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Non-linear stability of a self-gravitating fluid column in the 
presence of a magnetic field 

S. K. Trehan 
L)eparrmenr of  Marhetnar~cs. Panjab L'nlversr?~ Cha~~d tgarh  160 014 

I must express my deep sense of grat~tude to the organizers for inviting me to the 
International Workshop on Binary Stars and Stellar .Atmospheres being held at one of 
the oldest seats of astronomical activity in the country. T h ~ s  assumes a very special 
slgn~ficance as this workshop commemorates the 60th birthday of Professor Krishna 
Damodar Abhyankar, one of our most dedicated and distinguished astronomers. I first 
came in contact with Kr~shna in 1958 at Berkeley; he had finished his Ph.D. at Berke!ey 
and stayed there till June 1959.1 had just joined the University of California as a research 
assocrate after having completed my degree at Chicago. I was very fortunate in having 
kept contact with Krishna over the years and my esteem and admiration has always been 
the highest for Krishna. He is, perhaps, the most well rounded astronomer in the country 
today. 1 wish him good health for many more years to come; this will enrich the nation 
by the astronomers he may get to train. 

1. Introduction 

The capillary instability of a circular jet has been the subject matter of great attention 
since the pioneering work in the 19th century by Savart, Plateau 8 Lord Rayleigh (1878. 
1879). Neglecting the affect of the su~rouncling air, Rayleigh showed that only 
symmetrical surface disturbances (m = 0) with wavelengths larger than the circumference 
of the cylinder would grow. In fact the surface waves grow as en' where 

where x = kR; T is the surface tension; p the density of the liquid; R the undisturbed 
radius of the jet; k the wave number of the disturbance along the axis of the cylinder; b, 
I1 are modified Bessel functions of the second kind which are regular on the axis of the 
cylinder. The dispersion curve (1) has the maximum growth rate a t  

It is also clear from relation (1) that the cut-off lies a t  x = 1 i.e. all wave numbers x < 1 
are unstable (nZ > 0) and for x > 1, n2 < 0 and the amplitude of the disturbance varies 
as e-"', where we have set n2 = -a2, u2 > 0. 

The effect of viscosity on the capillary instability was examined by Weber (1931). He 
showed that within the framework of the linear theory, viscosity does not alter the 



crltelton of stability as predicted by the inviscid theory. However, the viscous effects 
would cause the uaveiength of the most unstable state to become larger than that 
predicted by the in\iscid theory. Thus if k. denotes the wave number of the distrubance 
having the maximum growth rate, ue  find that 

The analogous problem within the framework of magnetohydrodynamics has 
enormous significance because of its applications. The effect of a uniform axial magnetic 
field on the capillary instability has been examined by Chandsasekhar in the 
approximation of infinlte conductivity (frozen-in-field approximation), zero viscosity; 
The jet has been assumed to be incompressible in these studies. In this case we find that 
the disturbances vary as el;', where 

where A; = B ; / ( ~ T ~ ) ,  and w is measured in units of (TI p R~)'". Note that if A0 = 0, 
a' < 0 for x < 1. However with A. # 0, it is clear from equation (4) that u2 need not be 
negative for x < 1. In fact it can be readily shown that for A; > 112, w2 is positive for all 
k 's. 

When the amplitude of oscillation ~ ( z ,  1) is sufficiently small, the problem admits 
solution within the framework of the linearized theory. The eigenvalue problem posed by 
the system of governing equations and the associated boundary conditions is one of 
Sturm-Liouville type and can be solved by the principle of superposition which allows us 
to construct any wave form by a sum of elementary sinusoidal waves. When the 
amplitude of the waves is not small enough, the various sinusoidal components interact 
uith each other and they are no longer independent elements. One of the significant 
aspects of nonlinear waves is that the wave speed depends on the amplitude as well. This 
may cause the wave front to become steeper in the course of propagation (because the 
speed of the trough is different from that of the crest of the wave). It is therefore of 
considerable' interest to examine the nonlinear amplitude modulation of a travelling wave 
in the presence of a magnetic field. In order to describe the nonlinear interactions of 
small but finite amplitude waves we use the derivative expansion method with multiple 
scales and assume that all the physical quantities have uniformly valid asymptotic 
expansion in powers of a small ordering parameter 6. By requiring that these formal 
expansions satisfy the exact governing equations and the boundary conditions for all 
values of E ,  sets of linearized boundary value problems are obtained. 

The effect of a magnetic field on the gravitational instability of an infinite cylinder 
was examined by Chandrasekhar & Fermi (1953) who showed that a magnetic field has a 
stabilizing effect on the stability of the cylinder which was otherwise unstable for all 
k < kc = 1.0668 (in units of the radius of the cylinder). The effect of finite amplitude 
perturbations on the capil!ary stability was examined by Yuen (1968), Wang (1968), 
Nayfeh (1970) and Kakutani et al. (1974). Tassoul & Aubin (1974) studied the finite 
amplitude disturbances in a self gravitating media and obtained a cut off wave number 
beyond which no stable flow pattern can be obtained. Malik & Singh (1979) studied the 
full amplrtude modulation of a standing wave in the neighbourhood of the wave number 
k = kc. We examine here the amplitude modulation of a progressive wave in the presence 



of an axial magnetic field for a self gravitat~ng cylinder. (Th~s  work-has been done ~o~nt l !  
with R. K. Chhabra and is under publication in .4p. Sp. Sci ). The nonlinear cut-off u a x  
number obtained by Malik & Singh (1979) is recovered In the absence of the magnetlc 
field (A:  = 0). 

2. The basic equations 

We consider a self pra\.ltatinp cylinder in the presence of unlform magnetls field along 
the axis of the cylinder. The fluid In the cylinder IS assumed to be ~ncorr.press~bk. 
inviscid, perfectly conducting, and of uniform dens~ty. We choose units such that the 
radius of the cylinder is R = 1. We restrict ourselves to axlal!y symmetric disturbances of 
the cylinder in which the outer surface is distorted to r = I + q(2:, I ) ,  where ~ ( z ,  r )  
denotes the elevation of the free surface measured from the unperturbed level R = 1.  The 
equations valid in r  < 1 + q are then 

and 

V* V = - ~ T G ~ .  . - .(8) 

Here u ( r ,  z ,  1 )  is the velocity field and h(r, z, t )  is the magnetic field, p being the 
constant fluid density. V is the internal gravitational potential; ~r = p/  p -F (1 12) hZ; p is 
the pressure inside the cylinder. 

The equations in the exterior region r 2 1 + q(z, t ) ,  are 

v2 w=o. . . .(9) 

V . hlO) = 0, V X 11") = 0. 
IV TV 

. . .(lo) 

The magnetic field h'" is expressible in terms of a potential 4, and we write 

where AoJ4c;;-b is the magnitude of the impressed magnetic field, A. being the Alfven 
velocity. 

The boundary conditions at r = 1 + 7 (z, t )  are: 
(i) The radial component of the velocity field must be compatible with the assumed- 

form of the boundary, (ii) the normal component of h must be continuous, (iii) the 
wrmal component of the total stress must be continuous, (iv) the gravitational potential 
and its derivative must be continuous. 

These boundary conditions can be written as (at r = 1 + .r) (2, t ) )  



We wish to investigate motions wh~ch are finite perturbations of the steady state. We use 
the derivative expansion method with multiple scales and assume that all physical 
quantities have uniformally valid asymptotic expansions in powers of a small ordering 
parameter c. By requiring that these formal expansions satisfy the exact governing 
equations and the boundary conclit~ons for all values of e sets df linearized boundary 
value problems are obtained. We introduce the slow scales in space and time as 

In order to describe nonlinear interactions of small but finite amplitude waves, we write 
for any variable. 

where f is any of the variables u,, h,, v ,  w, d, or 7 (z, t). While writing the expansion for q 
it will be noted that 7 depends only on z and t and not on r. Also for the derivative, we 
write 

where a is any of the variable t or z. Substituting these expansions into equations (5H15) 
and comparing the coefficients of rn(n = 1, 2, 3), we obtain the following system of 
equations. 

(i) First order equations 

yo . UI = 0, XO . hl = 0, 

DXI = 0. where XI = VI, WI, or 61. 
The boundary conditions, reduced to r = 1 are 

when the various operators Li, M, etc. are, defined in appendix A. 



(ii) Second order equations 

a 
L(U,, hz, nz - V2) = -M(uI, hl) + No(h~, ul)  - ez - (nl - VI), a zl 
Mo(h2, w2) = - MI ( h ~ ,  al) +- Eo(h1, ul), 

a WZ vo. up+-- 
N a z1 

- 0, 

a hlZ 
D o .  ht +-- - az1 

- 0, 

pX2 = 0, where X2 = V2, W2, or 42. 
The boundary conditions (on r = 1) are 

- a 711 
Uz-, Ft 92 - Uzr - 71 - - a r a2b 

(iii) mird order equations 

L (u~, h3, n3 - v3> = -M1(u2, h ~ )  - MZ (UI, hl) + s ( h l *  ha) 

a ulr a uzZ - yo. u3+- +--0 ,  
~ Z Z  azl  

The boundary conditi~ns (on r = 1) are 
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3. Solutions 

(i) Zero order solutions 

We may recall that the zero order solutiqns are 

V ~ = - T G ~ J ,  W o = - 2 r G p  ln(r ) ,  

& = p o l p + ( 1 / 2 ) ~ ~ ;  P O / P =  ~ G P ( & -  

(ii) first order solution 

We seek solutions of the first order equations (19) - (20) in the form of a progressive 

harmonic wave. Assuming all field quantities to be proportional to exp (iJI), where 
# = k* - w to, we obtain the following real solutions. 

i w I1 (kr) 
Ulr = - ( ~ e "  - C. c.), 

11  (k) 

U I Z  = w lo (krf (A d' + c. c.), 
I1 (k) 



II, - V, = lo 'kr) (A el' + c. c.), 
a I, (k) 

Vl = 47r 6 p KO (k) lo (kr) (Ae'" c. c.), 

WI = 4 7 ~  G p 10 (k) ~ o ( k r )  (Ael% c. c.), 

where 

and C.C. denotes the complex conjugate. 

On cmplogi~ig the boundary conditions one obtains the dispersion reiatron 

The lrnear dispersion relation (28) was ootarned by Chandrasekhar & r e r ~ n i  (1953). The 
wavelength at which instability occurs will be determ~ned by the roots of the 
transcendental equation 

1 k;(t (lo (k )  KO (k) - - = H z  
K 

2) (z) Kr(k)Io(k) ' 
. . 

where HG is defined by 

HG = ( 4 ~  p)  G " ~ .  . . .(30) 

Jt is clear that equatlon (29) allows, for an assigned value of (H/HG) ,  ;a single positive 
root (kc  # 0). We find that w2 < 0 for 0 < k < kc. The cylinder, is, therefore, unstable 
for all varicose deformations with wavenumber k < kc, where kc  now depends on the 
strength of the prevalent magnetic field through HJHG. The travelling wave solutions are 
possible only for k > kc.  Our aim is to study the amplitude modulation of the travelling 
waves for k > kc. 

4. Higher order solutions 

Substituting the first order solutions (26) into equation (21), we obtain the second order 
equations and the associated boundary conditions. On substituting the first order 
solutions into these equations, one can solve these to obtain the second order quantities 
for the velocity, magnetic field, and other physical variables. When one applies the 
boundary conditions, one obtains the equatlon 



and its complex conjugate relation. The group veloc~ty of the waves V, is given by 

Equation (31) lmplies that the wave moves wlth the group velocity V, in the second order 
approxirnat~on. This means that the ampl~tude A depends on the slow variables zl ,  t l ,  
through the combinations (zl - VB 1 , ) .  A significant feature of these solurions is the 
presence of the second harmonic resonance characterized by the vanishing of the 
denominator in the expressions for the physical quantitites. Therefore, the analysis given 
here is not valid in the viclnity of such a resonance. 

We now substitute the first and second order solutions into the third order equations 

(23). In wrlring these equations we shall retam only terms containing the constants and 
the first harmonic in the inhornogencous p x t  of the equations. This is due to the fact that 
it is only these terms that give us the evolution of the envelope of the monochromatic 
wave. 

In order to obtain the non-linear Schrodinger equation, we seek a solution of these 
equations nn the form 

where3  is any of the physical variables..The terms independent of I,LI then lead to certain 
equations for the constants etc. On applying the boundary conditions, these equations 
lead to the nonlinear Schrodinger equation for A of the form: 

where P and Q are functions of the quantities describing the equilibrium and the first 
order variables, etc. 

5. Discussion 

It is well known that the solutions of equation (34) are stable or  unstable agalnst 
modulations accordingly a s  PQ > 0 or PQ < 0. The values of group velocity rate P, the 
interaction parameter Q are computed for various values of k and ( H / H & ) ~ .  In the 
absence of magnetic field (A: = 0), we have modulational instability for k > 1.382 (in 
additipn to linear instability for k < 1.067). This result has already been obtained by 
Malik & Singh (1980) for disturbances which are both solenoidal and irrotatiohal. The 
present result is more general and does not restrict itself to irrotat~onal disturbances, 
hence the discrepancy in the critical wave number which is here 1.382 as compared to 
1.197 obtained by Malik & Smgh (1980). This must be due to the fact that relaxation of 
the restriction of irrotational flow allows more general flows and hence greater stability. 
A similar disparity has also been observed by Lardner & Trehan (1983) In their 
calculations in the magnetohydrodynamic stabilhy of a liqdid jet. 

The stability regions in the k - ( H / H G ) ~  plane are shown in figure 1. The solid 
curves labelled P or Q are stability boundaries across each of which P o r  Q changes sign. 



Figure 1. In\tablllty leglona In the X - ( H ~  H ~ ) '  plane The dashed curve ~nd~cateb the second harmon~c 
resonance 
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Figure 2. Stable reglon (shaded) in the k - ( H I H G )  plane 
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The shaded regions are those of modulational instability (PQ < 0). The solid cuve  
labelled kc gives the linear cut off wave number. The region below this curve is the region 
of linear instability. The dashed curve labelled K, gives the second harmonic resonance 
number, in the neighbourhood of this curve the solution is not valid. 

It is also clear from figure 1 that for any (HI H~)' there are two bands of k values 
which give instability. When ( H I  H ~ ) '  = 0.365, the upper instability band. shrinks to the 
single value k = 2.52. It means that the wavelength of the unstable disturbance can be 
accurately controlled by the magnetic field. We have shown in figure 2 the linear stability 
boundary and the modulational stability boundary, the stable region is the shaded one, 
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Appendix A 

We def~ne the following operators for convenience: 

ax 
MI (X, Y) = - - a Y 

a 1, 
A0 -, a Z, 

Ni (X, Y ) = ( x  . x t )  y - (y - V,)y 
ry 

a~ ax D,(X, Y) = hl, A - u,, - 
a Z, a 2,' 



a  TO 
Y ( Z . S , p )  = Z + S - -  a r AOP 7 

a K  4nGpv l .  T (  Vl, W,, TI,) = - - - - 
a r  a r  

a v ,  awl  R(V,, W,) =- - - az, a  z, '- 

A ( Z , S )  = Z - S ,  

D X, =v',x, + 2 
a2xPI + a2x,, a2xr2 +- 
a a a z ,  a&az2 a ~ :  ' 

where 

Discussion 

Bhatnagar : What happens after the instability sets in? 
Trehan : When the instability sets in the amplitude of oscillations grows and the present 
analysis is not valid. The purpose of this calculation is to isolate the region of (linear) 
stability which is modulationally stable i.e, in the weakly nonlinear approximation. 
Bhatnagar : Some'times resonance occurs in the perturbed differing system. They overlap 
and KAM surfaces starts disintegrating, and when the last KAM surface disintegrates the 
chaos occurs. Please comment. 
Trehan : The case of resonance is to be treated separately and has been done by Chhabra 
& Trehan (Inr. J. Engg Sci., in the press). 
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