MONTHLY NOTICES

OF THE

ROYAL ASTRONOMICAL SOCIETY.

VoL. XXXI. March 10, 187I. No. 5.

William Lassele, Esq., President, in the Chair.
F. W. Levander, Esq., University College, London ;

Wm. Mann, Esq., Royal Observatory, Cape of Goorl Hope; and
E. W. Snell, Esq., Kidbrook House Academy, Blackheatlı;
were balloted for and duly elected Fellows of the Society.

On the Total Eclipse of the Sun, on December the 11th, 1871, as visible in the Madras Presidency. By C. Ragoonathachary, First Assistant, Madras Ubservatory.

Communicated by N. R. Pogson, Esq., Goverament Astronomer.)

Herewith I have the honour to submit to the Royal Astronomical Society the results of my calculations with reference to the Total Eclipse of the Sun, which will take place on the ifth December, 187 I. Though the daration of this ecli, se will be considerably shorter than that of 1868 , yet I presume that so farourable an opportunity will not be suffered to pass away without adequate preparation for due record of all the important and interesting phenomena which present themselves for investigation on such occasions.

The central line of the eclipse will first mect the Earth's surfree in the Arabian Sea, and entering on the western coast of India, will pass right across one of the most important parts of

Hindustan, in a S.E. by E. direction. In this part of the Peninsula the Sun will be about 20° above the horizon when totally obscured. The duration of totality will be two minutes and a quarter, and the breadth of the shadow about seventy miles. On leaving the eastern coast of the Madras Presidency, the central line will cross Palk's Straits, passing about ten miles S.W. of the island Jiffnapatam, and over the northern part of Ceylon, where the small towns of Moeletivoe and Kokelay will lie near the central line; and also the well-known naval station of Trincomalee, which will be about fifteen miles S.W. of the line. Continuing its course over the Bay of Bengal, the shadow will cross the S.E. point of Sumatra, and will touch the south-western coast of Java, where Batavia, the capital, will lie nearly sixty miles N.E. of the central line; and two other smaller towns, Chidamar and Nagara, will also be very near the middle of the shadow path. In the Admiralty Gulf, on the N.W. coust of Australia, the eclipsed Sun will be only ten degrees past the meridian, and not far from the zenith; in consequence of which the totality will last $4^{m} 18^{\text {s }}$, or only four seconds less than the time of greatest duration. Lastly, passing through the most barren and uninhabited portion of Australia, crossing the Gulf of Carpentaria and the York Peninsula, the shadow will ultimately leave the Earth's surface in the Pacific Ocean.

The following are the geographical positions of the central and limiting lines of the shadow, together with other details of colculation, applicable to Southern India, for intervals of fifteen seconds of Greenwich mean time. They are almost identical with the values obtained by interpolation, from the similar table furnished on page 441 of the Nautical Almanac for the year 1871.

Greenwich	Northern Limit.		Central Line.		Southern Limit.	
	North	East	North	East	North	East
	Latitude.	Longitude.	Latitude.	Longitude.	Latitude.	Longitude.
4 mes	- ,			,	- ,	
142545	13	7458	1236	7442	1212	7424
14260	1248	7522	1223	756	Ir 59	7448
142615	$12: 5$	7546	: 0	7530	1146	7512
142630	1223	769	1158	7553	II 33	7535
142645	12 II	$76{ }^{61}$	II 4^{6}	76.15	21	7557
14270	1159	7653	1134	7637	II 9	76 19
142715	1147	7714	1122	$76{ }^{88}$	105^{8}	7640
142730	11 3^{6}	7735	If II	7718	1046	77
142745	1125	7755	110	7738	1035	7720
1428 -	1114	7814	1049	7757		7739
142815	Ii 4	7833	1038	7816	1013	7758
142830	1053	7851	1028	7834	103	7816
142845	1043	$79 \quad 9$	1018	7852	952	7834
14290	1033	7927	108	79 го	942	785 r
142915	1023	7944	958	7927	932	798

$$
\text { of December the IIth, } 187 \mathrm{I}
$$

Greenwich M.T.	On the Central Line.			
	Sun's Altitude above the Horizon.	Excess of the Sun's App. 1)immeter above that of the Earth.	Relative Motion	
			of Sun in	Duration
			one minute	of
			of Time.	Totality
12 ma	-		-	II s
142545	17	$65 \cdot 6$	31.0	27
14260	17	65.9	309	28
142615	17	$66 \cdot 2$	$30 \cdot 8$	2
142630	18	66.5	30^7	210
142645	18	66.7	$30 \cdot 7$	211
$1427 \quad 0$	19	66.9	$30 \cdot 6$	211
142715	19	67.1	30.5	212
142730	19	67.3	$30^{\circ} 4$	213
142745	20	57.5	$30 \cdot 3$	214
14280	20	67.7	$30 \% 2$	214
142815	20	67.9	$30^{\circ 1}$	215
142830	21	$68 \cdot 1$	$30^{\circ} 1$	216
142845	21	$68 \cdot 3$	30.0	217
14290	21	68.5	29.9	217
142915	22	$68 \cdot 7$	29.8	218

The principal places in the Madras Presidency, situated near the northern limit of the shadow, and their direct distances therefrom in miles, will be as follows:-

Districts.	Places.	Miles.
South Canara	Mangalore	II within
"	Oopin Uugadi	upon
Coorg	Mercara	9 within
Mysore	Honsoor	upon
Astragam Division	Mysore	13 beyond
Coimbatore	Sattimangulurn	14 within
"	Bowani	4 within
"	Yirodu	8 within
Salem	Trichungode	upon
"	Salem	24 beyond
',	Nameul	upon
Trichinopoly	Moosery	7 within
"	Trichinopoly	8 within
Tanjore	Tanjore	5 beyond
"	Puttoocattay	10 within
	Point Calmere	upon

Places most favourably situated on or near the central
line, with their geographical positions and direct distances therefrom :

Districts.	Places.	North Latitucle.	East Longitude.	Miles.
South Canara	Kassergode	1230.	$7{ }_{5}^{\circ} \mathrm{I}$	5 N
"	Baicull	1224	754	upon
Coorg	Veerajunderpetta	1213	75 52	16 N
Malabar	Gunote	I2 0	7545	2 S
"	Manuntoddy	1148	$76 \quad 5$	${ }_{1} \mathrm{~S}$
"	Goodaloor	1130	7632	5 S
	Octacamund	1×25	7643	6 S
	Dodabetta	II 23	7647	5 S
On the Neelgherries	Wellington	1523	7646	6 S
	Coonoor	II 21	7652	5 S
	Kotagherry	1124	7656	2 N
Coimbatore	Sivamogay	1120	77	2 N
"	Avenasi	II 12	77 19	2 N
,	Tirrupur	II 5	7724	2 S
,	Kangyam	11	7737	upon
"	Darapoorum	1044	7735	18 S
"	Vellacoil	צ0 57	7746	2 S
"	Chinna Darapoorum	ro 51		1 N
"	Caroor		788	14 N
Madura	Veerallimalli	1034	7837	Io N
"	Iluppur	1031	7841	5 N
"	Poodoocottab	10 23	7853	5 N
Tanjore	Arlangi	1011	793	1 S
	Manamalgudi	103	79×6	2 S

And, lastly, for places near the southern limit of the shadow we shall have, -

Districts.	Places.	Miles.
Malabar	Cannanore	14 within
"	Tellicherry	10 within
$"$	Mahe	9 within
$"$	Calicut	10 beyond
$"$	Beyapur	15 beyond
"	Palghaut	10 beyond
Coimbatore	Coimbatore	14 within
$"$	Polachy	4 beyond
"	Chuckragherry	8 beyond
Madura	Pulney	upon
$"$,	Dindigul	11 within
$"$	Madura	9 beyond

Districts.	Pluces.	Miles.
Madura	Shevagunga	1 beyond
"	Ramnaud	20 beyond
"	Autencurray	16 beyond
"	Ramaswarum	8 beyond

The calculation of the different phenomena of the eclipse was made accurately for Avenasi, a railway station situated midway between the two coasts, on the cautral line; and for the Madras and Trevandrum Observatories, which lie respectively at some distance north and south of the shadow. The usual equations of reduction applicable to places near the above three points are also given ; in which l denotes geocentric north latitude, λ_{Δ} east longitude for Madras, and t the Madras mean time of each phenomenon. The results of the calculations are :-

For Madras.

Lat. $13^{\circ} 4^{\prime \prime}$ I N.; Long. $80^{\circ} 14^{\prime} \cdot 3$ E. of Greenwich.
Madmas Mean Time.

Madras Mean Time.		
		d h m s
Time of first contact	Dec. 11184737
Time of greatest obscuration	- \quad -	194932
Time of last contact	$\cdots \quad \cdots$	$20 \quad 5959$
Duration of the eclipse . .	-. ..	21222
Angle from north point, of	First contact	7333 West. 1199 East.
Angle from the Sun's vertex,	$\left\{\begin{array}{l} \text { First contact } \\ \text { Last contact } \end{array}\right.$	1 Ig Riglit. I73 33 Left.
Magnitude of the eclipse (Su	diameter $=1$)	0.9565
Limb of the Sun eclipsed		South.

Formulafor Reduction to different places near Madras.
First Contact.
$\operatorname{Cos} w=-0.2214-[0.20128] \sin l-[9.98190] \cos l \cos \left(\lambda_{\Delta}-121^{\circ} 15^{\circ} \cdot 5\right)$ $t=21^{\mathrm{h}} 35^{\mathrm{m}} 3^{6 \mathrm{~s}}-\left[3.55^{2} 74\right] \sin w-\left[3^{*} 35619\right] \sin l$

$$
-\left[3^{\prime} 79315\right] \cos 6 \cos \left(\lambda_{4}+6^{\circ} 24^{\prime} \cdot 3\right)
$$

Greatest Phase.

$\operatorname{Cos} w=-0.0382-[0.19815] \sin l-[9.99342] \cos l \cos \left(\lambda_{\Delta}-107^{\circ} 48^{\prime} \cdot 3\right)$

$$
t=2 \mathrm{I}^{\mathrm{h}} 45^{\text {mo }} 3^{\mathrm{K}}-\left[3^{\circ} 42904\right] \sin l-\left[3.841^{182}\right] \cos l \cos \left(\lambda_{\Delta}{ }^{T} 20^{\circ} 47^{\circ} 6\right)
$$

Magnitude of the eclipse $=x \cdot 0175-(1.0175 \cos w)$
Last Contact.
$\operatorname{Cos} t v=0.2244-[0.19578] \sin l-[0.00173] \cos l \cos \left(\lambda_{\Delta}-92^{\circ} 3^{\prime \cdot} 4\right)$
$t=2 \mathrm{I}^{\mathrm{h}} 3^{8 \mathrm{nn}} 9^{\mathrm{g}}+[3.65898] \sin v-[3.49952] \sin l$
$-\left[3^{\circ} 89599\right] \cos l \cos \left(\lambda_{\Delta}+37^{\circ} 3^{\prime} \cdot 3\right)$

For Avenasi.

Lat. $11^{\circ} 12^{\prime}$ N. ; Long. $\left\{\begin{aligned} & 77^{\circ} 19^{\prime} \circ \\ & 2 55^{\circ} \\ & \hline\end{aligned}\right.$ E. of Greenwich. of Madras.
Madras Local Mean Time. Mean Time.
Time of first contact .

Beginning of the total phase .. $194719=19353^{8}$
Middle of totality $39 \quad 48 \quad 26=19 \quad 3644$
Ending of the total phase .. $1949 \quad 32=193751$
Time of last contact $20 \quad 5731=204550$
Duration of the Eclipse $\quad 2^{\text {l1 }} 9^{\mathrm{m}} 58^{5}$
Duration of totality ○ 213
Angle from north point, of $\left\{\begin{array}{l}\text { First contact } 68^{\circ} 8^{\prime} \text { West. } \\ \text { List }\end{array}\right.$
Angle from the Sun's vertex, $\left\{\begin{array}{l}\text { First contact } 73 \text { Left. } \\ \text { I }\end{array}\right.$
$\left\{\begin{array}{llrl}\text { First contact } & 7 & 3 \\ \text { Last contact } & \text { Left. } \\ \text { 17 } & 44 & \text { Left. }\end{array}\right.$

Formule for Reduction to different places near Avenasi.
First Contact.
$\operatorname{Cos} z u=-0.2075^{j}-[0.20204] \sin l-\left[9^{\circ} 97944\right] \cos l \cos \left(\lambda_{\Delta}-120^{\circ} 51^{\prime} 1\right)$
$t=21^{\mathrm{h}} 3^{2 \mathrm{~m}} 1 \mathrm{o}^{5}-[3.54328] \sin w-[3.34120] \sin l$
$-\left[3^{\circ} 78_{43}\right] \cos l \cos \left(\lambda_{\Delta}+6^{\circ} 3^{\prime}-3\right)$
Middle of Totality.
$\operatorname{Cos} 20=-1 \cdot 9887-[1 \cdot 96825] \sin l-[1.76185] \cos l \cos \left(\lambda_{\Delta}-107^{\circ} 3^{\prime} \cdot 0\right)$

$$
t=21^{\mathrm{h}} 42^{\mathrm{m}} 37^{\mathrm{a}}-\left[3^{\circ} 41653\right] \sin l-\left[3^{\circ} \cdot 83^{247}\right] \cos l \cos \left(\lambda_{\Delta}+20^{\circ}{ }_{5} 1^{\prime} \cdot 7\right)
$$

Semi-duration of totality $=[1.82258] \sin w$.
Last Contact.
$\operatorname{Cos} w=0.2277-\left[0^{\circ} 19709\right] \sin l-\left[9^{\circ} 99844\right] \cos l \cos \left(\lambda_{\Delta}-9 \mathbf{x}^{\circ} 3 x^{\circ} 4\right)$
$t=21^{\mathrm{b}} 37^{\mathrm{m}} 24^{\mathrm{g}}+\left[3.6 \mathrm{~S}^{1} 7^{8}\right] \sin w-[3.48527] \sin l$

$$
-\left[3^{\circ} 88985\right] \cos l \cos \left(\lambda_{\Delta}+37^{\circ} 14^{\prime} \cdot 3\right)
$$

For Trevandrum.
Lat. $8^{\circ} \quad 30^{\prime} .5$ N.; Long. $\left\{\begin{aligned} & 76^{\circ} 59^{\prime} 8 \\ & 3 14^{\prime} 5 \\ & \text { E. of Greenwich. }\end{aligned}\right.$

Angle from north point, of	st contact st contact	$63^{\circ} 29^{\prime} \text { West. }$ $\text { IOS } 56 \text { East. }$
Angle from the Sun's vertex, of	$\left\{\begin{array}{l}\text { First contact } \\ \text { Last contact }\end{array}\right.$	1415 Left. 1704 Left.
Magnitude of the eclipse (Sun's diameter $=1$)		0.9371
Limb of the Sun eclipsed	.. .	North.

Formulle for Reduction to different places near Trevandrum. First Contact.
$\operatorname{Cos} w=-0.2099-[0.20201] \sin l-[9.97990] \cos l \cos \left(\lambda_{A}-120^{\circ} 55^{\circ} \cdot 0\right)$ $t=21^{\mathrm{b}} 3 \mathrm{I}^{\mathrm{nm}} 4^{8 \mathrm{~s}}-\left[3^{\circ} 54223\right] \sin w-[3.34107] \sin l$
$-\left[3 \cdot 78_{32} 6\right] \cos l \cos \left(\lambda_{\Delta}+6^{\circ} 3 I^{\prime} \cdot 2\right)$
Greatest Phase.
$\cos w=-0.035^{8}-[0.19843] \sin l-[9.99265] \cos l \cos \left(\lambda_{\Delta}-107^{\circ} 40^{\prime} .8\right)$

Magnitude of the eclipse $=1.0173-(10173 \cos w)$
Last Contact.
$\operatorname{Cos} 10=0.2263-[0.19676] \sin l-[9.99962] \cos l \cos \left(\lambda_{\Delta}-91^{\circ} 42^{\circ} \cdot 0\right)$ $t=25^{\mathrm{h}} 37^{\mathrm{m}} 26^{6}+\left[3^{-6} 5^{169}\right] \sin w-[3.48752] \sin z$

$$
\begin{aligned}
& 43752] \sin k \\
& -[3.88948] \cos l \cos \left(\lambda_{\Delta}+37^{\circ} 10^{\prime} \cdot 8\right)
\end{aligned}
$$

The approximate details of the eclipse for Baicull on the western coast, Ardangi near the east coast, and Trincomalee in Ceylon, all of which will be near the central line, will be as follows:-

For Baicull.

Lat. $12^{\circ} 24^{\prime} \mathrm{N}$. ; Long. $\left\{\begin{array}{rc}75^{\circ} & 4^{\circ} \circ \mathrm{E} . \text { of Greenwich } \\ 5 & 10^{\circ} 3 \mathrm{~W} . \text { of Madras. }\end{array}\right.$
Madras
Mean Time. $\quad \begin{gathered}\text { Local } \\ \text { Mean Time }\end{gathered}$

Beginning of the total phase .. Ig 45 5I $=19259$
Middle of totality $194655=192613$
Ending of the total phase $\quad . \quad 194759=192717$
Time of last contact .. $205413=2033$ 35
Duration of the Eclipse :.. $\quad 2^{\mathrm{h}} 7^{\mathrm{m}} 8^{8}$
Duration of totality .. $0 \quad 28$
Angle from north point, of $\left\{\begin{array}{l}\text { First contact } \\ \text { Last contact } \\ \text { II } \\ 9^{\circ}\end{array}\right.$ West.
Angle from the Sun's vertex, of $\begin{cases}\text { First contact } 6 & \text { Left. } \\ \text { Last contact 17i } & \text { Left. }\end{cases}$

For Ardangi.

For Trincomalee.

Lat. $8^{\circ} 33^{\prime} \mathrm{N} . ;$ Long. $\left\{\begin{array}{ccc}8 I^{\circ} \cdot 24^{\circ} \circ & \text { E. of Greenwich. } \\ \mathrm{I} & 9.7 & \mathrm{E} . \text { of Madras. }\end{array}\right.$
Madras Local
Mcan Time. Mean Time

I have adhered throughout to the method of Mr. Woolhouse, adopting the positions of the Sun and Moon as given in the Nautical Almanae. Subjoined are the approximate positions of bright stars and planets most conspicuous to the naked eye during the time of totality, reforred to the zenith of Avenasi.
of December the 11th, 1871.
145

	Zenith Distance.	Azimuth	$\begin{gathered} \text { Zenith } \\ \text { Distance. } \end{gathered}$			
1	Castor $7^{\circ} 8^{\circ}$	N $59^{\circ} \mathrm{W}$	17	6 Centauri	$\begin{array}{r} \circ \\ 72 \end{array}$	$S 8 \mathrm{E}$
2	Procyon 80	N 86 W	¢	Venus	18	S 39 E
3	Pollux 76	N 63 W	19	Arcturus	20	N 60 E
4	Jupiter 71	N 71 W	20	α^{2} Centauri	74	S 12 E
5	\cdots Hydra 58	S 72 W	21	\& Bootis	29	N 52 E
6	Regulus 44	N 84 W	22	${ }^{\text {a Liorr }}$	38	S 45 E
7	γ^{1} Leonis 41	N 71 W	23	β Urs. Min.	66	N 8 E
8	n Argus 76	S 18 W	24	β Libræ	39	S 59 E
9	\propto Urs. Maj. 56	N 16 W	25	\propto Cor. Bor.	3^{8}	N 62 E
10	8 Leonis 29	N 66 W	26	a Serpentis	40	S 87 E
11	¢ Leonis 19	N 76 W	27	¢ Scorpii	54	S $5^{6} \mathrm{E}$
12	γ Urs. M8j. 45	$\mathrm{N}_{44} \mathrm{~W}$	28	Antares	62	S 52 E
3	α^{1} Crucis 74	S 5 W	29	a Herculis	65	N 81 E
4	Polaris 8o	\bigcirc	\bigcirc	Sun	75	S 61 E
15	Spica 23	S 13 E	31	\& Ophiuchi	66	N 80 E
16	${ }_{\text {n }}$ Urs. Maj. 4	Nir E		Dracon	7	N 39

To ficilitate the independent determination of the longitude of any place of observation, I have calculated such occultations of stars by the Moon as will occur about a week before or after the day of the eclipse. It unfortunately happens, however, that during this time only one bright star lies within the limits of the Moon's path, and so I have been obliged to rest contented with much smailer stars than are usually selected for such a purpose. The computations have been made for Madras and Avenasi, by an approxinate method, which usually gives the times within a minute, and the angular points of contact within a degree, of those found by a more refined process. The times at Avenasi will differ but slightly from those for any other spot along the shadow line, in its course across India.

Occultations as seen at Madras.								
Date.	Stars.	Mag.		Disappearar Angle N. Point.	from Yertex.		Reappeara $\begin{gathered} \text { Ang? } \\ \text { N. Point. } \end{gathered}$	ce. e from
Dec. 3	${ }^{n}$ Leonis	$3 \frac{1}{2}$	$\begin{aligned} 11 \mathrm{~m} \\ 14 \end{aligned}$	$128^{\circ} \mathrm{E}$	$143{ }^{\circ} \mathrm{Right}$	17 16	$8^{\mathrm{m}} 84^{\circ} \mathrm{W}$	Ri
6	XII. 394 Weisse	9	1413	1475	135 Right		92 W	15 Right
14	20114	9	641	16 E	50 Right	75	544 W	115 Right
14	20133 年	9	7	53 E	16 Right	743	380 W	154 Right
14	20138 -	82	77	109 E	39 Left		$5 \times 36 \mathrm{~W}$	150 Left
15	21093	8	822	83 E	1 I Left	916	6 128 W	${ }^{156}$ Left
16	21791 岕	8	69	${ }_{3} 6 \mathrm{E}$	8 Right	726	$6-100 \mathrm{~W}$	160 Right
נ6	2.1810)	$7 \frac{1}{2}$	631	88 E	37 Left	736	6150 W	148 Left

> Occultations as seen at Avenasí.

$\text { ec. } \begin{aligned} & 3^{\prime} \\ & 6 \end{aligned}$	n Leonis XII. 394	4 Weisse	$3 \frac{1}{2}$ 9	1432 1416	$\begin{gathered} 136 \mathrm{E} \\ 155 \mathrm{E} \end{gathered}$	137 Right 125 Right		$\begin{array}{r} 89 \mathrm{~W} \\ 103 \mathrm{~W} \end{array}$	Right
14			9	638	18 E	48	7	46 W	$1{ }_{17} 7$ Right
14	2.0133		9	659	55 E	${ }_{15}$ Righ	743	82 W	157 Right
14	20138		$8 \frac{1}{2}$	76	110 E	40 Left	745	138 W	147 Left
15	21093		8	82 I	84 E	12 Left	915	32 W	${ }^{151}$ Left
16	21791		8	62	E	8 Right	715	W	160 Right
16	2×810		$7 \frac{1}{2}$	626	87 E	37 Left	732	151 W	148

The general circumstances under which the Total Eclipse of Dec. 11th, 1871, will occur, are singularly and unusually favourable, the greater portion of the shadow-path being easily accessible by means of the railway and good public roads; while a well-managed line of telegraph will afford facilities for that most incomparable means of fixing the longitude of the place of observation with regard to Madras. The favourite Sanitarium of the Presidency, Ootacamund, will doubtless be selected by many persons as a convenient and familiar station from which to observe the eclipse; as also the hilly region of Wynaad, in the Malabar district, where numerous European gentlemen reside for the purpose of superintending their coffee-plantations. The lofty peak of Dodabetta, the highest point of the Neilgherries, 8640 feet above sea-level, would agreeably to the of ten-repeated and enlightened view of Prof. C. Piazzi Smyth, the Astronomer Royal for Scotland, offer a grand opportunity for spectroscopic observations, in an atmosphere of small density and free from all the impurities which abound at lower levels, but unfortunately haze and mist are very prevalent on the hill-ranges in the month of December. The weather is in general fine elsewhere about that time along the shadow-path, but more especially so eastward of the Neilgherry hills than towards the Malabar coast.

Madras,
5th December, 1870.

