0006
± 0001	± 0004
0.009	-0015
± 0004	± 0006

In order to compare with ptedections by Collins \& Sonneborn (1977) who have given the intermediate band photometric indices as a function of rotational velocity we derived
 star standards of barous spectral types taken from the ephemerides lead to the relation.

$$
\begin{aligned}
& (u-B) \cdots 01.34(u-b)^{2}+0.7777(u-b)-0.9223 \\
& (B-b)=1891(b-v)-0.028 .
\end{aligned}
$$

A detaled discussion of the theoretical predictions of Collins \& Sonneborn for the intermediate band uby indices 1 s gwen in paper 2 . Using the relationship given above, the preduted slopes trom narrou band indices (table 7 a and 7 b of paper 2) were used to derive the expected eftects in broad band liBl' colours. This for two different spectral type ranges ate given in table 6 .

Ihe observed slope of the rotaton effect in ($(1-B$), for α-Persei and Pleiades members, where maponty belong to 135 to 139 stars, is 0.042 ± 0.005 per $100 \mathrm{~km} \mathrm{~s}^{1}$ of

Table 6. Theoretical reddening due to rotation for $100 \mathrm{~km} \mathrm{~s}^{-1}$ of $V \sin l$ (Collins \& Sonneboin 1977)

$$
\text { From } \beta,(U-B)_{0}
$$

From $\beta,\left(B-{ }^{\prime}\right)_{\nu}$.
Sp.

	$(U-B)_{0}$	β	$(B-)_{0}$	β
B5-B9	0.042	-0.010	0010	-0.009
	± 0.007	± 0002	± 0.001	± 0002
B0-B9	0030	-0.007	0008	-0007
	± 0.005	± 0002	± 0.001	± 0002

$V \sin t$ in excellent agreement with the calculated theoretical value for B 5 to B 9 stars For Scorpio-Centaurus association the reddening due to rotation in $(U-B)_{o}$ is 0.032 ± 0.005 which is in agreeement with the calculated average theoretical value of 0.030 ± 0.005 for B0 to B9 stars.

In $\left(B-V_{0}\right.$ too the slopes are in excellent agreement. For α-Persei and Plesades the slope is 0.011 ± 0.001 while the theoretical prediction is 0.010 ± 0.001 for B 5 to B 9 stars. For Scorpio-Centaurus association reddening in $(B-V)_{0}$ is 0.007 ± 0.001 which agrees very well with the theoretical predictions of 0.008 ± 0.001 for B 0 to B 9 stars. It should be noted that the predicted values were first derived for $u v b y$ indices (paper 2). These slopes were related to broad band colours through standard stars. In spite of such uncertainities the agreement seems to be excellent.

5. Conclusion

The effect of rotation on UBV photometry is estimated. I he relationship between $(U-B)$ and $(u-b)$ and also $(B-V)$ and $(b-y)$ were established using the standard stars photometry to compare the observed effects with the theoretical predictions of Collins \& Sonneborn. The observed effects of rotation in α-Persei, Pleiades, and ScorpioCentaurus association is in excellent agreement with models of Collins \& Sonneborn (1977) but disagrees with the calculations by Maeder \& Peytremann (1970). The slope of the observed reddening per $100 \mathrm{~km} \mathrm{~s}^{-1}$ of $V \sin i$ in $(U-B)$ and $(B-V)$ for B5 to B9 stars is 0.042 ± 0.005 and 0.011 ± 0.001 respectively.

References

Anderson, C. M., Stoeckly, R. \& Kraft, R P (1966) Ap. J. 143, 299.
Collins, G. W. I1. \& Sonneborn, G. H. (1977) Ap. J. Suppl. 34, 41.
Crawford, D L \& Barnes, J V (1974) Astr J. 79, 687.
Crawford, D. L \& Perry, C L (1976) Asir. J. 81, 419.
Hertzprung, E. (1947) Ann Sterewachi Leiden 19, Pt, 1.
Heckmann, O , Dieckvoss, W. \& Kox, H. (1956) Astr. Nachr. 283, 109
Hoffleit, D \& Jaschek, G (1982) The bright star catalogue, Yale Univ. Obs.
Johnson, H. L. \& Mitchell, R. I. (1958) Ap. J. 128, 31
Johnson, H. L. \& Morgan, W W. (1953) Ap. J. 117, 313.
Kraft, R P. (1967) Ap. J. 148, 129.
Maeder, A. \& Peytremann, E. (1970) Astr. Ap. 7, 120.
Mathew, A. \& Rajamohan, R. (1989) J. Ap. Astr. (submutted).
Mitchell, R I. (1960) Ap. J. 132, 68.
Moreno, A. G. \& Moreno, H. (1968) Ap. Suppl. (No. 140) 15, 459.

Rajamohan, R (1976) Piamana 7, 160
Rajamohan, R \& Mathew A (1988) J 4p Aar 9, 107
Rajamohan, R \& Mather, A (1989) Ap Sp Sct (in the piess).
Slettebak, A (1906) 4p J 151, 1043
Vesugi, A \& Fukuda, 1 (1982) Remed catalogue of vellar motational veloumes, C DS Strassbourg

Discussion

Mohan: Do you have the spectral classes for the stars that you have considered' If so, what are the calibrations that you have used to get the intrinsic colours')
Rajmohan: For the intermedtate band indices like $C l,(u-b),(b-y)$ etc. we followed Crawford to determine the intrinsic colour indices.

[^0]: *On leave of absence from Assumption College, Changanachery, Kerala.

