THE EFFECT OF PARTIAL REDISTRIBUTION ON SPECTRAL LINE FORMATION

A Thesis

Submitted For the Degree of Doctor of Philosophy in The Faculty of Science PUNJABI UNIVERSITY

PATIALA

By
K.E.RANGARAJAN

INDIAN INSTITUTE OF ASTROPHYSICS
BANGALORE 560034
INDIA

DECEMBER 1987

DEDICATION

I dedicate this thesis to the memory of my parents.

ACKNOWLEDGEMENTS

The useful guidance of Frof A. Peraiah throughout this
worl: helped me to a great extent. He tolerated many
mistakes and his teaching gave me the necessary encouragement.
It is a pleasure to acknowledge Frof H.S.Gurm, Funjab
University, Fatiala for his keen interest in my wor
indebted to Prof J.C.Bhattacharyya, the Director, Indian
institute of Astrophysics for allowing me virtually unl
computer time and the financial assistance. I am gratefu
Frof M.k. V. Bappu and Mrs Yamuna Bappu for the encouragement
they gave me especially in the early stage of my career as
research student.

Mr. M. Srinivasa Rao, Mr. B. A.Varghese and Mr.K. B.Ramesh worked very hard to see to the completion of this'thesis. The moral support which is essential was provided by Dr.K. N. Nagendra.
The computational work which forms the major part of
this thesis would not have been possible without the help of
Dr.k.K. Ghosh, Dr. Sunetra Giridhar and Mr Chandra mouli. Most
of the analysis is the outcome of the discussions which I had
with Mr.D.Mohan Rao.

I am unable to find words to thank Dr.N.Gopalaswamy, Mr.G.Thejappa and an unknown referee who suggested many changes and corrections in the preparation of this manuscript.

CONTENTS

page
ABSTRACT I-III
Chapter 1 ... INTRODUCTION 1-7
1.1 Why study spectral lanes? 1
1.2 Method employed to solve
transfer equation *. 1

1. 3 Description of the problems in this study. 3
Chapter 2 ... THE EFFECT OF THE FAFTIALFREQUENCY REDISTRIBUTIONFUNCTIONS $R_{\mathbf{I}}, \mathrm{R}_{\mathbf{I I}}, \mathrm{R}_{\text {III }}$ ANDF_{y} ON THE SFECTFAL LINEFORMATION. .. 8-44
2.1 Introduction 8
2.2 Fedistribution functions. 11
2.3 Basic equations and thecomputational procedure. .. 30
2.4 Fiesults and discussion. 31
Chapter 3 ... THE EFFECT OF COHERENT AND NON-COHERENT ELECTRON SCATTERINGWITH ATOMIC FARTIAL FREQUENCY
REDISTRIEUTION ON LINE FORMATION 45-74
3.1 Introduction 45

CONTENTS

				page
	3.2	Electron redistribution		
		function	-	47
	3.3	Method of solution	-•	51
	3.4	Fesults and discussion	\cdots	67
Chapter 4	. \cdot	EFFECT OF EMISSION FRGFILE ON		
		LINE FORMATION	-•	75-89
	4.1	Introduction	-	75
	4.2	The source function including		
		the emission profile	\cdots	77
	4.3	Fiesults and discussion	*	87
Chapter 5	-••	EFFECT OF SMALL MACROSCOPIC		
		VELOCITIES ON Ca II H AND K		
		LINES.	*	90-106
	5.1	Introduction	-•	90
	5.2	Atomic model	-	92
	5.3	Computational procedure	-	95
	5.4	Results	-	102
Chapter 6	- -	CONCLUSIONS AND FUTURE WORK	*	107-110
	6.1	Summary of the results	\cdots	107
	6.2	Future work	-•	109
REFERENCES	. .		-	111-114

ABSTRACT

In this study, we find that for a purely scattering optically thick medium, F_{1} function produces deeper absorption profile compared to other functions. The redistribution function $F_{I I}$ is more coherent than F_{v} and F_{v} is more coherent than $R_{\text {rix }}$ in the wings. The more non-coherent the
 intensity in the Doppler core. If thermal sources are present in the medium and if there is incident radiation on the lower boundary, all the redistribution functions give the same intensity, in the core. But in the wings, the more non-coherent the redistribution is, the higher would be the intensity. The presence of continuous opacity makes the spectral lines appear weak. Their effects are more pronounced compared to that of the

```
thermal sources in the medium and are present for any type of
redistribution mechanism. In Migh optical depth situations,
the Fing type of redistribution allows the photons to diffuse
to the lime centre and increase the intensity there.
```


We investigate the deviation of absorption and emission profiles from each other for a two level atom with angle averaged redistribution functions. The correct expression for the source function derived by Easchek, Mihalas

CHAFTEF 1

INTRODUCTION

```
1.1 Why study spectral lines %
```

Ever since Fraunhofer obtained the solar spectrum, the
study of spectral lines became one of the major activities of
Astrophysics. It has been realised that the study of spectral
lines is a valuable diagnostic tool to infer the physical
conditions of the gaseous material present in the stars. The
long column densities, low pressures and large temperature
gradients are some of the unique features akin to the stellar
atmospheres. Though excellent text books, review articles and
research papers have been written on this topic, it still
remains as an exciting field due to the variety of physical
conditions which the celestial bodies offer. The spectra of
Quasars, Seyfert galaxies, Wolf-Rayet stars are to name, a few
of the observations which open new avenues into the study of
Astronomy. Wilson-Bappu effect still remains as an enigma.
Fromall these one can conclude that there is a compelling
reason to study spectral line formation.

1.2 Method employed to solve the transfer equation.

Ambartzumian (1942) enunciated the principle of
invariance in semi-infinite homogeneous media. This was later
extended to finite, homogeneous plane parallel scattering media
by Chandrasekhar (1950), which helped in solving large clasa
of problems involving the radiative transfer. Following wick
(1943), Chandrasekhar also replaced the scattering integral by
a discrete sum and solved the resulting system of linear
differential equations. This formed the basis for most of the
subsequent work in radiative transfer theory.

Using Discrete space theory technique developed by Redheffer (1962), Preisendorfer (1965) and Van de Hulst (1965), Grant and Hunt (1969a) developed a numerical method to solve radiative transfer equation in inhomogeneous media. In a subsequent paper (1969b), they also formulated simple conditions for their procedure to be stable and also give non-negative solution. This technique provides us with efficient means for computing internal and emergent radiant intensity in the presence or in the absence of internal radiation sources. Dur familiarity with this method and the

```
flexibility it provides us to include quite a number of
physical processes are the resons to use this method to handle
the problems considered in this work.
1.J Description of the problems in this study
```

Our study pertains to certain effects of partial
redistribution functions on resonance lines and also the
effect of small macroscopic velocity fields on Ca II H and k
lines. The problems considered in this work are described
below in some detail.

Arthur Schuster (1905) proposed the scattering of Madiation to be a viable mechanism in the formation of spectral lines in stellar atmospheres.
Radiation field becomes nonlocal due to. the scattering
process and this sets the nonlocal thermodynamic equilibrium
(Non LTE) condition in stellar atmosphere. The coupling of
radiation fieldand the number density of different atomic
states is another aspect of Non LTE. Thomas (1965) proved the
existence of Non LTE in the outer parts of the stellar
atmosphere. We have used the Non LTE theory to study the
transfer of line radiation.

In earlier works on line transfer, scattering was assumed to be strictly coherent in the observer's frame of reference (Milney 1928). In stellar atmospheres, the Doppler redistribution in frequency produced by the thermal motion of
the atoms has to be talen into account. The above process
combined with the assumption that there is no correlation
between the frequencies of the absorbed and emitted photons,
make them completely medistributed (CRD) over the spectral
lane. Neither of these two extreme situations is achieved in
stellar atmospheres and so one has to consider the
redistribution of photons in frequency in some detail. This is
fnown as partial redistribution (FRD) mechanism in the
literature.

can be understood.

Asymmetric profiles with a single peak emission of the
Ca II K line were observed at high spatial resolution studies of sun (Pasachoff,1970). To account for the asymmetric

```
profiles, Athay (1970) assumed velocity fields in the regions
of line formation. He concluded that to obtain the K
enhancement, either the layers where k, is formed are moving
upward with velocities of S-7 kms* or the k, layers are
moving downward with velocities of 10-20 kms }\mp@subsup{}{}{-1}\mathrm{ . Line formation
in moving media was studied by kulander (1968), Kalkofen
(1970) and severial other workers. Feraiah (1978) gave an
algorithm for solving transfer equation including velocity
fields in spherically symmetric expanding media. This program
can also be used to study plane parallel geometry with very
few changes. We have used this code with the necessary
modifications to study the effect of velocities on Ca II H and
K lines. We have chosen 5 level atom with continulum as our
atomic model and a chromospheric type of temperature rise is
assumed. We have solved the coupled transfer and statistical
equilibrium equations. There ar`e sever`al methods to solve multi
level equations. One of the well known methods is the
equivalent two level atom (ETLA) method. This was employed by
Linsky and Avrett (1970) to study the formation of Ca II H and
k lines in the quiescent Solar atmosphere. A more powerful
method is the linearization technique of Auer and
Mihalas (1969). Integral equation approach was extended to
include the linearization technique by Kalkofen (1974). We
have used the ETLA which allows an easy treatment of mmall
macroscopic velocities and also the specific intensity can be
directly obtained.
```


CHAPTER 2

THE EFFECT OF PARTIAL FREQUENCY REDISTRIBUTION

$$
\text { FUNCTION } R_{I}, R_{I I}, R_{I I I}, A N D R_{V} \text { ON THE SPECTRAL }
$$

LINE FORMATION

2.1 Introduction

In the earliest analyses of spectral lines, it was assumed
that the scattering of photons by atoms is coherent. In
stellar atmospheres, the spectral line is produced by an
ensemble of atoms with a thermal velocity distribution.
Therefore, it is necessary to take into account the Doppler
redistribution in frequency produced by the random motion
of the atoms. By taking into account the Doppler
redistribution and also assuming that there is no correlation
between the frequencies of the absorbed and emitted photons,
one sees that the photons are completely redistributed over
the spectral line. This is better than the coherent scattering
assumption. However, to account for the correct demcription of
the frequency redistribution, one has to consider the
comelation between the absombed and emitted frequencies of
photon. Unno igsa)derived such a redistribution function, for
the case when both the atomic levels between which the

As far as subordinate lines are concerned, Heinzel (1981)
levels are radiatively broadened. This LFR denoted as R
based on Quantum mechanical results of Omont Smith and Cooper
(1972). Ry can be applied to low density media
chromospheres, gaseous nebula etc where collisions are few. In
a subsequent paper, Heinzel and Hubeny (1982) extended the LFR
of Heinzel (1981) to include collisional broadening of both
the levels. Same transfer effects of $R_{\text {g }}$, have been discussed by
Hubeny and Heinael (1984). Mohan Rao, Rangarajan and Peraiah
(1984) discussed the effects of partial redistribution
nctions $R_{I}, R_{I I}$ and $R_{\text {III }}$ on source functions.

The above work has been extended in this chapter to include optical depth effects and also the R_{x} redistribution function. Comparison of these results with those obtained Lsing CRD with Doppler and Voigt absorption profiles is made here. Various types of scattering media are considered. The effect of different boundary conditions on the emergent intencity profiles is also studied here. In 2.2 we demcribe briefly the various redistribution functions employed in this

```
work. Easic equations and computational procedure are given 2n
2.3. Discussion of the results is made in 2.4.
2.2 Fedistribution functions
2.2.1 Atomic frame redistribution functions
    The absorption profile in the atomic frame is given by,
say, f( (') where \xi'is the frequency of the incoming photon.
P({', () gives the probability that a photon absorbed in the
frequency range (\xi', ('+ d(') is emitted into the range ( \xi,
Y + d{) while the angular phase function g( n',n) describes
the probability that a photon is scattered from solid angle
d\omega
these functions are normalized to unity. The joint probability
that a photon ( (', n') is absorbed and a photon ( (, n) is
emitted is known as the atomic frame redistribution r( \xi', \xi)
    (Hummer, 1962 ).
r(\xi',\xi)d\mp@subsup{\xi}{}{\prime}d\xi=\int\intf(\mp@subsup{\xi}{}{\prime})d\mp@subsup{\xi}{}{\prime}p(\mp@subsup{\xi}{}{\prime},\xi)d\xi'\frac{d\mp@subsup{\omega}{}{\prime}}{4\pi}\frac{d\omega}{4\pi}
    If we consider a two level atom (see figure 1) with
both levels perfectly sharp, then the absorption and emission
can take place at only the line centre frequency *
the absorption profile is given by Dirac delta function :
\[
\begin{equation*}
f\left(\xi^{\prime}\right) d \xi^{\prime}=\delta\left(\xi^{\prime}-\xi_{0}\right) d \xi^{\prime} \tag{2.2a}
\end{equation*}
\]
Since the emission takes place at the same frequency, the emission probability is
```

$$
\begin{equation*}
p(\xi \cdot \xi) d \xi=\delta(\xi-\xi) d \xi \tag{2.2b}
\end{equation*}
$$

Fig. $1 \quad i$ and j are the lower and upper states. $\boldsymbol{\xi}$, $\boldsymbol{\xi}$ and $\boldsymbol{\xi}_{0}$ are the absorption, emission and line centre frequencies measured in atom's frame. h is the Flanct constant. Line centre frequency $\xi_{0}=\nu_{0}$ where ν_{0} is laboratory frame frequency.

Let us suppose that the upper gtate is radiatively broadened. Then the absorption profile is described by the Lorentz profile,

$$
\begin{equation*}
f\left(\xi^{\prime}\right) d \xi^{\prime}=\frac{\delta d \xi^{\prime}}{n\left[\left(\xi^{\prime}-\xi_{0}\right)^{2}+\delta^{2}\right]} \tag{2.3a}
\end{equation*}
$$

where $\delta=\Gamma_{2} / 4 \pi$ and Γ_{k} is the radiative damping width of the upper state.

Since we have not considered any collisional reshuffling of electrons in the upper state in this case,we find that the emission probability is again given by the Dirac delta function.

Fig 2. Same as Fig. 1 with upper state radiatively broadened.

In the next case, let us envision an atom with two states and the upper state is broadened by collisions also. The absorption profile is given by

$$
\begin{equation*}
f(\xi) d \xi=\frac{\delta d \xi}{\pi\left[\left(\xi-\xi_{0}\right)^{2}+\delta^{2}\right]} \tag{2,4a}
\end{equation*}
$$

Now δ denotes the combined width of collisions and radiation (see Fig. 3)

Fig. 3 Same as Fig. 2 but the upper level is broadened collisionally in addition.

Abstract

In this situation, the frequency of the emitted photon will have no correlation with that of the absorbed photon. The probability of emission at any particular frequency is then proportional to the number of atoms which are capable of emitting at that frequency and hence to the absorption profile itself. Therefore we have

$$
\begin{equation*}
P(\xi, \xi) d \xi=f\left(\xi, d \xi^{\prime}=\frac{\delta d \xi^{\prime}}{\pi\left[\left(\xi_{0}-\xi^{\prime}\right)^{2}+\delta^{2}\right]}\right. \tag{2.40}
\end{equation*}
$$

Now let us go to a more general situation i.e. both the states are radiatively broadened.

Fig. 4 The states i and j are radiatively broadened. Other symbols have their usual meaning.

Woolley and Stibbs (1953) showed that the atomic frame redistribution in such cases is given by

$$
\begin{align*}
r_{v}(\xi, \xi)= & \frac{\delta_{i}^{2} \delta_{j}}{\pi^{2}} \frac{1}{\left[(\xi-\xi)^{2}+4 \delta^{2}\right]\left[\left(\xi-\nu_{0}\right)^{2}+\left(\delta_{L}+\delta_{j}\right)^{2}\right]\left[\left(\xi-\nu_{0}\right)^{2}+\left(\delta_{i}+\delta_{j}\right)^{2}\right]} \\
& +\frac{\delta_{i} \delta_{j}}{\pi^{2}} \frac{1}{\left[\left(\xi-\nu_{0}\right)^{2}+\left(\delta_{i}+\delta_{j}\right)^{2}\right]\left[(\xi-\xi)^{2}+4 \delta_{i}^{2}\right]} \\
& +\frac{\delta_{i} \delta_{j}}{\pi^{2}}-\frac{1}{\left[(\xi-\xi)^{2}+4 \delta_{i}^{2}\left[\left(\xi-\nu_{0}\right)^{2}+\left(\delta_{i}+\delta_{j}\right)^{2}\right]\right.} \tag{2.5}\\
& +\frac{\delta_{i}^{2}}{\pi^{2}}\left[\left(\xi \cdot \nu_{0}\right)^{2}+\left(\delta_{i}+\delta_{i}\right)^{2}\right]\left[\left(\xi-\nu_{0}\right)^{2}+\left(\delta_{i}+\delta_{j}\right)^{2}\right]
\end{align*}
$$

δ_{i}, δ_{j} are the damping parameters for the lower and upper states respectively.

2.2.2 Laboratory frame redistribution functions


```
Here we sletch briefly the steps required to derive the angle averaged laboratory frame redistributi in functions. A detailed description is given in 'Etellar atmospheres' by Mihalas (1978).
```


Then, the joint probability of absorption of a photon ($\xi^{\prime}, \mathbf{n}^{\prime}$) with subsequent emission of a photon $(\boldsymbol{Y}, \mathrm{n})$ measured in the atom's frame is $\quad\left(\xi^{\prime}\right) p\left(\xi^{\prime}, \xi\right) g\left(n^{\prime}, n\right) d \xi \prime d \xi\left(d \omega^{\prime} / 4 \pi\right)(d \omega / 4 \pi)$. Transfomming this expression to the laboratory frame via equations (2.6 $a, b)$ we can write
$R\left(\nu^{\prime}, n^{\prime} ; \nu, n\right)=f\left(\nu^{\prime}-\nu_{0} v_{i} n^{\prime} / c\right) p\left(\nu^{\prime}-\nu_{0} v_{n} n^{\prime} / c, \nu \nu_{0} v_{1} n / c\right) g\left(n^{\prime}, n\right)$ (2.7)

For convenience, expressing velocities in dimensionless thermal units

$$
\begin{equation*}
u=v / v_{i h e r m a l}=(m, / 2 k T)^{1 / 2} v \tag{2,8}
\end{equation*}
$$

where m is the mass of an atom. Let us introduce the Doppler width

$$
\begin{equation*}
w=\left(\nu_{0} / c\right)\left(2 k T / m_{A}\right)^{1 / 2}=\nu_{0}\left(v_{\text {ehermal }} / C\right) \tag{2.9}
\end{equation*}
$$

Rewriting equation (2.7) using the Doppler units defined in equations (2.8) and (2.9):
$F\left(\nu^{\prime}, n^{\prime} ; \nu, n\right)=f\left(\nu^{\prime}-w u \cdot n^{\prime}\right) p\left(\nu^{\prime}-w u \cdot n^{\prime}, \nu-w u \cdot n^{\prime}\right)\left(n^{\prime}, n^{\prime}\right)$ (2.10)

Choose an orthonormal triad ($\boldsymbol{n}_{\mathbf{1}} ; \boldsymbol{n}_{\mathbf{2}}, \boldsymbol{n}_{\mathbf{s}}$) such that $\mathbf{u}=$ ung. Then
 An element of solid angle may be written d $\omega=0 \mu d \phi$ where ϕ is the azimuthal angle around n. The phase function $g\left(n^{\prime}, n\right)$ can be expressed in general as $g(\mu, \mu, \phi)$. Thus angle averaging equation (2.10) we have
$R(\nu, \nu)=\left(16 \pi^{2}\right)^{-1} \int_{0}^{2 \pi} d \phi \int_{-1}^{1} d \mu^{\prime} f\left(\nu^{\prime}-w \mu^{\prime} u\right) \int_{0}^{2 \pi} d \phi^{\prime} g\left(\mu^{\prime}, \mu_{,} \phi^{\prime}\right)$

$$
\times \int_{-1}^{1} d \mu \quad p\left(v^{\prime}-w \mu^{\prime} u, v-w \mu(1)\right.
$$

Defining $\quad 9\left(\mu^{\prime}, \mu\right) \equiv(4 \pi)^{-1} \int_{0}^{2 \pi} g\left(\mu^{\prime} * \mu^{\prime} \phi^{\prime}\right) d \phi^{\prime}$
we get
$R_{\mu}\left(\nu^{\prime}, \nu\right)=\frac{1}{2} \int_{-1}^{1} d \mu^{\prime} f\left(\nu^{\prime}-w \mu^{\prime} u\right) \int_{-1}^{1} d \mu^{1} g\left(\mu^{\prime}, \mu\right) p\left(\nu^{\prime}-w \mu^{\prime} u, \nu-w \mu_{\mu}\right)$ (2.13)

For isotropic scattering $g\left(\mu^{\prime}, \mu\right)=\frac{1}{2}$. Employing this result in the above equation we get,

$$
\begin{equation*}
R_{u}\left(\nu^{\prime}, \nu\right)=\frac{1}{4} \int_{-1}^{1} d \mu^{\prime} f\left(\nu^{\prime}-w \mu^{\prime} u\right) \int_{-1}^{1} d \mu p\left(\nu^{\prime}-w \mu^{\prime} u, \nu-w \mu^{\prime}\right) \tag{2.14}
\end{equation*}
$$

If the scattering is coherent in the atomic frame, $p\left(\nu^{\prime}-w \mu^{\prime} u, \nu-w \mu\right)=\delta\left[\nu^{\prime}-v-w u\left(\mu^{\prime}-\mu\right)\right]$

Because the range of integration for μ and μ is only $(-1,1), i t$ is clear that for a given value of u, the singularity of the s-function will be outeide the range of

```
integration for sufficiently large values of |v' - v| and
Fiu(\nu',山) will, accordingly, be zero. Fhysically this
corresponds to the fact that an atom moving with velocity u
can change a photon's frequency by no more than Zuw, this
maximum shift occurring if the propagation vectors of the
incoming and outgoing photons lie along the velocity vector
and are oppositely directed. Let }y\mathrm{ I wo, and 
\[
\begin{equation*}
I=(w u)^{-1} \int_{-w u}^{w u} \delta\left[y-\left(\nu-u^{\prime}+w \mu u\right)\right] d y \tag{2.16}
\end{equation*}
\]
The integral will equal (i/wu) if -wu \(\leq \nu-\nu^{\prime}+w \mu^{\prime} u \leq w\), and will be zero otherwise. Define \(\mathbf{A}(x)\) such that \(\boldsymbol{A}=1\) if \(-1 \leq x \leq 1\), and \(\Lambda=0\) otherwise. Then equation (2.14) can be rewritten using equation (2.16) as
\(R_{u}\left(\nu^{\prime}, \nu\right)=(4 w u)^{-2} \int_{-1}^{1} f\left(\nu^{\prime}-w u \mu^{\prime}\right) A\left[\mu^{\prime}+(w \mu)^{-1}\left(\nu-\nu^{\prime}\right)\right] d \mu^{\prime}\)
(2.17)
If \(u\) is sufficiently small, then \(|(\nu-w) / w u| \geq 1\) and \(A\) will vanish for all values of \(\mu\). Thus there is a minimum speed \(u_{m i n}\), for which scattering from \(w\) to \(w\) can occur. Define \(\vec{v}=\max \left(\omega^{\prime}, \nu\right)\) and \(\boldsymbol{v}\) min \(\left(w^{\prime}, \nu\right) . \quad\) The requirement that the argument of the \(A\)-function fall in the range \((-1,1)\) yields
\[
\begin{equation*}
u_{m i n}=(\bar{\nu}-\underline{\nu}) / 2 w=|\nu-v \cdot| / 2 w \tag{2.18}
\end{equation*}
\]
For \(u<u_{m i n} R_{u}\) will be zero. For \(u>u_{m i n}\), contribution to \(R_{4}\) will come from part of the range of integration over \(\mu^{\prime}\).
\[
-1 \leq \mu^{\prime} \leq 1-[(\bar{\nu}-\nu) / w u]
\]
Now introducing the Hexutitie function \(E\left(x_{0} x_{0}\right)\), defined such
```

that $\Phi=1$ when $x>x_{0}$ and 0 otherwise and also substituting $y \equiv \nu^{\prime}$ - wu ${ }^{\prime}$ in equation (2.17) we get

$$
\begin{equation*}
F_{L u}\left(\nu^{\prime}, \nu\right)=\left(4 w^{2} u^{2}\right)^{-1} \Phi(u-|\nu-\nu \cdot| / 2 w, \quad \sigma) \int_{\nu-w u}^{\frac{\nu+w L I}{}} f(y) d y \tag{2.19}
\end{equation*}
$$

Finally averaging over the Maxwellian velocity distribution

$$
\begin{equation*}
F(u) d u=\pi^{-3 / 2} e^{-u^{2}}\left(4 \pi u^{2}\right) d u \tag{2.20}
\end{equation*}
$$

we get the following expression for coherence in the atom's frame (cases I and II as described below)

$$
\begin{equation*}
R\left(\nu^{\prime}, \nu\right)=\left(\pi^{1 / 2} w^{2}\right)^{-1} \int_{u_{\min }}^{\infty} d u e^{-u^{2}} \int_{\bar{\nu}-w u}^{\nu+w u} f(y) d y \tag{2.21}
\end{equation*}
$$

Transforming $F_{A}\left(\nu^{\prime}, \nu\right)$ to Doppler units,

$$
x^{\prime}=\left(\nu^{\prime}-\nu_{0}\right) / w ; \quad x=\left(\nu-\nu_{0}\right) / w
$$

$$
\begin{equation*}
R\left(x^{\prime}, x\right)=w^{2} \mathrm{R}\left(\nu^{\prime}, \nu\right)\left(d \nu^{\prime} / d x^{\prime}\right)(d \nu / d x) \tag{2.22}
\end{equation*}
$$

RESULTS FOR SPECIFIC CASES

(a) Case I: This corresponds to the scattering of a photon by an atom with two perfectly sharp states and so $f(y)=\delta\left(y-\nu_{0}\right) ; u_{\text {min }}$ now becomes effectively $u^{\prime}{ }_{\text {min }}=\max \left(\left|x^{\prime}\right|,|x|\right)$. Then from equations (2.21) and (2.22)

$$
\begin{equation*}
R_{I}(x, x)=\pi^{-1 / 2} \int_{u_{m i n}}^{\infty} e^{-u^{2}} d u=\frac{1}{2} \operatorname{erfc}\left(u_{m i n}^{\prime}\right) \tag{2.23}
\end{equation*}
$$

where the complimentary error function is defined as

$$
\begin{equation*}
\operatorname{erfc}(x)=2 \pi^{-1 / 2} \int_{x}^{\infty} e^{-z^{2}} d z \tag{2.23a}
\end{equation*}
$$

Substituting for u^{\prime} min ,

$$
\begin{equation*}
R_{1}\left(x^{\prime}, x\right)=\frac{1}{2} \operatorname{erfc}\left[\max \left(|x|,\left|x^{\prime}\right|\right)\right] \tag{2,24}
\end{equation*}
$$

The profile of absorption function is given by,

$$
\begin{equation*}
\phi\left(x^{\prime}\right)=\int_{-\infty}^{\infty} \mathrm{F}\left(x^{\prime}, x\right) d x \tag{2.25}
\end{equation*}
$$

$\phi(x)$ can also be derived from first principles. Thus considering the equations (2.14) and (2.20)
$\phi\left(\nu^{\prime}\right)=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} u^{2} e^{-u^{2}} d u \int_{-1}^{1} f\left(\nu^{\prime}-w \mu^{\prime} u\right) d \mu^{\prime} \int_{-1}^{1} \int_{0}^{\infty} P\left(\nu^{\prime}-w \mu^{\prime} u ; \nu-w \mu\right) d \nu d \mu$

$$
(2.26)
$$

Since F is the emission probability, the inner integral over ν in the above equation gives unity and the integral over μ, a factor of 2. Therefore the above equation reduces to,

$$
\begin{equation*}
\phi\left(\nu^{\prime}\right)=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} u^{2} e^{-u^{2}} d u \int_{-1}^{1} f\left(\nu^{\prime}-w \mu^{\prime} u\right) d \mu^{\prime} \tag{2.27}
\end{equation*}
$$

For case I, $f(y)=\delta\left(y-\nu_{0}\right)$. Therefore equation (2.27) becomes,

$$
\begin{equation*}
\phi\left(\nu^{\prime}\right)=\frac{2}{\sqrt{n}} \int_{0}^{\infty} u^{2} e^{-u^{2}} d u \int_{-1}^{1} \delta\left(\nu^{\prime}-\nu_{0}-w \mu^{\prime} u\right) d \mu^{\prime} \tag{2.28}
\end{equation*}
$$

The integral over μ^{\prime} exists only when $u_{\text {min }} \geq\left|\left(\nu^{\prime}-\nu_{0}\right) / w\right|$ and is
equal to $1 / w u$. Thus we get after transformang to Doppler units

$$
\begin{equation*}
\phi\left(x^{*}\right)=\frac{1}{\sqrt{\pi}} \int_{x^{0}}^{\infty} 2 u e^{-u^{2}} d u=\frac{1}{\sqrt{\pi}} e^{-x^{\prime 2}} \tag{2.29}
\end{equation*}
$$

The complimentary error function in equation (2.232) is evaluated using the Fational approximation method given in 'Mathematical functions' by Abramovitz and Stegun (1974). This R_{1} function describes an idealized situation. Normally one of the atomic states will be broadened. still it is useful to study this limiting case, for, it demonstrates the effects of Doppler redistribution alone as seen by an observer in the laboratory frame examining an ensemble of moving atoms. $\mathrm{R}_{\mathrm{I}}\left(x^{\prime}, x\right) / \phi\left(x^{\prime}\right)$ which is plotted in Fig $5(a)$ is the probability of emission at frequency x per absorption when the absorption is at x^{\prime}. This is in good agreement with that given in Mihalas (1978).
We see from figure $5(a)$ that a photon absorbed at
frequency x^{\prime} is emitted with equal probability at all x such
that $-\left|x^{\prime}\right| \leq|x| \leq|x|$ and with exponentialiy decreasing
probability beyond this range. In the atom's frame, absorption
and emission occur at only the line centre frequency.
Therefore if an atom is absombing at frequency x means that
it is moving with a velocity of x Doppler unita. The photon
which is absorbed has an equal probability of being emitted in
ali directions because of isotropic phase function. Therefore
it has equal probability of being emitted in the above range.
(b) Case II: Here the lower level is sharp and the upper level is radiatively broadened. The absorption profile in the atom's frame is given by the expression (2.3a). Transforming It to laboratory frame and substituting that expression in equation (2.21) we get,
$R_{i x}\left(\nu^{\prime}, \nu\right)=\left(w^{2} \pi^{3 / 2}\right)^{-1} \delta \int_{u_{m i n}}^{\infty} d u e^{-u^{2}} \int_{\nu-w u}^{\nu+w L} d y\left[\left(y-\nu_{0}\right)^{2}+\delta^{2}\right]^{-1}$
converting to Doppler units we have
$R_{I I}\left(x^{\prime}, x\right)=\frac{1}{\pi^{2 / 2}} \int_{\left|x^{\prime}-x\right| / 2}^{\infty} e^{-u^{2}}\left[\tan ^{-1}\left[\frac{\underline{x}+u}{a_{j}}\right]-\tan ^{-1}\left[\frac{\bar{x}-u}{a_{j}}\right]\right] d u$
where $\bar{x} \equiv \max \left(|x|,\left|x^{\prime}\right|\right)$ and $\underline{x} \min \left(|x|,\left|x^{\prime}\right|\right)$ and $a_{j}=\delta / w$, is the damping constant for upper level. A typical value of 2×10^{-3} for α_{j} is chosen.
DERIVATION OF PROFILE FUNCTION
Now the absorption coefficient in the atomic frame is given by equation (2.3a). Substituting that after suitable transormations in equation (2.27) we get,
$\phi\left(\nu^{\prime}\right)=\frac{2 \delta}{\pi^{2 / 2}} \int_{0}^{\infty} u^{2} e^{-u^{2}} d u \int_{-1}^{1} \frac{1}{\left(w^{\prime}-\nu_{0}-w \mu^{\prime} u\right)^{2}+\delta^{2}} d \mu^{\prime}$

Substituting $y=\nu^{\prime}-w \mu^{\prime} u$ in the above equation we get,
$\phi\left(\nu^{\prime}\right)=\frac{2 \delta}{w \pi^{3 / 2}} \int_{0}^{\infty} u e^{-u^{2}} d u \int_{\nu^{\prime}-w i u}^{\nu^{\prime}+w u} \frac{1}{\left(y-u_{0}\right)^{2}+\delta^{2}} d y$

Converting to Doppler units and integrating over y we get,
$\phi\left(x^{\prime}\right)=\frac{a_{j}}{\pi^{3 / 2}} \int_{0}^{\infty} d^{\infty}\left(e^{-u^{2}}\right)\left[\tan ^{-1}\left(\frac{x^{\prime}+u}{\alpha_{j}}\right]-\tan ^{-1}\left[\frac{x^{\prime}-u}{\alpha_{j}}\right]\right]$

Integrating the above equation by parts we get,
$\phi\left(x^{\prime}\right)=\frac{a_{j}}{n^{3 / 2}} \int_{-\infty}^{\infty} \frac{e^{-u^{2}} d u}{\left(x^{\prime}-u\right)^{2}+a_{j}^{2}}=H\left(\alpha_{j}, x^{\prime}\right)$
where H is the Voigt function. This scattering process applies to resonance 1 ines in low density media where collisional broadening of upper level is negligible like that of Hydrogen Lyman - a in the interstellar medium. From the plot of $R_{I I}\left(x^{\prime}, x\right) / \phi\left(x^{\prime}\right)$ in $f i g 5(b)$ we see the coherency for the wing photons and also that they have the least probability of being emitted at the Iine centre. In Doppler core, R behaves like other redistribution functions. Most of the atoms will be moving with low velocities and they absorb near the line centre. Once they absorb near line centre, they are going to emit in the Doppler core according to the mechanism described for R_{1} function. Absorption in the atom's frame follows a Lorentzian distribution which allows the photons to be absorbed in the wings away from the line centre. since the emission process is coherent, the emission also takes place in the line wing. Emitted frequency is not doppler shifted because of the low velocities involved. Therefore we see in the line core, there $i=$ Doppler redistribution and strong non-coherence, while in the wing the scattering is more nearly coherent for $R_{I I^{*}}$ Fig $S(b)$ is in complete agrement with that of Heinzel and Hubeny (1983).

Case III: Here we consider the collisional broadening of the upper level. Substituting the forms for absorption and emassion coefficients from equations (2.4a) and (2.4b) in equation (2.14) and mar:ing the appropriate transformations, we get,
$R_{I I I}\left(\nu^{\prime}, \nu\right)=\frac{1}{4} \int_{-1}^{1} \frac{(\delta / \pi) d \mu^{\prime}}{\left(\nu^{\prime}-w \mu^{\prime} u-\nu_{0}\right)^{2}+\delta^{2}} \int_{-1}^{1} \frac{(\delta / \pi) d \mu}{\left(\nu-w \mu \mu-\nu_{0}\right)^{2}+\delta^{2}}$ Averaging over a Maxwellian velocity distribution and converting to Doppler units we have

$$
\begin{align*}
R_{I I I}\left(x^{\prime}, x\right)= & \pi^{-\frac{5}{2}} \int_{0}^{\infty} e^{-u^{2}}\left[\tan ^{-1}\left[\frac{x^{\prime}+u}{a_{j}}\right]-\tan ^{-1}\left[\frac{x^{\prime}-u}{\alpha_{j}}\right]\right] \\
& \times\left[\tan ^{-1}\left[\frac{x+u}{a_{j}}\right]-\tan ^{-1}\left[\frac{x-u}{a_{j}}\right]\right] d u \tag{2.33}
\end{align*}
$$

Absorption profile is defined in a similar way as in the case of $\mathrm{F}_{\mathrm{II}} \mathrm{F}_{\mathrm{IIII}}\left(x^{\prime}, x\right) / \phi\left(x^{\prime}\right)$ for $\alpha_{j}=2 \times 10^{-3}$ and 10^{-3} are plotted in figures $5(c)$ and $5(d)$. We see that the wing photons get completely redistributed and they have a high probability of being emitted at the line centre. This is due to the fact that the emission in the atom's frame follows Lorentzian distribution which peaks at line centre frequency. Fig 5 (d) is in good agreement with that of Finn (1967).

When the lower and upper levels are broadened by radiative damping, the angle dependent laboratory frame redistribution is given by (Heinzel, 1981),
$F_{v}\left(x^{\prime}, n^{\prime} ; x^{\prime} n\right)=\frac{1}{4 \pi^{2} \sin \theta}\left[H\left(\alpha_{j} \sec \frac{0}{2}, \frac{x+x^{\prime}}{2} \sec \frac{\theta}{2}\right)\right.$

$$
\begin{equation*}
\left.\times H\left(\alpha_{j} \sec \frac{\theta}{2}, \frac{x+x^{\prime}}{2} \sec \frac{\theta}{2}\right)+E_{v}\left(x^{\prime}, x, \theta\right)\right] \tag{2,54}
\end{equation*}
$$

where is the angle of scattering. n and n denote the directions of the flight of the absorbed and emitted photons and they satisfy the relation cos $0=n_{n} n^{\prime}$. The fumction E is given by
$E_{v}\left(x^{\prime}, x, \theta\right)=\frac{\sin \theta / 2}{\sqrt{\pi}} \operatorname{Re} \int_{0}^{-t^{2}}\left[e^{-2 w t}+e^{-2 w \cdot t}\right] \Delta(t) d t$
where $\Delta(t)=D\left(Z+t \cos \theta / 2+a_{i} \sec \theta / 2\right)-D(Z+t \cos \theta / Z)$

$$
\begin{align*}
& z=\sec \theta / 2\left(a_{j}-i \frac{x+x^{\prime}}{2}\right) \tag{2.36}\\
& w=a_{i}+a_{j}-i x \tag{2.37}\\
& w^{*}=a_{i}+a_{j}-i x^{\prime} \\
& D(\omega)=H(p, q)+i K(p, q) \quad \omega=p-i q
\end{align*}
$$

$$
K(p, q)=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-t^{2}-2 p t} \sin (2 q t) d t
$$

a_{i} and a_{j} being the damping constants for lower and upper levels respectively, $a_{i}=a_{j}=10^{-3} i s$ chosen for our purposes. The common Voigt functions $H(p, q)$ and $K(p, q)$ are computed using the method due to Matta and Reichel (1971).

Evaluation of E-term

The integral in equation (2.35) can be approximated
with a numerical quadrature as (Heinzel, 1981)
$E_{v}\left(x^{\prime}, x_{,} \theta\right) \cong \frac{\sin \theta / 2}{\sqrt{n}}$ Fie $\sum_{i=0}^{M} \int_{t_{i}}^{t_{i}+h} e^{-t^{2}}\left[e^{-2 w t}+e^{-2 w^{\prime} t}\right] \Delta(t) d t$
where t_{0} is 0 and h is the integration step. The complex function $\Delta(t)$ can be expanded as
$\Delta(t) \cong \Delta\left(t_{i}\right)+a\left(t-t_{i}\right) \Delta_{1}\left(t_{i}\right)+\frac{a^{2}}{2}\left(t-t_{i}\right)^{2} \Delta_{2}\left(t_{i}\right)+\ldots \ldots$.

$$
(2.39)
$$

with $\quad \Delta_{1}\left(t_{i}\right)=D_{1}\left(z+a t_{i}+\alpha \alpha_{i}\right)-D_{1}\left(z+a t_{i}\right)$

$$
\begin{equation*}
\Delta_{2}\left(t_{i}\right)=D_{2}\left(z+a t_{i}+a a_{i}\right)-D_{2}\left(z+a t_{i}\right) \tag{2.40}
\end{equation*}
$$

$$
a=\cos \theta / 2 \quad, \quad a^{\prime}=\sin \theta / 2
$$

The complex derivatives of $D(u)$ follow the recurrence relations (Heinzel, 1978)

$$
\begin{align*}
& D_{1}(u)=2 u D(u)-2 / \sqrt{\pi} \\
& D_{2}(u)=2 u \cdot D_{1}(u)+2 D(u) \tag{2.41}
\end{align*}
$$

In the above reference (Heinzel, 1981), the terms up to only the first order are given. But to obtain accurate results we find that one has to consider 2 nd order terms. Here we are showing explicitly for the first time, the forms of the second order terms. Inserting equation (2.39) into equation (2.38) and relating terms up to second order we obtain

$$
\begin{aligned}
& E_{v^{\prime}}\left(x^{\prime}, x, \theta\right)=\frac{\sin \theta / 2}{\sqrt{\pi}} \operatorname{Re} \sum_{i=0}^{M}\left\{\Delta\left(t_{i}\right)\left[\phi_{i}(w)+\phi_{i}\left(w^{0}\right)\right]\right. \\
& \left.\quad+\alpha \Delta_{1}\left(t_{i}\right)\left[w_{i}(w)+w_{i}\left(w^{\prime}\right)\right]+\frac{\alpha^{2}}{2} \Delta_{2}\left(t_{i}\right)\left[n_{i}(w)+n_{i}\left(w^{\prime}\right)\right]\right\}
\end{aligned}
$$

$$
\begin{align*}
& 6 \% \\
& \phi_{i}(w)=\int_{t_{i}}^{t_{i}^{+h}} e^{-t^{2}-2 w t} d t=\frac{\sqrt{\pi}}{2} e^{w}\left[\operatorname{erfc}\left(t_{i}+w\right)-\operatorname{erfc}\left(t_{i}+w+h\right)\right] \\
& \psi_{i}(w)=\int_{t_{i}}^{t_{i}+h} e^{-t^{2}-\text { Swt }}\left(t-t_{i}\right) d t \\
& =\frac{e^{w^{2}}}{2}\left[e^{-\left(t_{i}+w\right)^{2}}-e^{\left.-\left(t_{i}+w+h\right)^{2}\right]-\left(w+t_{i}\right) \phi_{i}(w)}\right. \tag{2.43}\\
& n_{i}(w)=\int_{t_{i}}^{t_{i}^{+h}} e^{-t^{2}-2 w t}\left(t-t_{i}\right)^{2} d t \\
& =\frac{e^{w^{2}}}{2}\left[e^{-\left(t_{i}+w\right)^{2}}\left(t_{i}+w\right)-e^{-\left(t_{i}+w+h\right)^{2}}\left(t_{i}+w+h\right)\right] \\
& +\frac{\phi_{i}(w)}{2}-\left(w+t_{i}\right)^{2} \phi_{i}(w)-2 w_{i}(w)\left(w+t_{i}\right) \tag{2.44}
\end{align*}
$$

We evaluated $\phi_{\text {s }} w$ and n functions in separate modules and substituted the values in the summation (2,42) to obtain the E_{v} function.

The angle averaged expression can be obtained by

$$
\begin{equation*}
F_{v}\left(x^{\prime}, x\right)=8 \pi^{2} \int_{0}^{\pi} R_{v}\left(x^{\prime}, x, \theta\right) \sin \theta d \theta \tag{2.45}
\end{equation*}
$$

The corresponding absorption profile is

$$
\begin{equation*}
\phi\left(x^{\prime}\right)=\int_{-\infty}^{\infty} R_{v}\left(x^{\prime}, x\right) d x=H\left(a_{i}+\alpha_{j}, x^{\prime}\right) \tag{2.46}
\end{equation*}
$$

Figure 5. The probability of emission $R\left(x^{\prime}, x\right) / \phi\left(x^{\prime}\right)$ at frequency x per absorption when the absorption

We employed Gaussian quadrature points with 20 angles to
evaluate the integral in equation (2.45). Equation (2.46) can
be derived in the same lines as that of equation (2.32).

2.2.3. Symmetry properties of the LFRE

We see that the equations $(2.24),(2.30),(2.33)$ and (2.34) satisfy the following relationsa

$$
\begin{gather*}
R_{i}\left(-x^{\prime},-x\right)=R_{i}\left(x^{\prime}, x\right) ; R_{i}\left(x^{\prime}, x\right)=R_{i}\left(x_{1} x^{\prime}\right) \quad i=I, I I, I I I, V \\
R_{I, I I I}\left(x^{\prime}, x\right)=R_{I, I I I}\left(x^{\prime},-x\right) \tag{2.47}
\end{gather*}
$$

These symmetry relations can be used to advantage while calculating the redistribution functionse Eecause of them, nearly one fourth of the redistribution matrix elements only need to be computed.
2. $-\quad$ Easic equations and the computational procedure.

The equation of transfer for a two level atom with plane parallel geometry is given by
$\mu \frac{d I}{d z}(x, \mu, z)=k_{L}(z)[\beta+\phi(x)][S(x, z)-I(x, \mu, z)]$
and for the oppositely directed beam
$-\mu \frac{d I}{d z}(x,-\mu, z)=r_{z}(z)[\beta+\phi(x)][S(x, z)-I(x,-\mu, z)]$
where $I(x, \mu, z)$ is the specific intensity at angle $\theta=\cos ^{-1} \mu$, $[\mu \in(0,1)]$ at the geometrical point z and frequency $x=\left(\nu-v_{0}\right) / \Delta s, \Delta s$ being some standard frequency interval. θ is the angle between the ray and the normal to the surface at 2 . The source function $S(x, z)$ is given by

$$
\begin{equation*}
S(x, z)=\frac{\phi(x) s_{x}(x, z)+\beta s_{c}}{\phi(x)+\beta} \tag{2.50}
\end{equation*}
$$

where S_{x} and S_{c} refer to the source functions in the line and continuum respectively. The line soumce function is given by

$$
\begin{equation*}
S_{L}(x, z)=\frac{(1-\varepsilon)}{2 \phi(x)} \int_{-\infty}^{\infty} \int_{-1}^{1} R\left(x^{\prime}, x\right) I\left(z, x^{\prime}, \mu^{\prime}\right) d \mu^{\prime} d x^{*}+c B \tag{2,51}
\end{equation*}
$$

where $c i s$ the probability per scatter that a photon is destroyed by collisional de-excitation. B is the Planck function. We have set $S_{C}=E=1$ in all cases. β is the ratio of continuous opacity per Doppler width to the line opacity.

The above equations are solved within the framework of Discrete space theory technique (Grant and Peraiah; 1972). The
computer code given by Feraiah (1978) is modified to exploit
the symmetry properties of the problem and also to include any
type of redistribution function with the least number of
changes in the program. Gaussian quadrature points are used
for frequency and angular mesh. 24 frequency points and two
angles are chosen. Since the solution to these equations is
symmetric with respect to the line centre, only the positive
frequency grid is considered. For evaluation of the scattering
integral in equation (2. 51) the technique described by
Adams, Hummer and Fybicki (1971) is adopted.
2.4 Fiesults and discussion. 2.4.1 Optically thin pure scattering medium ($x=0$)

Fig 6 gives the emergent intensity as a function of frequency for a purely scattering atmosphere. The CRD case with Doppler and Voigt absorption profiles (damping parameter $\alpha=2 \times 10^{-3}$, are also plotted for the purpose of comparison. Boundary conditions considered ares

$$
I\left(x_{1} \mu_{y} \tau=T\right)=1 \quad I\left(x_{y}-\mu_{y} \tau=0\right)=0
$$

Total optical depth considered is $=155$. The criterion for determining whether the medium is effectively optically thick or thin is given by (Hummer, 1965)
$c T>1 \quad$ for Doppler profile.
$e(T / \propto)^{1 / 2} \gg 1 \quad$ for Vaigt protile.

Since the wings are optically thing the photons escape in the wings freely and the emergent intensity is nearly the same na the incident intensity. The intensity profiles due to R_{I}, $R_{I x}$ and R_{v} are nearly the seme.

Figure 6 Emergent intensities for R_{y} and RIII are compared with cRD at $\varepsilon=\beta=0$ III 0.2 and 0.7 for the caso

Deeper in the medium, the radiation in the wings does not differ very much from the core. This is because the incident radiation has not undergone much of absorption in the core. From figure 7 (b) it is clear that the differences between the source function values in the wings are reduced for $R_{I I}, R_{v}$ and $C R D$ and also that they do not deviate very much from the values corresponding to the line centre.

2.4.2 Dptically thin scattering medium with thermal sources.

When thermal sources $\left(e=10^{-3}, B=1\right)$ are added throughout to the above medium the spectral line becomes shallow with higher intensity at the line centre. The ratio (R.) of the intensity due to the pure scattering medium to that of the medium with thermal sources is given by

$$
R(x, \mu)=\frac{I(x, \mu, \tau=0) \text { pure scattering medium }}{I(x, \mu, \tau=0) \text { medium with thermal sourcess }}
$$ frequencies and angles.

$\mathrm{R}(x, \mu)$							
μ	0.318	1.12	1.89	2.6	3.27	3.9	3.97
0.21	0.71	0.72	0.78	0.96	0.99	1.00	1.00
0.78	0.72	0.73	0.88	0.99	1.00	1.00	1.00

When analysing the above table one should remember that the medium with thermal sources (e $=0$) has in addition incident radiation at the lower boundary. From the higher layers where optical depth is low (at line core), we get the radiation from thermal sources. Since the radiation field is unattenuated, we get higher intensity at line core compared to a pure scattering medium where radiation comes from deeper layers and is absorbed giving us a deeper absorption profile. The line wings are optically thin and hence the radiation escapes easily whatever be the sources in the medium. Therefore the wing intensities do not differ for the two different types of media. Both the media do not have continuous source function because we have assumed $\beta=0$.
2.4.3. Pure mcattering medium with high optical depth
when the total optical depth at the line centre is increased to 5×10^{4}, the emergent intensity profile at $\mu=0.78$

2.4.4. Optically thick scattering medium with thermal sources.

Thermal emission dominates the picture when thermal sources are added to the above medium. The photons are re-emitted according to Doppler redistribution in the core. Therefore all the redistribution functions give the same intensity in the core. The diffusion of energy takes place from the core to the wing according to the particular type of

Figure 8 Emergent intensity for the pure scattering medium.
$(\varepsilon=\beta=0)$. The numbers denote the following cases (1) R_{I} (2) $R_{\text {II }}$ (3) $R_{I I I}$
(4) CID with IFoigt absorption profile (VAP) (5) R R_{V}.

Fieure Same a量 flgure 范ror
(6) CRD with Dopplent alesorption profile
redistribution function. F_{rl} does not allow this diffusion
easily and so it produces less intensity in the wings.
Therefore, for this case also, the more non-coherent the
redistribution is, the higher will be the intensity in the
wings which can be seen from figure 9.

2.4.5. Medium with only internal sources.

The above result can be illustrated in a more dramatic way if we remove the direct radiation source and have only thermal sources. Boundary conditions are:

$$
\begin{array}{lrl}
\mathrm{I}^{+}(x, \mu, \tau=T)=0 & ; & \mathrm{I}^{-}(x, \mu, \tau=T)=0 \\
\varepsilon=10^{-3}, \mathrm{~B}=1 & \text { (throughout the medium) }
\end{array}
$$

The emergent inkensity is plotted in figures 10 and 12 for optically thin and thick cases. The ratios of emergent source functions at different frequencies for the case $T=155$ is given in table 2.

x	$S_{L}\left(R_{V}\right) / S_{L}\left(R_{\mathbf{x I}}\right)$	$S_{L}\left(R_{v}\right) / S_{L}\left(R_{I I}\right)$
0.38	0.99	1.02
1.89	0.98	1.03
3.89	1.80	0.72
5.97	8.18	0.68

Figure 1° The emgrgent intensity for the case $\epsilon=10^{-3}, \beta=0, T=155$ and no incident radiation on the boundaries. (b) $\mu=0.7$ (b) $\mu=0.2$. Numbers

(3) $R_{I I I}, a_{j}=10^{-3}$ (4) $R_{I I}, a_{j}=2 \times 10^{-3}$

Abstract

The partial coherency impedes the escape of photons through the wings. Therefore the efficiency of transfer of photons to the wings depends on the noncoherency of the redistribution mechanism. R_{x} and $R_{\text {mix }}$ being more noncoherent, transfer more photons to the wings. The result for R_{mx} is in qualitative agreement with that of Hummer (1969) and $R_{\text {mix }}$ with that of Vardavas (1976b). Similar emergent profiles have been obtained by Hubeny and Heinael (1984) but for $T=10^{4}$ and $=10^{-4}$.

2.4.6. Continuous absorption

To see the effect of continuous absorption on line transfer with Ry redistribution, we consider certain cases with $\varepsilon=\beta=10^{-3}$ and $S_{C}=B=1$. We also have some cases of very high optical depths of the order of 10^{6}. We have covered a wide range of thermal sources. This kind of study is ugeful in understanding the formation of strong resonance lines like Ca II H and K, Hydrogen Lyman a etc. There is no input radiation to the medium. The frequency dependent source function at various optical depths is given in fig $13(a)$. Making use of the assumption $S_{c}=B$ and substituting equation (2.51) into equation (2.50) we have
$S(x)=\frac{1-\xi(x)}{2-\phi(x)} \int_{-\infty}^{\infty} \int_{-1}^{1} R\left(x^{\prime}, x\right) I\left(x^{*}, z ; \mu^{\prime}\right) d \mu^{\prime} d x^{\prime}+y(x) B$ (2.52)
where $\quad \zeta(x)=\frac{\beta+c(x)}{\beta+\phi(x)}$

In the far wings, $f(x)=1$ and therefore $S(x) \rightarrow B$ at all

Figure 72 Same as figure 1 p for $T=5 \times 10^{4}$.
numbers denote the following cases:
(1) R_{I} (2) $R_{I I}$ (3) $R_{I I I}$ (4) Ciw with VAP (5) R_{V} (6) CRD with LAP.

figure 13 (a) Sourte function for $T=0,12$, and 58
(b) Emergent intensities for R_{V} with $G=\beta=10^{-3}$.

Emergent intensity plot ied against frequency. (1) Medium with only thermal sources, $R_{I I}$ redistribution, total optical depth $T=5.10^{4}, \beta=10^{-5}, \epsilon=10^{-5}(2)$ same as (1) for RIII.
(3) same as (1) for medium with incident intensity as 1.

Same as figure 1 for (1) medium with incident intensity as 1 , $R_{I I}, T=5.10^{4}, \epsilon=\beta=10^{-6}$ (2) same as (1) for $\beta=0, \epsilon=10^{-3}$ (3) same as (2) for $\beta=10^{-3}$ (4) medium with only thermal sources, CRD with voigt absorption profile, $T=5,10^{4}, \beta=\epsilon=10^{-}$ (5) same as (4) for $R_{I I}, \beta=10^{-3}, \dot{\mathcal{E}}=10^{-5}$
optical depths. In the wings, the intensity can be
approximated by $I(x, \mu) x E(3 / \mu$. These characteristics are
reflected both in source function (fig $13(a))$ as well as in
the emergent intensity profiles (fig 13 (b)). we see from
these figures that in the wings the line transfer is dominated
by the overlying continuous absorption.

The effects of continuous opacity and thermal sources are seen in figure 15. Continuous opacity generally makes the emergent intensity profile to be a weak line. When the continuous opacity is absent, a very weak emission reversal is also seen. We also get extended wings when the continuous opacity is absent. The line becomes weak because of the addition of continuous sources of photons which are emitted according to Planck distribution. When large amount of

FIĢ. 16
$T=5.10$ figure (1) for (16 medium with incident intensity as $1, \mathrm{~K}$,
 (4) pure cottori $\beta=0, \epsilon=10^{-6}$. (3) 未wno as (2) ior $\beta=0, E=10^{-6}$ $\beta=\epsilon=0$.
continuous opacity and thermal sources are present, the line
gets saturated and the higher optical depths do not affect the
emergent intensity profile. When thermal sources are reduced,
we find that the line centre intensity drops down. Eut the
wing is unaltered. When the continuous opacity source is
reduced, we get a deep absorption profile with broad wings.
This effect is continued to be reflected in figure 16 also.
Fing redistribution increases the line centre intensity
because of the easy diffusion of photons from line wing to
centre. We finally get a very deep absorption profile with
very extended wing for purely scattering atmospheres with
large optical depths.

CHAPTER 3

THE EFFECT OF COHERENT AND NON-COHERENT

ELECTRON SCATTERING WITH ATOMIC PARTIAL

FREQUENCY REDISTRIBUTI ON ON LINE FORMATION

We have incorporated partial frequency redistributirn (F'RD) function of atoms into the calculations of spectral Iines from the media in which atoms and electrons together participate in absorbing, emitting or scattering the photons. In this chapter, coherent and non-cohereint electron scattering combined with complete and partial frequency redistribution by atoms is studied for parametrized models, so that the

equation (3.1) or from the first principles. Auer and Mihalas (1968) derived the angle averaged redistribution function from the first principles. Here we give the alternate method: To normalize the above equation we have to divide it by $16 \pi^{2}$. (See equation 2.7 of Mihalas (1978)). Also substituting the following relations (assuming isotropic scattering)

$$
\begin{array}{cc}
w=\frac{\nu_{0}}{C} \sqrt{\frac{2 k T}{m}} ; & g\left(n^{\prime}, n\right)=1 \\
(1-\cos \theta)=2 \sin ^{2} \theta / 2 ; & \left(\nu-\nu^{\prime}\right)=\Delta \nu
\end{array}
$$

we have for a normalized redistribution function
$R\left(\nu^{\prime}, n^{\prime} ; \nu, n\right)=\frac{1}{32 \pi^{2} w \sqrt{\pi}} \quad \frac{1}{\sin \theta / 2} \exp \left(-\frac{(\Delta \nu)^{2}}{4 w^{2} \sin n^{2} \theta / 2}\right)$

$$
\begin{equation*}
R\left(\nu^{\prime}, \nu\right)=8 \pi^{2} \int_{0}^{\pi} R\left(\nu^{\prime}, n^{\prime} ; \nu, n\right) \sin \theta d \theta \tag{3.3}
\end{equation*}
$$

Angle averaging equation (3.2) using equation (3.3) we get
$R\left(\nu^{\prime}, \nu\right)=\frac{1}{2 w \sqrt{\pi}} \int_{0}^{\pi} e^{-(\Delta \nu)^{2} /\left(4 w^{2} \sin ^{2} \theta / 2\right)} \cos \theta / 2 d \theta$

Let $y=\sin \theta / 2$. Therefore,
$R\left(v^{\prime}, \nu\right)=\frac{1}{\omega \sqrt{\pi}} \int_{0}^{2} e^{-(\Delta \nu)^{2} /\left(4 w^{2} y^{2}\right)} d y$

Let $(\Delta \nu)^{2} /\left(4 w^{2} y^{2}\right)=z^{2}$. Then R becomes
$R\left(\nu^{\prime}, \nu\right)=\frac{1}{w \sqrt{\pi}} \int_{|\Delta \nu| / 2 w}^{\infty} \frac{e^{-z^{2}}}{z^{2}} \frac{|\Delta \nu|}{2 w} d z$

$$
=\frac{1}{\omega} \text { ierfc }\left\{\left|\frac{\nu \quad-\nu}{2 \omega}\right|\right\}
$$

(3, 4)
where ierfc (z) is the integral of the complimentary error function.

$$
\operatorname{ierfc}(z)=\int_{z}^{\infty} \operatorname{erfc}(x) d x=\frac{1}{\sqrt{\pi}} e^{-z^{2}}-z \operatorname{erfc}(z) \quad \text { (3.5) }
$$

Finally the electron redistribution function as a function of frequencies expressed in atomic Doppler units is

$$
\begin{equation*}
R^{e}\left(x^{\prime}, x\right)=\left[\frac{1}{\omega}\right) \text { ierfc }\left(\left|\frac{x-x^{\prime}}{2 \omega}\right|\right) \tag{3.6}
\end{equation*}
$$

ω is the ratio of electron to atomic Doppler widths and is given by $\omega \geq 43 A^{1 / 2}$ where A is the atomic weight of the atom under consideration. ω is chosen as 80 which corresponds roughly to that of $H e l i u m$ atoms. x^{\prime} and x are the frequencies of the absorbed and emitted photons expressed in atomic Doppler units. In Fig. 1 the function $R^{e}(\beta)$ is plotted against β where $\beta=\left|y-y^{\prime}\right|$ and y and y^{\prime} are frequencies expressed in electron Doppler units. We can not compare this with a function like Gaussian because that is a function of

Figure 1 The angle averaged Redistribution function with isotropic phase function for electron scattering as a function of $\beta=|\nu-v| / \omega$ where ω is the electron Doppler width to atomic ooppler width ratio.

```
frequency expressed an atomic Doppler units whach is BO times
```

smaller than electron Doppler units and so falls off too
steeply for comparison purposes. From now onwards superscript
'e' is used to denote electron redistribution and 'a' for
atomic redistribution function.

Fig. 1 is in good agreement with that of Hummer and Mihalas (1967). Frequency expressed in atomic Doppler units enter in the calculations of radiative transfer. So, if we transform $F^{e}\left(y-y^{\prime}\right)$ to $F^{e}\left(x^{*}, x\right)$ we find that, over a few atomic Doppler widths, $\mathrm{F}^{e}\left(x^{*}, x\right)$ remains constant. Therefore the contribution from non-coherent electron scattering remains constant in the Doppler core of the line. We also see from the Fig. 1 that the non-coherent electron scattering may influence in the wing to very large mtomic Doppler units away from the line centre. This is due to the large ratio of electron to atomic Doppler widths.

3.3. Method of solution

The radiative transfer equation for a two level atom including noncoherent electron scattering is given by $\pm \mu \frac{d I}{d z}(x, \pm \mu, z)=-\left(k_{c}+o_{e}+x_{2} \phi(x)\right) I\left(x_{0} \pm \mu, z\right)+x_{2} \pm \phi(x) E$ $+k_{c} E+\frac{1-\varepsilon}{2} x_{2} \int_{0}^{+1} \int_{-1}^{\infty} R^{a}\left(x^{*}, x\right) I\left(x^{*}, \mu^{*}, z\right) d \mu^{0} d x^{0}$

$$
\begin{equation*}
+\sigma_{e}^{+1} \int_{-1}^{+1} \int_{-\infty}^{\infty} R^{e}\left(x^{*}, x\right) I\left(x^{*}, \mu^{\prime}, z\right) d \mu^{\prime} d x^{\prime} \tag{3.7}
\end{equation*}
$$

where r^{\prime} and of are the continuous absorption and electron scattering coefficients for unit volume. $x_{\text {Lo }} 15$ the atomic absorption coefficient at the line centre, c, ϕ and E have the same meaning as in the previous chapter. $F^{a}\left(x^{0}, x\right)$ and $F^{e}\left(x^{0}, x\right)$ denote the atomic and electron redistribution functions respectively. For the problem of coherent electron scattering we have

$$
\begin{equation*}
\mathrm{F}^{e}\left(x^{\prime}, x\right) d x^{\prime}=\delta\left(x^{\prime}-x\right) d x^{\prime} \tag{1}
\end{equation*}
$$

where $\delta\left(x^{\prime}-x\right)$ denotes the Dirac delta function.

Though the above equation (3.7) is solved within the framework of Discrete space theory, the choice of quadrature points, normalizationssegmenting the problem into core and wing regions and the iteration procedure are all followed according to Auer and Mihalas (1968). Since modification of the method due to Grant and Feraiah (1972) is necessary to tackle this problem, an account of the method is given below:

Defining
$\beta_{e}=\frac{o_{e}}{x_{20}}, \quad \beta_{c}=\frac{k_{c}}{x_{20}}, \quad$ and $\quad \beta_{1}=\beta_{e}+\beta_{c}$ we get
$\pm \frac{\mu}{x_{2}} \frac{d I}{d z}(x, \pm \mu, z)=-[\beta+\phi(x)] I(x, \pm \mu, z)+\varepsilon \phi(x) B$

$$
+\frac{1-\varepsilon}{2} \int_{-1}^{1} \int_{-\infty}^{\infty} R^{\alpha}\left(x^{\prime}, x\right) I\left(x^{\prime}, \mu^{\prime}, z\right) d x^{\prime} d \mu^{\prime}+\beta_{C} B
$$

$$
+\frac{\beta_{e}}{2} \int_{-1}^{1} \int_{-\infty}^{\infty} R^{e}\left(x^{0}, x\right) I\left(x^{\prime}, \mu^{\prime}, z\right) d x^{\prime} d \mu^{\prime}
$$

```
    Since thas problem has symmetric solution with respect
to the line centre, we need to consider only half the frequency
grid.
\pm\frac{\mu}{\mp@subsup{x}{20}{0}}\frac{dIz}{dz}(x,\pm\mu,z)=-[\beta+\phi(x)]I
+\frac{1-\varepsilon}{2}\mp@subsup{\int}{-1}{1}\mp@subsup{\int}{0}{\infty}[\mp@subsup{F}{}{a}(\mp@subsup{x}{}{*},x)+\mp@subsup{R}{}{A}(-\mp@subsup{x}{}{\prime},x)]I(\mp@subsup{x}{}{\prime},\mp@subsup{\mu}{}{\prime},z)d\mp@subsup{x}{}{\prime}d\mp@subsup{\mu}{}{\prime}+\mp@subsup{\beta}{c}{E}
+\frac{\mp@subsup{\beta}{e}{\prime}}{2}\mp@subsup{\int}{-1}{1}\mp@subsup{\int}{0}{\infty}[\mp@subsup{F}{}{e}(\mp@subsup{x}{}{\prime},x)+\mp@subsup{F}{}{e}(-\mp@subsup{x}{}{\prime},x)]I(\mp@subsup{x}{}{\prime},\mp@subsup{\mu}{}{\prime},z)d\mp@subsup{x}{}{\prime}d\mp@subsup{\mu}{}{\prime}
The frequency integration is split into two regions. One is the core region where the interval is \(\left[0, x_{0}\right]\) and the other is the wing region where the interval is \(\left[x_{0}, \infty\right.\). \(\quad\). Reason for such a demarkation is due to the fact that the problem is characterized by two intrinsic frequency scales, one for the atoms and the other for electrons. Coverage in the line must be fine enough for taking the atomic redistribution into account. Coverage in the wings should extend to 4 electron Doppler widths which correspond to around 320 atomic Doppler widths. Here the frequency quadrature can have a larger mesh siae. Hence the equation is split into two parts; one for the core and the other for the wing region. The equation for the core region can be written as
```

$$
\begin{align*}
& \pm \frac{\mu}{x_{20}} \frac{d I}{d z}(x, \pm \mu, z)=-[\beta+\phi(x)] I(x, \pm \mu, z)+\varepsilon \phi(x) \mathrm{E} \\
& +\frac{1-\varepsilon}{2} \int_{-1}^{1} \int_{0}^{x_{0}}\left[R^{a}\left(x^{\prime}, x\right)+R^{a}\left(-x^{\prime}, x\right)\right] I\left(x^{\prime}, \mu^{\prime}, z\right) d x^{\prime} d \mu^{*}+\beta_{c} E \\
& +\frac{\beta_{e}}{2} \int_{-1}^{1} \int_{0}^{x}\left[R^{e}\left(x^{\prime}, x\right)+R^{e}\left(-x^{\prime}, x\right)\right] I\left(x^{\prime}, \mu^{\prime}, z\right) d x^{\prime} d \mu^{\prime}+D^{1}(x, z) \\
& 0 \leq x \leq x_{0}=5 \tag{3.11}
\end{align*}
$$

where

$$
\begin{align*}
& D^{1}(x, z)=\frac{1-e}{2} \int_{-1}^{1} \int_{x_{0}}^{\infty}\left[R^{a}\left(x^{\prime}, x\right)+R^{a}\left(-x^{\prime}, x\right)\right] I\left(x^{\prime}, \mu^{\prime}, z\right) d x^{\prime} d \mu^{\prime} \\
& \quad+\frac{\beta_{e}}{2} \int_{-1}^{1} \int_{x_{0}}^{\infty}\left[R^{e}\left(x^{\prime}, x\right)+R^{e}\left(-x^{\prime}, x\right)\right] I\left(x^{\prime}, \mu^{\prime}, z\right) d x^{\prime} d \mu^{\prime} \tag{3.12}
\end{align*}
$$

In the above equation, the first term on the right hand side denotes the continuous absorption. The second term represents the thermal sources and the first scattering integral denotes the photons which are reshuffled within the spectral line by the atomic scattering process. Next term is the contribution from the continuous sources to the pool of photons. The second scattering integral represents the photons which are reshuffled by electron scattering process. The term D^{1} is described after equation (3.14) in the text. For the wing region the transfer equation becomes
$\pm \frac{\mu}{x_{20}} \frac{d I}{d z}(x, \pm \mu, z)=-[\beta+\phi(x)] I(x, \pm \mu, z)+c \phi(x) E$
$+\frac{1-c}{2} \int_{-1}^{1} \int_{x_{0}}^{\infty}\left[R^{a}\left(x^{\prime}, x\right)+F^{a}\left(-x^{\prime}, x\right)\right] I\left(x^{\prime}, \mu^{\prime}, z\right) d x^{\prime} d \mu^{\prime}+\beta_{c} B$
$+\frac{\beta_{e}}{2} \int_{-1}^{1} \int_{x_{0}}^{\infty}\left[F^{e}\left(x^{*}, x\right)+R^{e}\left(-x^{\prime}, x\right)\right] I\left(x^{\prime}, \mu^{\prime}, z\right) d x^{\prime} d \mu^{\prime}+D^{2}(x, z)$

$$
\begin{equation*}
x_{0} \leq x \leq \infty \tag{3,13}
\end{equation*}
$$

where

$$
\begin{align*}
& D^{2}(x, z)=\frac{1-e}{2} \int_{-1}^{1} \int_{0}^{x}\left[R^{a}\left(x^{\prime}, x\right)+R^{a}\left(-x^{\prime}, x\right)\right] I\left(x^{\prime}, \mu^{\prime}, z\right) d x^{\prime} d \mu^{\prime} \\
& \quad+\frac{\beta_{e}}{2} \int_{-1}^{1} \int_{0}^{x_{0}}\left[R^{e}\left(x^{\prime}, x\right)+R^{e}\left(-x^{\prime}, x\right)\right] I\left(x^{\prime}, \mu^{\prime}, z\right) d x^{\prime} d \mu^{\prime} \tag{3.14}
\end{align*}
$$

In the above equations x_{0} marks the division between the core and the wing. D^{1} and D^{2} are respectively thesource terms for photons being scattered from the wings into the core and from the core into the wings. Equations (3.11) and (3.13) are coupled together through D^{1} and D^{2} terms. This coupling arises due to the noncoherent electron scattering which redistributes the photons from the core to the wing and wing to the core of the spectral line. Following Auer and Mihalas (1968) the interval $\left[x_{0}, \infty\right]$ is limited to $\left[x_{0}, x_{1}\right]$ and the remainder is handled analytically assuming $I_{x}=I_{x_{1}}$ for $x>x_{1}$ mothat I_{x} may be taken out of the integral. Mathamatically this reduces to

$$
\begin{align*}
& \int_{-1}^{1} \int_{x_{0}}^{\infty}\left[F^{e}\left(x^{\prime}, x\right)+R^{e}\left(-x^{\prime}, x\right)\right] I\left(x^{\prime}, \mu^{\prime}, z\right) d x^{\prime} d \mu^{\prime} \\
& =\int_{-1}^{1} \int_{x_{0}}^{x}\left[R^{e}\left(x^{\prime}, x\right)+R^{e}\left(-x^{\prime \prime}, x\right)\right] I\left(x^{\prime}, \mu^{\prime \prime}, z\right) d x^{\prime} d \mu^{\prime} \\
& +\int_{-1}^{1} I\left(x^{\prime}, \mu^{\prime}, I\right) d \mu^{\prime} \int_{x_{1}}^{\infty}\left[F^{e}\left(x^{\prime}, x\right)+R^{e}\left(-x^{\prime}, x\right)\right] d x^{\prime} \\
& =\int_{-1}^{1} \int_{x_{0}}^{x_{1}}\left[R^{e}\left(x^{\prime}, x\right)+F^{e}\left(-x^{\prime}, x\right)\right] I\left(x^{\prime}, \mu^{\prime}, z\right) d x^{\prime} d \mu^{\prime} \\
& +2\left[i^{2} \operatorname{erfc}\left|\frac{x-x_{1}}{2 w}\right|+i^{2} \operatorname{erfc}\left|\frac{x+x_{1}}{2 w}\right|\right] \int_{-1}^{1} I\left(x^{\prime}, \mu^{\prime}, z\right) d \mu^{\prime} \tag{3.15}
\end{align*}
$$

where

$$
\begin{equation*}
i^{2} \operatorname{erfc}(z)=\int_{z}^{\infty} \operatorname{ierfc}\left(z^{\prime}\right) d z^{\prime}=\frac{1}{2}\left[z^{2}+\frac{1}{2}\right] \operatorname{erfc}(z)-\frac{z e^{-z^{2}}}{2 \sqrt{\pi}} \tag{3,16}
\end{equation*}
$$

The integrals are reduced to summation over weighted values of the function. The equation (3.9) can be written at frequency x_{i} and μ_{j} and depth z_{n} as

$$
\begin{aligned}
& \pm \frac{\mu_{j}}{x_{20}} \frac{d I_{i, j, n}^{ \pm}}{d Z}=-\left[\beta_{n}+\phi_{i, n}\right] I_{i, j, n}^{ \pm}+c_{n} \phi_{i, n} E_{n}+\beta_{i, n} E_{n}
\end{aligned}
$$

I^{+}and I^{-}are two oppositely directed beams. Defining

$$
\begin{align*}
& I_{i, j, n}^{ \pm}=I^{ \pm}\left(x_{i}, \pm \mu_{j}, z_{n}\right) \\
& R_{i}^{a, e}=R^{a, e}\left(x_{i}, x_{i}\right)+R^{a, e}\left(-x_{i}, x_{i}\right) \tag{3.18}\\
& \phi_{i, n}=\phi\left(x_{i}, z_{n}\right\rangle \\
& \left.I_{i, n}^{ \pm}=\left[\begin{array}{l}
I^{ \pm}\left(x_{i}, \pm \mu_{i},\right. \\
\left.I_{n}\right) \\
I^{ \pm}\left(x_{i},\right. \\
\vdots \\
I^{ \pm}\left(x_{i},\right. \\
\mu_{z}, \\
\left.z_{n}\right) \\
\end{array} \mu_{J}, z_{n}\right)\right]_{J \times 1}
\end{align*}
$$

and

$$
\begin{align*}
& M_{m}\left(I_{i, n}^{-}-I_{i, n+1}^{-}\right)+T_{n+1 / 2}\left(\beta+\phi_{i}\right)_{n+1 / 2} I_{i, n+1 / 2}^{-} \\
& =_{n+1 / 2}\left(\beta_{c}+\infty \phi_{i}\right)_{n+1 / 2} B_{n+1 / 2}+T_{n+1 / 2} D_{i, n+1 / 2}^{1,2} \tag{3.21}
\end{align*}
$$

$$
+\beta_{0, n+1 / 2}^{T}{ }_{n+1 / 2} \sum_{i=1}^{I} R_{i}^{E}, i_{i}, C_{m}\left(I_{i, n+1 / 2}^{+}+I_{i, n+1 / 2}^{-}\right)
$$

$$
+\frac{(1-c)}{2} \tau_{n+1 / 2} \sum_{i=1}^{I} R_{i}^{a}, Q_{i} \cdot C_{m}\left(I_{i, n+1 / 2}^{+}+I_{i, n+1 / 2}^{-}\right)
$$

Here the optical depth t is defined as

$$
\begin{equation*}
T_{n+1 / 2}=x_{20, n+1 / 2} \Delta z \tag{3.22}
\end{equation*}
$$

$n_{n} n+1$ and $n+1$ refer to quantities at T_{n}, T_{n+1} and T_{n+1} where mosa refers to the average over the shell in the medium

$$
\begin{align*}
& \bar{M}_{m} \frac{d I_{i 0} \pm}{d z}=-\left[\beta+\phi_{i, n}\right] I_{i, n}^{ \pm}+\varepsilon \phi_{i, n} G_{n}+\beta_{c} E_{n} \\
& +\frac{\left(1-\varepsilon_{n}\right)}{2} \sum_{i=1}^{I} F_{i}^{a}, i \alpha_{i}, C_{m}\left[I_{i}^{ \pm}, n+I_{i}^{\prime}, n\right] \tag{3.19}\\
& +\frac{\beta_{n}}{2} \sum_{i}^{I_{i}} R_{i}^{i}, i_{i}^{e} a_{i}, C_{m}\left[I_{i}^{ \pm}, n+I_{i}^{ \pm}, n\right]+D_{i, n}^{1,2} \\
& \text { Integrating the above equations over the depth interval } \\
& {\left[z_{n} z_{n+1}\right] \text { we have }} \\
& M_{m}\left(I_{i, n+1}^{+}-I_{i, n}^{+}\right)+\tau_{n+1 / 2}\left(\beta+\phi_{i}\right)_{n+1 / 2} I_{i, n+1 / 2}^{+} \\
& =\tau_{n+1 / 2}\left(B_{c}+c \phi_{i}\right)_{n+1 / 2} E_{n+1 / 2}+\tau_{n+1 / 2} D_{i, n+1 / 2}^{1,2} \tag{3.20}\\
& +\beta_{0, n+1 / 2} \tau_{n+1 / 2} \sum_{i=1}^{I} R_{i}^{e}, i_{i}, C_{m}\left(I_{i, n+1 / 2}^{+}+I_{i, n+1 / 2}^{-}\right) \\
& +\frac{(1-\varepsilon)}{2} \tau_{n+1 / 2} \sum_{i=1}^{I} R_{i}^{a}, i_{i}, C_{m}\left(I_{i, n+1 / 2}^{+}+I_{i, n+1 / 2}^{-}\right)
\end{align*}
$$

bounded by the layers τ_{n} and τ_{n+1}. Physical quantities like the absorption x, intensity I etc are averaged. M_{m} contains angular quadrature roots and the matrices α and C contain frequency and angular quadrature weights. The geometry with the boundary conditions chosen is given in the following diagram.

In the above equations we can combine the angular and frequency quadrature weights as

$$
\begin{aligned}
& w_{k}=a_{i} \tau_{j} \\
& (i, j) \equiv k E j+(i-1) j
\end{aligned}
$$

$$
(3.23)
$$

Here i and j refer to frequency and angular points. There are I total number of frequency and s total number of angular points chosen. Profile function and the redistribution functions were suitably normalized according to the procedure outlined by Auer and Mihalas (1968).

Let us define the following quantities:

$$
\begin{aligned}
& I_{n}^{ \pm}=\left[I_{k}^{ \pm}\right]_{n}, \quad \phi_{n+1 / 2}=\left[\beta+\phi_{k}\right]_{n+1 / 2} \delta_{k k^{\prime}} \\
& S_{n+1 / 2}=\left(\beta+\varepsilon \phi_{k}\right)_{n+1 / 2} E_{n+1 / 2} \delta_{k k^{\prime}}+D_{n+1 / 2}^{1,2}
\end{aligned}
$$

3. E. 1. Definition of F^{e} and D matrices for coherent and non-coherent electron scattering

Coherent electron scattering: Since the terms in D are small we first set the D vector to be a zero vector. R^{e} is given by

$$
R^{e}=\frac{\beta_{e}}{2}\left[\begin{array}{cccc}
R_{J} & & & 0 \tag{3,25}\\
& R_{J} & & \\
& & & \\
& & & R_{J}
\end{array}\right]_{I \times I}
$$

where I is the total number of frequency points in the region considered.
where s is the total number of angleg considered. Here core and wing are decoupled from each other as far as the electron redistribution is concerned. So the equations (3.11) and (3.13) can be solved separately without involving any iteration scheme.

Non-coherent electron scattering:
First iteration : Core solution
Let us denote the number of frequencies in the core and the wing as x and x respectively. Then

$$
D_{n+1 / 2}^{1}=\frac{\beta_{e}}{2}\left[d_{k}^{1}\right]_{k} \quad ; \quad d_{k}^{1}=0
$$

Here D^{1} is a zero vector because of lack of information about the wing solution in the firet instance. To evaluate the D^{1} term, we should know the radiation field in the wing. Since we have not yet solved for the radiation field in the wing, we make this term a zero vector in the first iteration. To compensate for this, we add an extra term to the $x^{2 h}$ column in the \mathcal{R}^{e} matrix which is described below:

Now the $x^{t h}$ column block in the R^{e} matrix becomes

$$
\begin{aligned}
&\left\langle R_{J}\right)_{i, I}=\left(R_{J}\right)_{i, r}+2\left[i^{2} \operatorname{erfc}\left|\frac{x_{i}-x_{I}}{2 w}\right|\right.\left.+i^{2} \operatorname{erfc}\left|\frac{x_{i}+x_{I}}{2 w}\right|\right] \\
& x_{i} \leq x_{0}
\end{aligned}
$$

where $\left(F_{j}\right)_{i, 1}$ in the Fi.H.S. are the usual electron redistribution values. The extra term corresponds to a constant value assumed for the specific intensity in the wings which is equal to its value at the last point in the core. The above equations ($3.27-3.29$) are used in equation (3.11) to obtain the core solution.

First iteration ; wing solution
The term D^{2} occurring in equation (3.13) becomes D_{i}^{2} in equations (3.20) and (3.21) which is evaluated in the following way:

$$
\begin{align*}
& D^{2}=\left[\begin{array}{c}
d_{1}^{2} \\
d_{2}^{2} \\
\vdots \\
d_{11}^{2}
\end{array}\right]_{1 \leq x_{1}} \quad d_{i}^{2}=\left[\begin{array}{ccc}
d^{2}\left(x_{i},\right. & \left.\mu_{1}\right) \\
d^{2}\left(x_{i},\right. & \left.\mu_{2}\right) \\
: & \\
d^{2}\left(x_{i},\right. & \left.\mu_{j}\right)
\end{array}\right]_{J \times 1} \tag{3.30}\\
& d_{i}^{2}=\sum_{i, 1}^{x} \sum_{j}^{\prime \prime}=\left[R^{e}\left(x_{i}, x_{i},\right)+R^{e}\left(x_{i},-x_{i},\right)\right] a_{i}, c_{j},\left(I_{i}^{+c}, j^{\prime}+I_{i \prime, j}^{-c}\right) \\
& x_{0} \leq x_{i} \leq x_{11} \tag{3.31}
\end{align*}
$$

where the superscript on I^{+}and I^{-}refers to the core solution obtained in the present iteration.

$$
\begin{gather*}
R^{e}\left(x_{i}, x_{I I}\right)=R^{e}\left(x_{i}, x_{I 1}\right)+R^{e}\left(x_{i},-x_{I I}\right)+2\left[i^{2} \operatorname{erfc}\left|\frac{x_{i}-x_{I 1}}{2 w}\right|\right. \\
\left.+i i^{2} \operatorname{erfc}\left|\frac{x_{i}+x_{I 1}}{2 w}\right|\right] \tag{3.32}
\end{gather*}
$$

```
The last term in equation (S.S2) corresponds to the analytical
term from equation (3.15). Equations (3.30-3.S2) are used in
the F.H.S of equation (3.13) to solve for the radiation field
in the wing region of the line. Dne can very easily recognise
that equation (S.S1) is nothing but the discretized form of
equation (3.14). The terms corresponding to R R
dropped because those matrix elements are very small.
Second iteration; Core solution
```

In this case

$$
D^{1}=\left[\begin{array}{c}
d_{1}^{1} \tag{3.33}\\
d_{2}^{1} \\
2 \\
d_{1}^{1}
\end{array}\right] \quad d_{i}^{2}=\left[\begin{array}{ccc}
d^{1}\left(x_{i}, \mu_{1}\right) \\
& \% & \\
& 0 & \\
d^{1}\left(x_{i}, \mu_{3}\right)
\end{array}\right]
$$

$d_{i}^{1}=\sum_{i=1}^{I_{1}} \sum_{j=1}^{j}\left(R^{E}\left(x_{i}, x_{i, 1}\right)+R^{e}\left(x_{i}, x_{i},\right)\right) \alpha_{i}, C_{j^{\prime}}\left(I_{i}^{+u} j^{\prime}+I_{i}^{-v} j^{\prime \prime}\right)$

$$
\begin{equation*}
0 \leq x_{i} \leq x_{0} \tag{3,34}
\end{equation*}
$$

where $\mathrm{F}^{e}\left(x_{i}, x_{11}\right)$ is given by equation (3.32). The superscript w on I^{+}and I^{-}refers to the wing solutions of the previous iteration. α is the quadrature weights. Now $R^{e}\left(x_{i}, x_{i}\right)$ does not contain any extra term because equation (3.34) takes into account the wing contribution to the core solution in the scattering integral.

Second iteration wing solution
d_{i}^{2} and $R^{e} \cdot s$ are defined as in equation (3.31) and (3.32)
Higher 1 terations
For the core solution, equation (3. 34) and for wing solution, quantities given by equations (3.31) and (3. 32) are followed. x_{0} is chosen as 5 and x_{1} as 320 . Frequency quadrature roots and weights are chosen according to Auer and Mihalas (1968). The iterations of the solutions for the core and wing parts are carried out till a convergence is reached for the frequency x_{0} between core and wing solutions. Typically 5 iterations are required; 3 for core and 2 for wing solutions.

$$
\begin{align*}
& \text { Now putting the terms in the equations (3.20) and } \\
& \text { (3.21) into matrix form and using the matrix definitions of } \\
& \text { (3.24) we obtain } \\
& M\left[I_{n+1}^{+}-I_{n}^{+}\right]+T_{n+1 / 2} \phi_{n+1 / 2} I_{n+1 / 2}^{+}=\tau_{n+1 / 2} S_{n+1 / 2}+\frac{(1-\infty)}{2} \\
& \tau_{n+1 / 2}\left[R^{a} W\left(I^{+}+I^{-}\right\rangle_{n+1 / 2}\right]+\frac{\beta^{e}}{2} \tau_{n+1 / 2}\left[R^{e} W\left(I^{+}+I^{-}\right)_{n+1 / 2}\right] \\
& \text { (3. 35) } \\
& M\left[I_{n}^{-}-I_{n+1}^{-}\right]+T_{n+1 / 2} \phi_{n+1 / 2} I_{n+1 / 2}^{+}=T_{n+1 / 2} S_{n+1 / 2}+\frac{(1-\infty)}{2} \\
& \tau_{n+1 / 2}\left[R^{a} W\left(I^{+}+I^{-}\right)_{n+1 / z}\right]+\frac{\beta_{2}^{2}}{2} T_{n+1 / 2}\left[R^{e} W\left(I^{+}+I^{-}\right)_{n+1 / 2}\right] \tag{3.36}
\end{align*}
$$

where

$$
M=\left[\begin{array}{lll}
M_{m} & & \tag{3,37}\\
& M_{m} & \\
& & \\
& & \\
& & M_{m}
\end{array}\right]
$$

using the Diamond rule, viz,

$$
\begin{equation*}
I_{n+1 / 2}^{ \pm}=\frac{1}{2}\left(I_{n}^{ \pm}+I_{n+1 / 2}^{ \pm}\right) \tag{3.38}
\end{equation*}
$$

Equations (3.35) and (3.36) can be combined to give

$$
\begin{aligned}
& {\left[\begin{array}{lr}
M+\frac{\tau}{2}\left[\phi-\frac{\delta}{2} R^{\alpha} W-\frac{\beta_{\bullet}}{2} R^{*} W\right] & -\frac{\delta \tau}{4} R^{a} W-\frac{\beta_{\bullet} \tau}{4} R^{\bullet} W \\
-\frac{\delta \tau}{4} R^{a} W-\frac{\beta_{\bullet} \tau}{4} R^{\bullet} W & M+\frac{\tau}{2}\left[\phi-\frac{\delta}{2} R^{a} W-\frac{\beta_{\bullet}}{2} R^{\bullet} W\right]
\end{array}\right] *\left[\begin{array}{l}
I_{n+1}^{+} \\
I_{n}^{-}
\end{array}\right]} \\
& =\left[\begin{array}{rr}
M-\frac{\tau}{2}\left[\phi-\frac{\delta}{2} F^{*} W-\frac{\beta_{-}}{2} R^{\bullet} W\right] & \frac{\delta \tau}{4} R^{\alpha} W+\frac{\beta_{\bullet} \tau}{4} R^{*} W \\
\frac{\delta \tau}{4} R^{\alpha} W+\frac{\beta_{\bullet} \tau}{4} R^{\bullet} W & M-\frac{\tau}{2}\left[\phi-\frac{\delta}{2} R^{\alpha} W-\frac{\beta_{\bullet}}{2} R^{*} W\right]
\end{array}\right] *\left[\begin{array}{c}
I_{n}^{+} \\
I_{n+1}^{-}
\end{array}\right] \\
& +\left[\begin{array}{l}
s \\
s
\end{array}\right]
\end{aligned}
$$

Defining the following auxiliary matrices

$$
\begin{equation*}
F=\frac{\tau}{2}\left[\frac{\delta}{2} R^{a} W+\frac{\beta_{E}}{2} F^{e} W\right] ; G=\frac{\tau}{2} \phi-F \tag{3.40}
\end{equation*}
$$

$$
Q=M+G ; \quad T=M-G ; \quad \Delta=\left[F^{-1} Q-Q^{-1} F\right]^{-1}
$$

equation (3. 39) can be rewritten as

$$
\left[\begin{array}{c}
I_{n+1}^{+} \tag{3.41}\\
I_{n}^{-}
\end{array}\right]=\left[\begin{array}{cc}
t(n+1, n) & r(n, n+1) \\
r(n+1, n) & t(n, n+1)
\end{array}\right]+\left[\begin{array}{l}
I_{n}^{+} \\
r \\
I_{n+1}^{-}
\end{array}\right]+\left[\begin{array}{c}
\Sigma \\
\Sigma \\
\Sigma
\end{array}\right]
$$

Transmission (t) and reflection (r) matrices now become

$$
\begin{aligned}
& t(n+1, n)=t(n, n+1)=\Delta\left[P^{-1} T+Q^{-1} P\right] \\
& r(n+1, n)=r(n, n+1)=\Delta\left[I+Q^{-1} T\right]
\end{aligned}
$$

and the internal source vectors

$$
\Sigma^{-}=\Sigma^{+}=\Sigma=T \Delta\left[P^{-1}+Q^{-1}\right]
$$

where I refers to the identity matrix of suitable size. Now the equations are in the standard form to use the Discrete space theory technique describad by Grant and Hunt (1969 a,b).

```
A detailed account of this procedure is given by Feraiah
(1971). The numerical method described so far is codified into
a computer program to obtain the solution,
J.4. Fiesults and discussion
```

The method outlined in section 3.3 is quite general and can handle any arbitrary variation of all the parameters. The specific intensity obtained has second order accuracy. Computer memory and time are probably the constraints in using this method. These problems are overcome with the advent of fast computers having virtual memory operating systems.

Boundary conditions chosen are:

$$
I^{-}\left(\tau_{N+1}, \mu\right)=1 \quad I^{+}(0, \mu)=0
$$

for all frequencies.
Two different optical. depths are chosen. One corresponds to effectively optically thin ($T=$ 155) and the other optically thick $\left(T=5 \times 10^{4}\right)$ situations. Criterion for effectively optically thick and thin are given in chapter 2. The ratio of continuous absorption to line absorption (A_{c}) is chosen as 0 and 10^{-3}. Different ratios of electron scattering to line absorption coefficients are considered $\quad\left(\beta_{e}=\right.$ $10^{-2}, 10^{-3}$, and 10^{-4}. Both coherent and non-coherent electron scattering with $C R D$ and PRD for redistribution by atoms are the different physical situations coneidered.
Coherent electron scattering without continuous
absorption

The emergent mean intensity as a function of frequency for coherent electron scattering media where redistribution of photons by atoms is either partialor complete is given in Fig. 2. In the following discussion, the core means Doppler cor"e measured in atomic Doppler widths and not the core solution referred to, in section $3 . \underset{\text { s. The Thesult for CRD with }}{ }$ Doppler absorption profile (DAF) is in complete agreement with that of Auer and Mihalas (1968). For high optical depth media, we see that the partial frequency redistribution F_{m}, F (II and $R_{v} g i v e h i g h e r$ mean intensity in the wings compared to CRD with Doppler absorption profile. Although the above functions have Voigt absorption profile (VAP) which increases the opacity in the wings substantially, the probability that a photon is scattered from the core into the wings is also strongly increased. Hence there is higher mean intensity in the wings for the redistribution functions. Among the profiles given by the FRD functions, we find that the more non-coherent the redistribution is, the higher the value of mean intensity in the wings. This is due to the fact that the non-coherency increases the transfer of photons from the core to the wing. For an optically thin medium, (T $=155$) the wings are transparent, and the directly transmitted radiation dominates the solution. This being almost the same for all

Figure 2 The emergent mran intensity for coherent electron scattering withe $=10^{\circ}$, $\beta_{c}=0, \beta_{e}=10^{-3}$. The absisea gives frequencies measured in atomic Doppler widths. The numbers denote the following cases: (1) CRD with Dopplor absorption profile (DAP) for $T=5 \times 10^{+14}$ (E) $R_{I I}$ (3) $R_{\text {III }}$ (4) R_{V} (5) CRU with DAP, $R_{I}, R_{I I}$, Ior $T 155$.

Figure 3 Same me fig. 2 with $E=10^{-3}$. The numbers denote the following cases: (1) R R^{\prime} CRD with DAP (2) $\mathrm{R}_{\text {II }}$ (3) CRD with Voigt absorption profile (VAP) (4) R

```
redistribution functions, emergent profiles obtained are
graphically unresolvable. When the thermal sources are
decreased (c=10
decrease in mean intensity throughout the profile which can be
seen from Figure S.
3.4.2. The effect of continuous absorption with coherent
    electron scattering
    In Figures 4-8, the ordinate gives emergent flumes in
units of continulum and the abscissa gives the frequency
relative to the line centre in atomic Doppler widths. The
result for DAF (Fig 4) is in quantitative agreement with that
of Auer and Mihalas (1968). For optically thick media, the
line develops an emission hump when the electron scattering is
more than the continuous absorption i irrespective of the
redistribution mechanism employed (Fig. 4). In the wings the
opacity is mainly due to continuous absorption and electron
scattering. The line core appears in absomption due to
scattering. The scattering pumps the photons from the core to
other frequencies. The transition region between the core and
the wing receives substantial amount of photons from the core.
The contribution from the core falls off in the wing and almo
the continuous mbsorption and electron scattering decreases
the intensity in the wing. Hence we see an emismion hump in
the transition region. When the total optical depth of the
medium is reduced, we see almost an absorption line with a
```

Figure 4:

The ordinate gives relative fluxes for coherent electron sateetering with $\epsilon=10^{-2}$ and $\beta_{c}=10^{-3}$. The numbers denote the following cases 1$) R_{I}, R_{I I}$ with $\beta_{e}=10^{-2}$ and $T=1552$) $R_{I}, R_{1} I$
with $\beta_{e}=10^{-3}$ and $T=1553$) $R_{I}, R_{I I} C R D$ with DAP for $\beta_{2}=10^{-2}$ with $\beta_{e}=10^{-3}$ and $\left.T=1553\right) R_{I}, R_{I I} C R D$ with DAP for $\beta_{e}=$
and $T=5 \times 10$

Figure. 5
Same as figure 4 with $E=10^{-3}$ and $\beta_{e}=10^{-3}$. The numbers denote the following cases. 1) $R_{I}, R_{I I}, R_{I I I}$ with $\beta_{e}=10^{-3}$ $T=155$. 2) $R_{I}, R_{I I}, R_{I I I}$ with $\hat{\beta}_{e}=10^{-2^{I I}}$ and $\left.T=155,3\right) R_{I}$, $R_{I I}$, CRD with vap for $\beta_{e}=10^{-2}$ and $T=5 \times 10^{3}$.

```
very small emission component. These charecteristics are
reflected in Fig. 4. When the thermal sources are reduced
(Fig.5), there are less number of photons to be redistributed
into the transition region between core and the wing.
Consequently we do not find a substantial emission hump.
```

J.4. З. Comparison of solutions for different electron
scattering coefficients

When the electron scattering coefficient is reduced, the opacity in the wing is reduced and this results in higher absalute flux values in the wing. Absolute flux at line centre will not be affected because of the high line absorption coefficient at the centre. Therefore the relative flux in the core will be more for a larger electron scattering coefficient. Hence we get deeper and broader lines for mmall Be's. Figures 4 and 5 illustrate this result.

3.4.4. Non-coherent electron scattering

The combined effect of various atomic redistribution functions and non-coherent electron scattering on emergent flux profiles is plotted in figures 6-8. The result for DAF (Fig. 6) is in complete agreement with that of Auer and Mihalas (1968). Non-coherent electron scattering combined with FRD by atoms give higher flux values in the core compared to coherent electron scattering for the parameters $T=5 \times 10^{4}$,

figure 6 : same as $X_{\text {fig. }} 4$ for noncoherent electron scattering. The numbers denote the following cases: 1) $R_{I}, R_{I I} C R D$ with DAP and VAP $\left.f \phi r \beta_{e}=10^{-4}, 2\right) R_{I I}, R_{I I I}$ for

Figure 7: The numbers denote the following cases 1) R_{1} CRD with DAP, VAP for $\beta_{e}=10^{-3} \cdot$ 2) $R_{I I}$, CRD with DAP, CRD with VAP for $\beta_{e}=10^{-4} .3$) $R_{I I}$ with $\beta_{e}=10^{-4}$, $\epsilon=10^{-3}$.

Figure 8: Numbers denote the following cases: 1) R_{I}, R, R^{\prime}, CRD with VAP for $\beta_{e}=10^{-3}$ and 2) R_{I}. RII CRD with DAP and VAP for $\beta_{e}=10^{-2}$.

```
c=10-2,}\mp@subsup{\beta}{c}{}=1\mp@subsup{0}{}{-3}\mathrm{ and }\mp@subsup{\beta}{e}{}=1\mp@subsup{0}{}{-3}(Fig 4,6). When c is reduced
to }1\mp@subsup{0}{}{-3}\mathrm{ , we find that there is no significant difference
between the flux profiles due to coherent and non-coherent
electron scatterings. The same result holds good when the
total optical depth of the medium is reduced.
```


CHAPTER 4

EFFECT OF EMISSION PROFILE ON LINE FORMATION

4.1 Introduction

The emission profile ψ_{ν} is defined as the fraction of all atoms in the upper state that, if they decay radiatively, emit photons of frequency v as seen in the laboratory frame (Mihalas, 1978).
For a resonance line photon, we know a priori fi.e.
without a dependence on the radiation field and/or level
populations, the functional form of the absorption profile.
This is due to the inherent assumption of Maxwellian
velocity distribution for the atoms in the lower level, which
is quite valid in the stellar atmospheric conditions. If the
absorption and emission can be regarded as two independent
processes, the equality of absorption and emission profiles is
assured, If there is any correlation between the absorption
and the subsequent emission, we see that the emission profile
is dependent on the radiation field. since such a correlation
exists in partial redistribution fomalism, we find that the
absorption andemission profiles need not be identical. our
aimis to find the deviation between the absorption and
emission profiles when the partial redistribution functions
are used in radiative transfer calculations.

Oxenius (1965) showed that the emission profile not

We note that the above expressions are in conformity with that of the equations of Steinitz and Shine (1973). Since we are interested in angle averaged redistribution of the radiation field in the present study, we will closely follow the above formalism. We have obtained the emission profile when the stimulated emission is not negligible. In the case of non-coherent redistribution of the photons, we expect a close equality between absorption and emission profiles. But the opposite case of a redistribution which is highly coherent in the wings is expected to make the absorption and ealsemex

```
profiles quite different from each other. So, such a situation
is studied. In section 4.2, the form of frequency dependent
source function and the method of solution are given. Here we
shall show the equality of the expressions of Steinitz and
Shine (1973) and Easchek,Mihalas and Oxenius (1981) for the
source functions. Since the formalism of Steinitz and Shine
(1973) enable us to define emission profile in a simple way,we
have adopted this method. In section 4.3, we discuss the
results briefly.
```

4.2. The source function including the emission profile.

The transfer equation for a two level atom without continuous absorption can be written as,

$$
\begin{equation*}
\frac{\mu \mathrm{dI} \nu}{d \tau_{\nu}}=\phi_{\nu}\left(I_{\nu}-S_{\nu}\right) \tag{4.1}
\end{equation*}
$$

where S_{ν} can be written $a s$,

$$
\begin{align*}
s_{\nu} & =\frac{2 h \nu^{3}}{c^{2}}\left[\frac{\omega(\nu)}{\frac{g_{2} n_{1}}{g_{1} n_{2}}-\omega(\nu)}\right] \\
& =\frac{2 h \nu^{3} / c^{2}\left[g_{1} n_{2} \psi_{\nu} / g_{2} n_{1} \phi_{\nu}\right]}{1-\frac{g_{1} n_{2}}{g_{2} n_{1}} \frac{\psi_{\nu}}{\phi_{\nu}}} \tag{4.2}
\end{align*}
$$

where $\omega(\nu)=\psi_{\nu} / \phi_{\nu}, \psi(\nu), \phi(\nu)$ being the emission and
absorption profiles, n_{1}, n_{2} are the number densities of the
lower and upper levels respectively. The other symbols have
their usual meaning. Our aim is to express the number
densities by some tractable parameters. The statistical
equilibrium equations for a two level atom taking the
absorption and emission profiles properly into account become
(Baschel et.al, 1981)

$$
\begin{aligned}
& \Pi_{2} \psi_{\nu}\left[A_{21}+E_{21} \int J_{\nu}, w_{2} \cdot d \nu+C_{21}\right] \\
& =\Pi_{1}\left[B_{12} \int J_{\nu}, R\left(\nu v^{\prime}, \nu\right) d \nu^{\prime}+C_{12} w_{2}^{*}\right]
\end{aligned}
$$

and

$$
\begin{equation*}
n_{1}+n_{2}=N_{\text {atom }} \tag{4.4}
\end{equation*}
$$

collisional de-excitation and excitation rates. The first term on the $\mathrm{F} . \mathrm{H} . S$ of equation (4.3) gives the number of atoms which absorb at frequency ω^{\prime} and emit at frequency $\nu . \psi_{\nu}^{*}$ is the natural excitation profile which is the same as the absorption profile ϕ_{ν}. The absorption profile has been defined in equation (2.9) as the integral over frequency of the redistribution function. Equation (4.4) represents the conservation of atoms. Integrating equation (4.3) over ω we get;
$n_{2}\left[A_{21}+B_{21} \int J_{\nu} \cdot \psi_{\nu} \cdot d w^{\prime}+C_{21}\right]=n_{1}\left[E_{12} \int J_{\nu} \cdot \phi_{w} \cdot d{ }^{\prime}+C_{12}\right]$
(4.5)

Defining,
$\int J_{\nu}, \psi_{\nu} \cdot d \nu^{\prime}=J_{e} \quad \int J_{\nu} \cdot R\left(\nu^{\prime}, \nu\right) d w^{\prime}=J_{m}$
and

$$
\begin{equation*}
\int J_{\nu} \cdot \phi_{\nu} \cdot d \nu=J_{a} \tag{4.6}
\end{equation*}
$$

we get from the equation (4.3) the following relation :

$$
\begin{equation*}
\frac{n_{2} w_{\nu}}{n_{1} \phi_{\nu}}=\frac{B_{12}{ }_{2} \phi_{\nu}^{-1}+C_{12}}{A_{21}+B_{21}{ }^{J}+C_{21}} \tag{4.7}
\end{equation*}
$$

Using the Einstein relations,

$$
A_{21}=\frac{2 h \nu^{3}}{c^{2}} B_{21} \quad B_{12}=\frac{9_{2}}{g_{1}} B_{21}
$$

and the thermodynamic relations;

$$
\frac{c_{12}}{C_{21}}=\left(\frac{n_{2}}{n_{1}}\right)^{*}=\frac{g_{2}}{g_{1}} e^{-\frac{h \nu}{k T}} ; B_{\nu}=\frac{2 h \nu^{3}}{c^{2}} \frac{1}{e^{\frac{h \nu}{k T}}-1}
$$

we get the numerator of the equation (4.2) as

$$
\begin{equation*}
A_{21}\left[J_{N} \phi_{\nu}^{-1}+\varepsilon^{\prime} E_{\nu}\right] / A_{21}+B_{21} J_{e}+C_{21} \tag{4.8}
\end{equation*}
$$

where

$$
c^{\prime}=\frac{C_{21}}{A_{21}}\left[1-e^{-\frac{\hbar \nu}{k T}}\right]
$$

From equation 4.5 we get,

$$
\begin{equation*}
\frac{n_{2}}{n_{1}}=\frac{A_{21}+B_{21} J_{e}+C_{21}}{B_{12} J_{a}+C_{12}} \tag{4.9}
\end{equation*}
$$

Using equation (4.9) and the definition of ω_{ν} we get the denominator of equation (4.2) as,

$$
\frac{A_{21}+B_{21}\left[J_{e}-\omega_{2} J_{a}\right]+C_{21}\left[1-\omega_{\nu} e^{-\frac{h \nu}{k T}}\right]}{A_{21}+B_{21} J_{e}+C_{21}}
$$

Dividing equation (4.8) by equation (4.10) we get,

$$
\begin{equation*}
s_{\nu}=\xi_{\nu}\left[J_{n} \phi_{\nu}^{-1}+c^{\prime} B\right] \tag{4.11}
\end{equation*}
$$

where $\xi_{\nu}=\left[1+\frac{B_{21}}{A_{21}}\left(J_{e}-\omega_{\nu} J_{a}\right)+\frac{C_{21}}{A_{21}}\left(1-\omega_{\nu} e^{-\frac{h \nu}{k T}}\right)\right]^{-1}$
Equation (4.11) was obtained by Baschek, Mihalas and Oxenius
(1981). We shall show below that the expression used by
Steinitz and Shine (1973) is the same as equation (4.11) for
the source function.

4.2.1. Steinitz and Shine formalism

Steinitz and Shine (1973) assumed the emission protile to consist of scattering and collisional parts. The usual assumption of the equality between the emission profile due to collisional transitions and the absorption profile is made. Therefore,

$$
\psi_{\text {coll }}(\nu)=\phi(\nu) . \quad(4.12)
$$

For frequency dependent 1 ight; the probability per, absorption is,

$$
\frac{J\left(u^{\prime}\right) R\left(u^{\prime}, u\right)}{J}
$$

J_{a} is the normalization factor as defined in equation (4.6). Integrating the equation (4.13) over the initial states w'. We get the frequency dependence of the scattering.

$$
\begin{equation*}
w_{\text {scatt }}(\nu)=\frac{J_{a}(\nu)}{J_{a}} \tag{4.14}
\end{equation*}
$$

Finally the emission profile i s defined as the weighted mean of the collisional maission and scattering emission profiles:

$$
\begin{equation*}
\psi(\nu)=\frac{J_{N}+\varepsilon^{\prime} E_{\nu} \phi(\nu)}{J_{a}+\varepsilon^{\prime} E_{\nu}} \tag{4.15}
\end{equation*}
$$

$\frac{n_{2}}{n_{1}}$ ratio is obtained from equation (4.5). Substituting $\frac{n_{2}}{n_{1}}$ ratio and the definition of ψ_{ν} in equation (4.2) we obtain an alternative form for S_{ν}. Now S_{ν} is given by,

$$
\begin{equation*}
s_{\nu}=\frac{J_{2} / \phi_{\nu}+\varepsilon^{\prime} E_{\nu}}{1+e^{\prime}+\frac{1}{\sigma} E(\nu)} \tag{4.16}
\end{equation*}
$$

where

$$
0=\frac{2 h \nu^{3}}{c^{2}}
$$

(4.17)
and
$E(\nu)=\omega(\nu) \int J_{\nu} \cdot \phi_{\nu} \cdot\left[\frac{\omega_{\nu}}{\omega_{\nu}}-1\right] d \nu^{\prime}+\varepsilon^{\prime} E_{\nu}\left[1-\omega_{\nu}\right]$
(4.18)

Equation (4.16) was derived by Steinitz and Shine (1973).
4.2.2 Equality of equation (4.16) and equation (4.11).

Substituting equation (4.18) into equation (4.16) we
get,

$$
\begin{aligned}
& \left.S(\nu)=\frac{J_{\nu_{\nu}} \phi_{\nu}^{-1}+\varepsilon^{\prime} E_{\nu}}{1+\varepsilon^{\prime}+\frac{1}{\sigma}\left[\omega _ { \nu } \left[J_{\nu} \phi_{\nu}{ }^{\prime}\left(\frac{\omega_{\nu}^{\prime}}{\omega_{\nu}}-1\right) d \nu^{\prime}+\varepsilon^{\prime} B_{\nu}\left(1-\omega_{\nu}\right)\right.\right.}\right] \\
& =\frac{J_{n_{\nu}} \phi^{-1}+e^{\prime} E_{\nu}}{1+\frac{B_{21}}{A_{21}}\left(J_{e}-\omega_{\nu} J_{a}\right)+\frac{C_{21}}{A_{21}}\left(1-e^{-h \nu / k T}\right)\left(1+\frac{1}{e^{h \nu / K T}-1}-\frac{\omega}{e^{h \nu / k T}-1}\right)} \\
& =\frac{J_{D_{\nu}}^{-1}+c^{\prime} B_{\nu}}{1+\frac{B_{21}}{A_{21}}\left(J_{e}-\omega_{\nu} J_{a}\right)+\frac{C_{21}}{A_{21}}\left(1-\omega_{\nu} e^{-h \nu / k T}\right)} \\
& \text { (4.19) }
\end{aligned}
$$

Now we see that equation (4.19) is the same as equation (4.11)

Equation (4.19) reduces to the correct form for CRD when we
assume $\psi_{\nu}=\phi_{\nu}$.
From equation (4.16) we get,

$$
S_{\nu}=\frac{\frac{j}{2}_{\phi_{\nu}}+\varepsilon^{\prime} B_{\nu}}{1+c^{\prime}+\rho\left(\frac{E}{B}\right)}
$$

where
$\rho=\frac{B}{\Delta}=\left[e^{h \omega / k T}-1\right]^{-1} \quad: B_{\nu}=B \quad j_{2}=J_{k} / B$

We use the equation (4.20) for the tource function along with the definition of emiseion profile given by equation (4, (5).

These definitions make it easier to evaluate the emission profile and this formalism is very suitable for studying parametrized models in which we are interested.
4.2.3. Definition of optical depth.

The optical depth for a simple two level atom is given by,

$$
\begin{equation*}
d \tau_{\nu}=-\frac{h \nu_{0}}{4 \pi}\left[n_{1} B_{12} \phi_{\nu}-n_{2} B_{21} \psi_{\nu}\right] d z \tag{4.22}
\end{equation*}
$$

Defining

$$
\begin{equation*}
j_{a}=\frac{J_{a}}{B} \quad \text { and } \quad j_{e}=\frac{J_{e}}{B} \tag{4.25}
\end{equation*}
$$

and using equation (4.5) we obtain,

$$
\begin{equation*}
d \tau_{\nu}=\Delta \tau_{\nu}\left[1-\frac{\rho\left(j_{a}+c^{\prime}\right) \omega_{\nu}}{1+\rho j_{e}+c^{\prime}(1+\rho)}\right] \tag{4,24}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \tau_{\nu}=-\frac{h \nu_{0}}{4 \pi} n_{1} B_{12} \phi_{\nu} \Delta z \tag{4.25}
\end{equation*}
$$

4.2.4. The procedure for solving the transfer equation.
We do not know Je a priori and so we emplay an
iteration procedure to obtain the emission profile and the
radiation field consistentiy. The total optical depth at the
line centre is fixed as $2000 \sqrt{\pi}$. Using this optical appth

```
scale and the CFD source function, the transfer equation is
solved in plane parallel geometry using Feraiah's code. Having
known the radiation field, we use it in the definitions of w
Je" Ja and J_ to obtain these quantities. New optical depth
scales can be constructed from equation (4.24). The line
centre optical depth remains more or less the same because w
at the line centre is almost unity. Now we use equation (4.20)
for source function. With these definitions for source
function and optical depth scale we solve the transfer
equation once again to determine the new emission profile and
the radiation field. This iteration procedure is continued
till we reach a 1% agreement for the emission profile and the
radiation field between any two successive iteration values.
It takes normally 5 iterations for p=2.0 and 3 iterations for
p=0.2.
```


Figure 1 Emergent intensity at $\mu=0.79$ with $f=2.0$ The numbers denote the following casos. $f=2.0$ (1) The numbers denote the following

$$
{ }^{)^{\prime}}
$$

24 frequencies and 2 angles are employed. The frequency
grid is chosen as $x=(0,6)$ where x is measured in Doppler
units. Necessary modifications are made in Peraiah's code to
solve this particular problem. 4.3. Fiesults and discussion.

$\begin{array}{ll}\text { Figure } 3 \text { Ratio of emission to absorption profiles at } \\ \tau \beth 0 . & \text { (1) } R_{I} \\ \text { (2) } R_{I I} & \text { (3) } R_{I I I}\end{array}$

CHAPTER 5

EFFECT OF SMALL MACROSCOPIC VELOCITIES ON

Ca II H AND K LINES
5.1. Introduction
Linsky and Avrett (1970) reviwed theoretical and
observational studies of the profiles of Ca II H and k and
infrared triplet lines in the sun, which included some of
their calculations. They took five levels plus continuum as
their atomic model to represent Ca II ion. Integral equation
approach was used for the calculation of line source function.
Complete redistribution was assumed in their computations.
Shine, Milkey and Mihalas (1975) studied the effect of partial
frequency redistribution on the formation of Ca II H and k
lines'in the solar atmosphere. They found the PRD results to
be in better agreement with the observations. The calculations
described above are based on a static atmosphere. Consequently
the computed profiles were symmetric.

Asymmetric profiles with a single peak emission of the K lines were observed at high spatial resolution studies (Pasachoff,1970). To account for the asymmetric profile, Athay (1970) assumed velocity fields in the regions of line formation. He concluded that to obtain $K_{2 v}$ enhancement, either the layers where $K_{\text {g }}$ is formed are moving upward with velocities of $3-7 \mathrm{~km} \mathrm{~s}^{-1}$ or the $K_{\text {, layere are moving downward }}$

Abstract

with velocities of $10-20 \mathrm{kms}^{-1}$ but he tends to favour the second alternative. He assumed a three level atom model with continulum. He used the integral equation technique generalized for a multi level atom. Basri, Linsky and Eriksson (19E1) used a comoving partial frequency redistribution code to model the outer atmospheres of cool type stars. They obtained a highly asymmetric profile of Ca II k line which agrees with the observation of this line in β Dra.

Line formation in moving media was studied by Abhyankar
(1964) and kulander (1968). Peraiah (1978) gave an algorithm
for solving the transfer equation including velocity fielde in
spherically symmetric expanding media. Rangarajan, Mohan Rao
and Peraiah (1981) investigated the effect of velocities of
the order of $2 \mathrm{~km} s^{-1}$ and $4 \mathrm{~km} \mathrm{~s}^{\mathbf{- 1}}$ in an expanding atmosphere
with chromospheric type of temperature increase.

This chapter is based on the above work. Here we present the profiles of Ca II H \& $K(3968 A, 3933 A)$ and infrared triplet lines (8489A,8662A and 8542A) formed in slowly expanding media. Five levels with continuum is taken as the atomic model. The formalism of Grant and Feraiah (1972) for the two level atom model is extended to include multi level atom model. Transfer equation is solved in observer's rest frame using Peraiah's code (197日). Profiles are computed for systematic expanding velocities, $v=0.5$ and 1.0 亿expreased in mean thermal units) Profiles calculated in static media
(v $=$ o. O) are also shown for comparison purposes. Since we
have not incorporated a realistic atmospheric model with
micro-turbulent velocities and continuous absorption, we
can not compare our results with observations directly.
Nevertheless the study underlines the importance of velocities
in determining the shapes of lines. This study also
demonstrates the easy extension of Discrete space theory
technique to solve transfer equation when a number of physical
processes are included. In section 5.2 we give the atomic
model chosen and the method of calculation of various rates.
We discuss the computational procedure in section S. 3 Section
S. 4 contains the results.
5.2. Atomic model

Atomic model chosen is represented in Fig. 1. We have taken the $4^{2} S_{1 / 2}$ ground level, $4^{2} P_{2 / z}$ and $4^{2} p_{\text {erz }}$ upper levels, $3^{2} D_{s / z}$ and $3^{2} D_{s / 2}$ metastable levels and the continuum. Temperature (T_{e}) and the electron number density (n_{e}) digtributions for our atmosphere are given in figures (2) and (3).

Collisional and radiative excitational and de-excitational processes are considered. Photoionization, photo-recombination, collisional ionization and recombination between the continuum and all the levels are also included.

Figure 1. Energy level diagram for call ion vith the permitted radiative transitions.

Figure 2 Temperature $T\left({ }^{\circ} \mathrm{K}\right)$ distribution of the model chosen is given against the hight Z (kms) in the atmosphere.

Figure 3 Electron number density n (per cubic cm) is given with
respect to the hoight Z (kms) in the atmosphere.

$$
\begin{equation*}
R_{i k}=4 \pi \int_{\nu i}^{\infty} \frac{d \nu}{n \nu} a_{i}(\nu) J_{\nu}(z) \tag{5,1}
\end{equation*}
$$

i denotes the lower level and k refers to the continuum. z is the height of the atmospheric layer. We approximate $J_{\nu}(z)=B_{\nu}(z)$ where $B_{\nu}(z)$ is the Flanck function. $\alpha_{i}(\nu)$ is the photoionization cross section and is taken from Peach's tables (1967). Recombination rates follow from the detailed balance arguments and they are given by

$$
\begin{equation*}
R_{k i}=\left[\frac{n_{i}}{n_{k}}\right]^{*} R_{i k} \tag{5.2}
\end{equation*}
$$

where $\left[\frac{n_{i}}{n_{k}}\right)^{*}$ is the LTE (Local Thermodynamic Equilibrium)
population density ratio obtained from Saha-Boltzmann
relation.

Collisional recombination rates are calculated from the formula given in Linsky's Ph.D. thesis (1969) with the corrections for the inclusion of both the D levels. Detailed balance arguments give the collisional ionization rates by the formula

95

$$
\begin{equation*}
c_{i k}=c_{k i}\left(\frac{n_{k}}{n_{i}}\right)^{*} \tag{5.3}
\end{equation*}
$$

Spontaneous emission rates (Einstein A values) between the bound levels are taken from the Wiese tables (1969). Collisional excitation and de-excitation rates are calculated according to Giovanelli (1967). Multiplet relations are used to get rates for the sub-levels. To calculate the fine structure transition rates $C\left(4{ }^{2} P_{\mathrm{E} / 2}-4^{2} F_{1 / 2}\right)$ and $C\left(3^{2} D_{s / 2}-3^{2} D_{s / 2}\right)$, Dumont's(1967) cross sections are used and they are derived by treating the collisions to be elastic and collisions with protons to be dominant.

5.3. Computational procedure

The transfer equation which we have considered is

$$
\begin{equation*}
\mu \frac{d I(x, \mu, z)}{d z}=k_{L}(z) \phi(x, \mu, z)[S(x, z)-I(x, \mu, z)] \tag{5.4}
\end{equation*}
$$

and for the oppositely directed beam

$$
-\mu \frac{d I}{d z}(x,-\mu, z)=k_{L}(z) \phi(x,-\mu, z)[S(x, z)-I(x,-\mu, z)] \quad \text { (5.5) }
$$

where the symbols have been described in earlier chapters. Now we see that the profile function becomes angle dependent.

The equations (5.4) and (5.5) are transformed into the Optical depth scale where

$$
\begin{equation*}
d \tau=-k_{L}(z) d z=\frac{h \nu_{0}}{4 \pi \Delta \nu_{D}}\left[\Pi_{L}(z) E_{L u}-\Pi_{u}(z) E_{u l}\right] d z \tag{5.6}
\end{equation*}
$$

$$
\begin{align*}
& E_{l u} \text { and } E_{u l} \text { are the Einstein absorption and induced emission } \\
& \text { coefficients for the transition between the lower level (} 1 \text {) } \\
& \text { and the upper level (u). } n_{l} \text { and } n_{u} \text { are the number densities of } \\
& \text { the lower and upper levels of the transition. } \nu_{0} \text { is the line } \\
& \text { centre frequency. } \Delta \nu_{D} \text { is the Doppler width defined as } \\
& \qquad \Delta \nu_{D}=\frac{\nu_{0}}{E}\left[\frac{2 k T}{m}\right]^{1 / 2} \tag{5.7}
\end{align*}
$$

The profile function $\phi(x, \mu, z)$ is defined by

$$
\begin{equation*}
\phi(x, \mu, z) E(x-\mu N, z) \tag{5.8}
\end{equation*}
$$

where $x=\left(\nu-\nu_{0}\right) / \Delta \nu_{D}$ and v is the velocity measured in mean thermal units. When there is velocity field, the frequency of the line photon is shifted by

$$
\begin{equation*}
x^{\prime}=x-\mu N(\tau) \tag{5.9}
\end{equation*}
$$

$V(\tau)$ is the velocity at the point τ.

We have used complete redistribution with vaigt profile function $H(a, x)$. Damping parameter ' a ' is assumed to be 10^{-3} throughout the medium. The formulation of multilevel transfer problem using PRD type of scattering mechanism in the presence of velocity fields is yet to be completed within the framework
of Discrete space theory technique. Complete linearization
method is probably an ideal setup for the above mentioned
formulation. When we attempted this tast:, we found that we need
to have fast computers to get the results, because of the
requimement of large memory to store the matrices. since at
present we do not have access to such machines, here we
present only CRD results which we could do within our
available resources.

The statistical equilibrium equations for a multi-level atom are given by
$n_{i}\left[\sum_{j>i}\left(E_{i j} \bar{J}_{i j}+C_{i j}\right)+R_{i k}+C_{i k}+\sum_{j<i}\left(A_{i j}+B_{i j} \bar{J}_{i j}+C_{i j j}\right)\right]$ (5.10)
$=\sum_{j>i} n_{j}\left(A_{j i}+B_{j i} \bar{J}_{i j}+C_{j i}\right)+\sum_{j<i} n_{j}\left(B_{j i} \bar{J}_{i j}+C_{j i}\right)+n_{k}\left(R_{k i}+C_{k i}\right)$

In the above expression, the radiative transitions are significant only for permitted transitions. \bar{J} is defined in equation (5.17).

$$
\begin{equation*}
\sum_{i=1}^{M} n_{i}+n_{k}=N_{C a}^{+} \tag{5.11}
\end{equation*}
$$

where $\mathrm{N}_{\mathrm{Ca}}{ }^{+}$is the number of Ca^{+}ions and M is the number of levels considered. N ca $^{+}$at the outermost shell is chosen to be 10^{7} and the number density in the medium is varied according to the equation of continuity. We divided the medium into 5 shells.

We have employed equivalent two level atom approach to write the expression for the source function (Mihalas,1978). Consider a line formed between levels 2 and u. The line source function is given by

$$
\begin{equation*}
S_{l u}=\frac{2 h \nu_{0}^{3}}{c^{2}} \frac{n_{u}}{\frac{g_{u}}{g_{L}} n_{L}-n_{u}}=\frac{2 h \nu_{0}^{3}}{c^{2}} \frac{1}{\frac{g_{u}{ }^{2}}{g_{L} n_{u}}-1} \tag{5.12}
\end{equation*}
$$

The rate equation for the lower level in a multi level environment is
$\left.n_{l}{ }^{\left(B_{l u}\right.} \int \phi_{\nu} J_{\nu} d \nu+C_{L u}+\sum_{i<l} A_{l i} Z_{l i}+\sum_{l<j \neq u} C_{l j} Y_{L j}+R_{l k}+C_{l k}\right)$
$-n_{u}\left(A_{u l}+B_{u l} \int \phi_{\nu} J_{\nu} d \nu+C_{u l}\right)=n_{l}^{*}\left(F_{k L}+C_{L k}\right)$
$+\sum_{i<j \neq u} n_{j} A_{j l} Z_{j l}+\sum_{i<l} n_{i} C_{i l} Y_{i l}$
and for the upper level we have

$$
\begin{align*}
n_{u}\left(E_{u l} \int \phi_{\nu} J_{\nu} d \nu+C_{u l}\right. & \left.+\sum_{u>i=l i I} A_{u i} Z_{u i}+\sum_{u<j} C_{u j} Y_{u j}+R_{u k}+C_{u k}+A_{u l}\right) \\
-n_{l}\left(B_{l u} \int \phi_{\nu} J_{\nu} d \nu+C_{l u}\right)= & n_{u}^{*}\left(R_{k u}+C_{u k}\right)+\sum_{u<j} n_{j} A_{j u} Z_{j u} \\
& +\sum_{u>i=i l} n_{i} C_{i u} Y_{i u} \tag{5.14}
\end{align*}
$$

where the quantities with * as superscripts denote the LTE values. $Z_{j i}$ and $Y_{i j}$ are the net radiative and collisional
brackets defined by

$$
\begin{align*}
& Z_{j i}=1-\bar{J}_{i j}\left(n_{i} E_{i j}-n_{j} B_{j i}\right) / n_{j} A_{j i} \equiv 1-\left(\bar{J}_{i j} / S_{i j}\right) \tag{5.15}\\
& \text { and }
\end{align*}
$$

$$
\begin{equation*}
Y_{i j}=1-\frac{n_{j}}{n_{i}} \frac{c_{j i}}{c_{i j}} \tag{5.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{J}_{i j}=\int \phi_{\nu} J_{i j}(\nu) d \nu \tag{5.17}
\end{equation*}
$$

If we eliminate analytically the population ratio appearing in the expression for source function we get
$S_{L u}=\left[\int_{0}^{\infty} \int_{-1}^{1} \phi(\nu) I(\nu, \mu, z) d \mu d \nu+\left(c^{\prime}+\theta\right) B_{\nu}\left(T_{e}\right)\right] /\left(1+\varepsilon^{\prime}+\eta\right)$
(5. 18)
$\mathcal{C N}_{\nu} \mathrm{E}_{\nu}$ is the thermal source term which represents photons that are created by collisional excitation followed by radiative de-excitation. ν is measured from the line centre. The term é in the denominator is the sink term that represents those photons that are destroyed by collisional de-excitation following a photoexcitation for strong resonance lines like Ca II H and K. ε^{*} is given by

$$
\begin{equation*}
x^{\prime}=C_{u l}\left(1-e^{-h \nu / k T}\right) / A_{u l} \tag{5.19}
\end{equation*}
$$

The effects of: radiation field due to other lines described by terms: n and θ. They are expressed as

$$
\begin{equation*}
n=\left[a_{2} \alpha_{3}-\left[\frac{g_{1}}{g_{u}}\right] a_{1} \alpha_{4}\right] /\left[A_{u l}\left(\alpha_{2}+a_{4}\right)\right] \tag{5.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta=\left[n_{l}^{*} \alpha_{1} \alpha_{4}\left(1-e^{-h \nu / k T}\right)\right] /\left[n_{u}^{*} A_{u l}\left(\alpha_{2}+\alpha_{4}\right)\right] \tag{5.21}
\end{equation*}
$$

where in turn,

$$
\begin{align*}
& a_{i}=R_{l k}+C_{l k}+\sum_{i<l} A_{l i} Z_{l i}+\sum_{l<j F_{l}} C_{l j} Y_{l j} \tag{5.22}\\
& \alpha_{2}=n_{i}^{*}\left(R_{k l}+C_{L k}\right)+\sum_{L<j F_{u}} n_{j} A_{j l} Z_{j l}+\sum_{i<l} n_{i} C_{i l} Y_{i l} \tag{5.23}\\
& \alpha_{a}=R_{u k}+C_{u k}+\sum_{u>i \neq l} A_{u i} Z_{u i}+\sum_{u<j} C_{u j} Y_{u j} \tag{5.24}\\
& \alpha_{4}=n_{u}^{*}\left(R_{k u}+C_{u k}\right)+\sum_{u<j} n_{j} A_{j u} Z_{j u}+\sum_{u>i=i} n_{i} C_{i u} Y_{i u} \tag{5.25}
\end{align*}
$$

Velocity at each shell is given by

$$
\begin{equation*}
v(n)=V(A)+\left[\frac{V(B)-V(A)}{N}\right] * n \tag{5.26}
\end{equation*}
$$

where A, B are the inner and outer boundaries of the atmosphere. n denotes the number of the shell and N is the total number of layers. Velocity is measured in thermal Doppler units. We have set $V(A)=0$ and $V(B)=0,0.5$ and 1 . Equations (5.4), (5.5) and (5.10) are solved with the following boundary conditions:

```
    The incident radiation at the top of the atmosphere is
zero. The incident radiation at the lower boundary of the
atmosphere is assumed to be E B (Te (Te 4620
    The above equations are solved iteratively. The LTE
number densities are chosen to be initial values for
calculating the optical depths from the relation (5.6). To
calculate the radiation field in any line, }0\mathrm{ and }\eta\mathrm{ have to be
specified, which depend upon the radiation field of other
lines. To compute H line radiation field, the radiation field
in other lines are assumed to be Flanckian. While computing
the k line, we substitute the computed H line intensities,
keeping the unknown radiation fields in infrared triplet lines
as Planckian. This procedure is continued till the intensities
of all the five lines are calculated.
To get the number densities in the levels, we
substitute the mean intensities of all the five lines in the
statistical equilibrium equations. This new number densities
are used to calculate the optical depth. Since we know the
radiation field in all the lines, we substitute those values
to compute the net radiative brackets which are used in the
source function expression. Iterations are continued till the
number densities converged upto a deviation of less than \(1 \%\) of
the previous iteration values.
```

```
5.4. Fesults
```

Emergent intensities of k line for the various Velocities when $\mu=0.79$ are plotted in figure 4 . The total optical depth at the line centre with the chosen atmospheric model is 618. We find a symmetric profile with a double peaked emission for the static case, and for non-zero velocities, we find blue shift and asymmetry in the profiles. When the velocity at the outer boundary is one mean thermal unit, only a single peak in the red side $\left(K_{2 r}\right)$ with a blue shift of K_{s} minimum is obtained. K absorption features broaden with velocities. A similar trend is seen in the limb ($\mu=0.21$) also (Fig. 5). We also find $K_{2 r}$ is slightly higher than $K_{2 v}$ when $V=0.5$. Emergent intensities of H line at $\mu=0.79$ for Various velocities are plotted in Fig. 6. H line intensities are consistently higher than than K line intensities. This is due to the lesser optical depth of H line which is only 322 in our model. Foth H and K lines exhibit similar trends. Narrow emission peaks occur for $V=0.5$. Emergent intensities of 8662 line for $\mu=0.79$ and 0.21 are given in figures 8 and 9. Figures 10 and 11 show the emergent intensities of the line 8542 for $\mu=0.79$ and 0.21 respectively. Emergent intensity profiles of 8498 are plotted in figures 12 and 13.

All the infrared triplet lines are in absorption except for 8498 line at $\mu=0.79$. This line is the weakest due to the least optical depth at the line centre. With velocities, we

Figure 8 same as in fig. 4 for the infrared triplet line 8662 A.

Figure 9 same as in fig. 8 with $\mu=0.21$ and for velocities $V_{B}=0.0$ and 1.0 only.

Figure 11 same as in IIg. 10 with $F=0.21$ and for $V_{B}=0.0,1.0$.

Figure 10 same as in fig. 8 for 8542 A.

Figure 12 same as in fig. 8 for $8498 \AA$ Iine.

```
find all lines to be blue shifted. Near the limb, the velocity effects in the line profiles are negligible.
```


CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1. Summary of the results.

Abstract

In this chapter we are stating the results of our study briefly. These results have been illustrated by figures and explained in detail separately in each chapter of this thesis. Some of these results have been in quantitative agreement with that of other workers wherever such comparisons are possible.

We find that the redistribution functions affect the
spectral line formation and the extent of the effects depend
on the boundary conditions, optical thickness at the line
centre and the scattering properties of the merdium. From the
various schematic line formation problems with different types
of redistribution functions which we have studied, we come to
a conclusion that the degree of coherency in the wings which
the particular type of redistribution exhibits determines the
transfer of radiation in strong resonance lines. Therefore the
partial redistribution effects have to be taken into account
when studying such lines. For the optically thin lines when
the continuous absorption is present the redistribution
effects are negligible. The presence of continuous opacity
makes the spectral lines weak irrespective of the
redistribution mechanism.
When only coherent electron scattering is present, the
partial redistribution of the photons by atoms affects the
wings of the lines. If continuous absorption is also present,
the coherent electron scattering and the continuous absorption
are the competing mechanisms which determine the shape of the
lines. When the continuous absorption is more than the
electron scattering, we get broader profiles irrespective of
the redistribution mechanism. Fartial redistribution by atoms
gives shallower line profiles compared to coherent electron
scattering.

The emission and absorption profiles are equal at the Doppler core even if stimulated emission is important. The deviation of the emission profile from the absorption profile is more for coherent type of redistribution. $R_{\text {rII }}$ redistribution can be approximated by complete redistribution for all practical purposes.

Even if small macroscopic velocities are present in the atmosphere, they affect the Ca II H an K lines. A single peaked emission instead of double peaked emission is obtained for k line when the velocity at the outer boundary of a schematic chromospheric type of atmosphere is one mean thermal unit. The small velocities do not produce any appreciable asymmetry in Ca II triplet lines.

The ultraviolet observations of spectral lines from
early type stars suggest that the radiation driven winds may
be present in these stars. The mass loss from these stars can
be quantitatively studied in a consistent way only if we
consider velocity fields in the regions of line formation. Now
there is coupling between radiative transfer, statistical
equilibrium, hydrodynamic, energy and momentum equations. The
radiation and the velocity fields can be obtained in a
consistent way only if we solve the above set of equations. As
a first approximation, one can probably assume certain
velocity laws and compute the radiation field. Even then it is
very difficult to solve the transfer equation because the
velocity fields in these stars exceed the sonic speed by
several times. Now the comoving frame transfer equation may
come in handy and there are several existing methods to solve
this equation (Mihalas et al 1976 , Feraiah, 1980 , Peraiah,
1985). The physical processes are easier to track in the
comoving frame and by solving this equation one can get the
source function values which can be substituted in the fomal
solution to obtain the fluxes in the observer's framen

The redistribution functions for multi-level atom are derived by Hubeny (1981). A quantitative study ascertaining the effect of these on several lines which can be calculated simultaneously by considering multi-level atoms is another problem yet to be solved.

Line formation in turbulent media has many applications in the field of astrophysics. The treatment of this problem by Heidelberg group (1974) may be suitable for further study.

The parametric study provides us the information on the effect of each individual process. After such a study, it is easy to discriminate the unimportant physical processes from the important ones and selectively include them along with realistic model atmospheres and model atoms in the spectral line calculations, so that one can compare the theoretical results with the observations to derive some meaningful information. we propose to undertake some of the aforementioned problems in the future.

REFERENCES

```
Abhyankar,K., 1964. Ap.J., 140, 1353.
Abramovitz,M., and I.Stegun., 1974. Handbook of Mathematical
functions, Dover, New York.
Adams,T.F., Hummer,D.G., Rybicki,G.B. 1971, J.Q.S.R.T., 11,
1365.
Ambartzumian,V.A., 1942. Russian Astron.J., 19, 1.
Arthur Schuster, 1905. Ap.J., 21, 1.
Athay,G.R., 1970, Sol.Phys., 11, 347.
Auer,L., and Mihalas,D., 1968. Ap.J., 153, 245.
Auer,L., and Mihalas,D., 1969. Ap.J., 158, 641.
Baschek,B., Mihalas,D., and J.Oxenius, 1981.Astron.astrophys.,
97, 43.
Basri,G.S., 1979. Ph.D. Thesis, University of ,Colorado,
Boulder.
Basri,G.S., Linsky,J.L., Eriksson, K. 1981, Ap.J., 2s1, 162.
Chandrasekhar,S., In a discussion held at the Yerkes
Observatory {unpublished).
Chandrasekhar,S., 1950, Radiative transfer (Oxfordi Oxford
University press).
Compton, 1923, Phil.Mag., 46, 908.
Dirac,P.A.M., 1925, M.N.F.A.S., 80, 825.
Dirac,F.A.M., 1958., The principles of quantum mechanics.
Oxford: Clarendon press.
Dumont,S. 1967., Annales d'Astrophysique, 30, 421.
Gebbie,K.B., and Thomas,R.N., 1968, Ap.J., 154, 285.
```



```
Miltey,F., and Mihalas,D., 1973. Ap.J., 185, 709.
Milne,E.A., 1928. M.N.F.A.S., 88, 493.
Mohan Fao,D., Fangarajan,K.E., and Feraiah,A., 1984.
J.Astrophys.Astron., 5, 169.
Mtheh,G., 1948. Ap.J., 108, 116.
Omont,A., Smith,E., and Cooper,J., 1972. Ap.J., 175, 185.
Oxenius,J., 1965. J.Q.S.R.T., 5, 771.
Fasachoff, 1970. Sol.Fhys., 12, 202.
Peach,G., 1967. Mem.R.A.S., 71, 1.
Peraiah,A., 1971. Ph.D. Thesis., Oxford University.
Feraiah,A., 1978. Kodaikanal Obs. Bull. Ser. A,2, 115.
Feraiah,A., 1980. J.Astrophys.Astron., 1, 101.
Feraiah,A., 1985. Frivate communication.
Preisendorfer,R.W., 1965. Radiative transfer on discrete
spaces. Oxford: Pergamon press.
Rangarajan,K.E., Mohan Rao,D.s and Peraiah,A., 19日1.
Kodaikanal Obs. Bull. Ser. A., 3, 75.
Redheffer,R.M., 1962. J.Math.Phys., 41, 1.
Shine,R., Milkey,R., and Mihalas,D., 1975. Ap.J.,100, 724.
Steinitz,R., Shine,R.A., 1973. M.N.R.A.S., 10Z, 197.
Thomas,R.N., 1965. Some aspects of Non-equilibrium
Thermodynamics in the presence of a radiation field.
University of Colorado press, Boulder.
Unno,W., 1952. P.A.S.J., 3, 158.
Van de hulst, 1963. Mem.soc.roy.Sci., Liege., 5,7, 78.
Vardavas,I.M., 1976 a. J.Q.S.R.T., 10, 1.
Vardavas,I.M., 1976 b. J.Q.S.R.T., 16, }715
```

Vardavas, I.M., $1976 \mathrm{c} . \mathrm{J} . \mathrm{Q} . \mathrm{S} . \mathrm{F} . \mathrm{T} ., 16,781$.
Wick,G.C., 1943. Zs.f.Physik., 120, 702.
Wiese,W.L., Smith,M.W., and Miles, B.M., 1969. NES Circular no. 22.

Wooley, F., and Stibbs, D., 1953. The outer layers of a star. Oxford: Clarendon press.

