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Chapter 1 

Introduction 

1.1 General Introduction 

Astronomy stepped into a new era with the discovery of discrete galactic X-ray sources (for example, 

Scorpius X-I) by the rocket-borne Geiger counters in 1962 (Giacconi et a1. 1962). Subsequent rocket 

and Balloon flights confirmed this result. Before 1970, about 20 Xray sources had been identified, 

with most of them believed to be galactic sources. The binary nature of these galactic X-ray sources 

was established (Schreier et al. 1972; Tananbaum et a1. 1972) by the first astronomy satellite Uhnrn 

(launched by NASA in 1970). The same satellite also discovered binary Xra.y pulsars. Later X--ray 

and optical observations confirmed that there are two types of Xray emitting binary systems (see 

for example, Bhattacharya & V'Ml den Heuvel 1991 and the references therein): (1) high mass X-ray 

binaries (HMXBs), with identified optical counterparts associated with very massive and luminous 

(late 0 or early B supergiants) stars, and (2) low mass Xray binaries (LMXBs), associated with 

objects for which the optical counterparts, if identified, are associated with low mass (M or K 

spectral type) stars (see section 1. 2 for discussions). Both types of X-ray emitting systems show 

different kinds of spectral and temporal behaviors. In our work, we are interested in LMXBs and 

briefly describe the major observational properties exhibited by them. 

Some of the LMXBs show X-ray bursts (Grindlay et a1. 1976; Belian, Conner & Evans 1976). 

Two types of bursts have been identified: (1) Type I: the recurring time of the burst is several hours 

and a distinct spectral softening occurs during burst decay (timescales of 10 sec. to a few minutes). 

The origin of such a burst is believed to be the thermonuclear flashes taking place on the neutron 

star surface (Joss 1978) and the subsequent spectral softening may be caused by the cooling of the 

stellar surface after the burst. The majority of the bursting sources show this type of behavior. 

(2) Type II: these bursts, seen for the sources 4U 1730-335 (the Rapid Burster), Cir X-I, GRO 

J17444-28, are repetitive and the timescale is smaller than that for type I bursts (for the Rapid 

1 



2 Chapter 1. Introduction 

Burster, the burst interval is rv 7 sec.). Spasmodic accretion may cause such rapid variations in 

X-ray intensity (Lewin et al. 1976). 

Although most of the LMXBs are persistent in their X-ray luminosities, some of them show 

transient behavior in the timescale of days to weeks. The X-ray luminosity may vary upto 104 

times for such a source. Such transience may be caused by an instability of the accretion disk (in 

section 1.2 accreion disk is defined) or of the mass transfer process (see Tanaka & Shibazaki 1996 

and Campana et al. 1998 for reviews). The periodic dipping activity (Walter et al. 1982; White & 

Swank 1982) seen in some sources is believed to be due to the obscuration of the central accretor 

by a portion of the accretion disk. The partial eclipses, observed for a few X-ray sources, may be 

caused by partial occultation of matter at some portion of the system. 

The X-ray satellite EXOSAT discovered time variabilities (frequency range rv 6 - 60 Hz) in the 

X--ray intensities of several X-ray sources. As the corresponding power spectra can be fitted by 

broad Lorentzian profiles, such temporal behaviors are called Quasi Periodic Oscillations (QPOs). 

The origin of QPOs is not yet clear and there exist several models, though none of them can explain 

it fully. The most popular model is the beat-frequency model (Alpar & Shaham 1985), in which the 

QPO frequency is believed to be the difference between the (fixed) spin frequency of the neutron 

star and the (variable) Keplerian frequency of matter moving in the accretion disk at the AlfYen 

radius. 

In 90's, the X-ray satellite RXTE discovered QPOs with very high frequencies (from a few 

hundred Hz to more than a kHz). These are called kHz QPOs. The origin of them is unknown, 

but beat-frequency model (instead of AlfVen radius, disk inner edge radius is taken for the simplest 

form of the model) i8 the most popular among all the existing models. 

It has been seen that both the QPO and the kHz QPO are strongly corelated with the spectral 

behaviors of the sources. Such corelation can be studied very well with the help of color-color 

diagram (CD) and hardne8s-intensity diagram (HID) (see van der Klis 1995 for a de8cription). 

There are six very luminous X ray sources, that trace Z-like curves (with three branches: horizontal 

branch, normal branch and flaring branch) in CD and HID. These are called Z sources. On the 

other hand, there are several comparatively less luminous sources, which are called atoll sources. 

An atoll source has a clustered branch (island state) and an upwardly curved brandl (banana state) 

in CD and HID. Most of the Z and atoll sources display QPO and kHz QPO. The position of an 

LMXB in CD (or HID) determines its spectral nature. This position is also strongly cOl'elated with 

the nature of QPOs and kHz QPOs. Therefore the relation between the temporal and the spectral 

behavior can be studied using CD (and HID). For the details of this corelation, see van der Klis 

(1995; 2000). 
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A few LMXBs show regular X -ray pulsations. The frequency of such an X -ray pulsar is be­

lieved to be the rotational frequency of the central accretor (like radio pulsars). The LMXB SAX 

J1S0S.4-3658 shows milli-second X -ray pulsation, which supports the conjecture that LMXBs are 

progenitors of mill i-second radio pulsars. 

In our work, We do not try to explain the temporal behavior of the LMXBs; rather we calculate 

the accretion disk spectrum considering the full effect of general relativity and rapid rotation of 

the neutron star. In section 1.2, we briefly describe the nature of the X-ray binaries. We explain 

the Newtonian accretion disk in section 1.3 and mention the effect of the inclusion of Schwarzschild 

metric in section 1.4. In section 1.5, we describe the plan of the thesis. 

1.2 X-ray Binaries 

An X -ray Binary is a binary stellar system with a compact primary star (black hole, neutron star or 

strange star) and a secondary (or companion) star (main sequence star, blue super-giant star, red 

sub-giant star or white dwarf) rotating around each other. These are galactic sources that emit a 

substantial part of their energy in X-rays. The typical luminosities of the strongest sources among 

these systems are in the range 1034 - 1038 erg S-1. The source of this energy is the gravitational 

energy release, as the transfer of matter occurs from the secondary to the primary. Due to the 

deep potential well of the compact primary, a considerable part (rv 20% for a neutron star) of the 

rest mass of the transfered matter is converted to energy, which is eventually emitted in the form 

of X-rays (as this matter, near the compact star, is expected to be very hot: temperature'" lOG K 

for neutron stars). 

It is believed that there are two main reasons behind this mass transfer (Frank, King & Raine 

1992): (1) the companion star may increase in radius, or the binary separation shrink, to the point 

where the gravitational pull of the primary star can remove the outer layer of its envelope (Roche­

lobe overflow); (2) a substantial amount of mass of the secondary star may be ejected in the form 

of stellar wind and a part of it may be gravitationally captured by the primary. 

In our work, we consider only the Roche-lobe overflow. The mechanism of such a overflow is 

as follows (see, for example, Kopal 1959; Tsesevich 1973; Frank et al. 1992). In a coordinate 

system co-rotating with the binary, there is a pear-shaped equipotential (combination of both the 

gravitational and the centrifugal forces) surface around each component. If one goes outwards from 

each of the mass centers, at a certain value of the potential, these two surfaces touch each other 

at the first Lagrangian point Ll, located on the connecting line of the centers of two components. 

This critical equipotential surface through Ll is called the Roche-lobe. When the secondary star 
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fills its Roche lobe, matter from its outer layer flows in a narrow jet towards the primary dIll' to tJw 

unbalanced pressure at L1 (where the net gravity vanishes). Due to initial angular monwlltmu, this 

matter can not flow radially towards the compact star, rather it takes a circuital path a.nd PV{'utually 

forms a disk (because of angular momentum redistribution and friction among the pm'tk It·l'I). Su('b 

a disk is called an accretion disk. 

In Fig. 1.1, we display an artist's impression of an X-ray binary XB 1820-30, in which tIl!' 

secondary star (filling its Roche-lobe), a jet of matter towards the primary, the accretioll disk auli 

the compact star are clearly seen. To give an idea about its size, pictures of the SUll aud tIlt' part It 
are also drawn. 

Figure 1.1: An artist's impression of an X-ray b' XB 
. . mary 1820-30. The' . d h shown In the PIcture (Courtesy. htt .111. Sun an t e earth art! also 

. ;P'III,easarc.gs!c.nasa.gov/J. 

X-ray binaries belong to two categories as described below Thes . 
as the central accretors are the most I . . e systems, WIth neutron stars 

' ummous galactic X -r . 
& Guseynov 1965). In Our work we co 'd ay sources (first suggested by Zeldovkh 

, nSI er only such systems. 
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1.2.1 High Mass X-ray Binary (HMXB) 

These sources contain early type (massive) stars (generally, 0 or B type) as the companions. So the 

optical spectra of HMXBs are dominated by the spectra of their secondary components. We observe 

relatively hard X-ray spectra (kT~ 15 keY in exponential fit; Jones 1977) and Lopt! Lx > 1 for 

these systems (Lopt andLx are the optical and X-ray luminosities respectively). They show regular 

X-ray pulsations, but no X-ray bursts, which indicates that their surface dipole field strengths are 

typically of the order of 1011 to 1013 Gauss (see for example, Taam & van den Heuvel1986). HMXBs 

are found to be concentrated in the galactic plane. Hence they form a young stellar population 

(age < 107 yrs.), which is consistent with the fact that they contain early type secondary stars. 

As they contain very bright secondary components, which can be easily detected, one can 

determine their orbital period, observing the regular X-ray eclipses. Such eclipses are very frequent 

in these systems. With this and the Doppler radial velocity curves of the neutron star (or pulsar) 

and its companion, and the light curve, the mass of each component, as well as the average radius 

of the companion star can be determined (Rappaport & Joss 1983; Rappaport & Joss 1984). 

1.2.2 Low Mass X-ray Binary (LMXB) 

These systems contain late type (low mass) companion stars, which can not be detected easily 

(in fact, normal companions have been detected for very few cases). So the determination of the 

masses of the components is not possible for most of the cases. We observe softer X--ray spectra 

(kT;5lO keY in exponential fit; van Paradijs 1989) and Lopt!Lx < 0.1 for them. LMXBs show 

X-ray bursts for many cases, but regular X···ray pulsations for very few cases. They concentrate in 

the galactic center and globular clusters. They are old systems (age rv (5 - 15) x 109 yrs.). The 

neutron stars in these systems generally have weak surface magnetic fields (Bhattacharya & van 

den Heuvel 1991). We study these systems in our work. 

1. 3 Newtonian Accretion Disk 

In this section, we briefly discuss the accretion disks around neutron stars in Newtonian formalism. 

In many cases, the disk flow is confined very closely to the orbital plane and one can regard the disk 

as a two-dimensional ga.'l flow to a first approximation. This thin disk approximation has proved 

very successful (Frank et al. 1992). The present interest in accretion disks has been developed 

from the encouraging results of comparison between the theory and observations of close binary 

systems. 
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A non-relativistic, incompressible :fluid around an unmagnetized star should be governed by the 

Navier-stokes equation (see, for example, Landau & Lifshitz 1987): 

(1.1) 

Here p is the mass density, v is the velocity, P is the pressure, v is the kinematic viscosity of the 

fluid and <P is the gravitational potential of the central star. 

However, we directly use the laws of conservation of mass and angular momentum, to derive 

the basic governing equation for thin disk. We assume that the disk is Keplerian, i.e., the angular 

speed of a particle in the disk is 

( )
1/2 

Odr) = :~ ( 1.2) 

where G is the gravitational constant, M is the mass ofthe central star and r is the radial coordinate. 

The corresponding linear speed is v,p = rOK(r). In addition to v,p, the gas is assumed to possess a 

small radial drift speed (vr ) towards the star. This is because, due to friction among the particles 

in the disk, most of the angular momentum is taken away by a small number of particles and 

most of the particles move inwards losing their angular momentum (see Frank et a1. 1992 for 

detailed discussion). We characterize the disk by its surface density I: (r, t) (t is time), which is 

the mass per unit surface area of the disk, given by integrating the gas density p in the z-direction 

(i.e., perpendicular to the plane of the disk). Now the conservation laws for mass and angular 

momentum (in combination with the expression for viscous torque in the disk; see Frank et al. 

1992) give 

8I: 
at 

as the basic equation governing the time evolution of surface density in a Keplerian disk. 

(1.:3) 

As the radial structure in a thin disk changes in the timescales "-' tvisc '" r2/ v, and the external 

conditions (for example, mass accretion rate) in many systems change on timescales longer than 

tvisc, a steady-state approximation (£ = 0) for the disk should be more or less valid. Therefore 

from the mass conservation law, we get rI:vr = constant, i.e., if !VI is the (constant) mass accretion 

rate, then we get 
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(1.4) 

since Vr < 0, as the particles move inwards. 

The rotation rate of the star is expected to be slower than the break-up speed at its equator, 

i.e., 

( 1.5) 

where S1* is the stellar rotation rate and R is the radius of the star. Therefore, very near the surface 

of the star the angular speed of the disk particles should decrease and attain the value S1* at r = R. 

This small region, in which angular speed decreases, is called the boundary layer. The width (b) 

of the boundary layer is much smaller than R, as shown in Frank et al. (1992). 

Now combining Eq. (1.4), the law of conservation of angular momentum (with the condition 

-it = 0) and the condition b < < R, one can derive the equation 

( 1.6) 

using which we get the viscous dissipation per unit disk face area as (see Frank et al. 1992 for 

derivation) 

F(r·) = (1. 7) 

Therefore, the disk energy flux comes out to be independent of viscosity. This is a very irnporta,nt 

result, as we can try to understand the values of M, M and R for a particular source by fitting the 

observational data, without having much idea about the physical nature of the disk viscosity. 

Energy comes out also from the thin boundary layer (around the equator of the neutron star), 

as the matter hits the stellar surface. The source of both boundary layer luminosity (LBd and disk 

luminosity (LD) is the gravitational potential energy release. It is easy to see that, for Newtonian 

case, 

GMM 
LBL = LD = 2R . (1.8) 
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It is very important to calculate the disk temperature profile, as the disk spectrum can be 

calculated from it. Fitting this theoretical spectrum to the observed one for a source, one can 

hope to constrain the values of its parameters. If the disk is optically thick in the z-direction, each 

element of it is expected to radiate roughly as a blackbody. The temperature profile (T(r')) of such 

a blackbody disk is given by 

(1.9) 

where a is the Stefan-Boltzmann constant. Now using Eq. (1.7), we get 

[ . { ()1/2}]1/4 
T(r) = 3~~~ 1 _ ~ (1.10) 

In the next section, we will see how this expression is modified if we consider the general relativistic 

formalism. 

1.4 Effects of Schwarzschild Space-Time 

Most ofthe X-rays from an LMXB come from a region which is very close to the compact star. The 

gravity is so strong in this region that Newtonian theory does not provide an adequate description. 

The correct theory that can describe the motion of the particles near the compact star is expected 

to be general relativity. In this section, we briefly describe the effects of this theory for non-rotating 

neutron stars (i.e., the Schwarzschild space-time). General relativity introduces some new effects, 

not found in the Newtonian framework. One ofthese is the existence of an innermost stable circular 

orbit (ISCO), that we discuss below. 

For a non-rotating neutron star the configuration is spherically symmetric and the corresponding 

space-time geometry (outside the star) is described by the Schwarz schild metric (see, for example, 

Misner, Thorne & Wheeler 1973): 

(1.11) 

where we have used the (- + + +) convention. In the above metric, r is the radial coordinate, 

while () and 4> are the polar and azimuthal coordinates respectively. The quantity M is the mass 

of the star. 
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It is to be noted that the structure of a neutron star can not be calculated using Newtonian 

theory, as the gravity is too strong inside it. Therefore, general relativity must be explicitly 

included in constraining the equation of state of the neutron star (discussed in latter chapters). 

We can formulate the structure equations for a non-rotating neutron star using the perfect fluid 

assumption (for the stellar material) and Einstein's field equations. These are 

dP 
dr 

= _G(m + 47rr3 P/c2 )(p + P /c2) 

r2{1 - (2Gm/c2r)} 

dm 

dr' 

(1.12) 

(1.13) 

where P, p and m are the pressure, mass-energy density of the system and the mass contained in 

a radius r respectively and all of them are functions of r. Here we use the line element (Misner, 

Thorne & Wheeler 1973) 

(1.14) 

with the source function <I? given by 

( 1.15) 

For r 2: R (R is the radius of the star), the pressure vanishes and hence the line element (1.14) be­

comes identical with the Schwarzschild line element (1.11), Eq. (1.12) is the Tolman-Oppenheimer­

Volkoff (TOV) equation (Oppenheimer & Volkoff 1939). Eqs. (1.12) and (1.13) ca~l be solved to 

get the structure parameters of the neutron star if its equation of state (i.e" P as a function of p) 

is known. As the neutron star is degenerate (except a thin outer shell), the temperature does not 

enter in the equation of state. 

In the Schwarzschild metric, the specific energy E and the specific angular momentum I are 

constants of motion (see Shapiro & Teukolsky 1983). The equations of motion of a particle (confined 

to the equatorial plane) in this metric are (Thampan 1999): 

dt 
dr 

( 1.16) 
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d¢ 
= dr r2 

( 1.17) 

(1.18) 

where we have used geometric units c = G = 1. In the above equations, rg is the Schwarzschild 

radius (2GMJc2 ), T represents the proper time and V is the effective potential given by 

( 1.19) 

The conditions for circular orbits and the extremum of energy are jj;2 = V2 and V:r = 0 

respectively. The radius (rorb) of the I8CO (as mentioned earlier) can be calculated from the 

equation V:rr = O. Here a comma followed by a variable as subscript to a quantity, represents the 

derivative of the quantity with respect to the variable. There can be no stable circular orbit inside 

the 18CO. Therefore the accretion disk can exist upto the !SCO and then the matter quickly (i.e., 

the radial speed increases enormously) falls on the surface of the central star. However, if the stellar 

radius is greater than the radius of the 18CO, the disk will be extended upto the surface of the 

star. Therefore, the radius hn) of the inner edge of the disk is R (rorb) for R > rorb (rorb > R). It 

is to be noted that throughout our work, we assume that the magnetic field of the neutron star is 

too week to affect the accretion flow. 

The specific disk luminosity (ED) is given by the energy difference between a particle (of unit 

mass) at infinity and the same particle at r = rin. The specific boundary layer luminosity (EBL) 

is defined by the same kind of energy difference, but with the particle positions r = r·in and r = R 

(i.e., the particle sitting on the surface of the star). 

For Schwarzschild metric, the energy flux of the disk is given by (Yamada & Fukue 1993; 

Novikov & Thorne 1973) 

(1.20) 

With fJ, = GJ! and c = 1. The disk temperature profile is then calculated from Eq. (1.9). 
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1.5 Plan of the Thesis 

In this thesis, we calculate the temperature profile and the spectrum of an accretion disk around a 

rapidly rotating neutron star. In Chapter 2, we give the formalism for the structure calculation of. 

a fast rotating star. We also describe different sequences possible for such a star. We also give the 

details of luminosity calculation and mention the neutron star equations of state used in this work. 

In Chapter 3, we calculate the disk temperature profiles for different values of stellar rotation 

rate and for all the chosen equations of state. We compare these results with those for Newto­

nian and Schwarzschild cases and point out the importance of incorporating the effects of general 

relativity and rapid rotation in the accretion disk calculations. 

We compare the theoretical results (calculated in Chapter 3) with the observational (EXOSATj 

data for five LMXB sources and constrain several properties for these systems in Chapter 4. We 

also discuss possible constraints on the neutron star equation of state. 

In Chapter 5, we compute the general relativistic spectrum of an accretion disk around a rotating 

neutron star. We show that the effect of light-bending is very important at higher energies. 

We fit the calculated (in Chapter 5) spectrum with an analytical function in Chapter 6. Here we 

suggest a method to distinguish between a Newtonian spectrum and a general relativistic spectrum 

observationally. 

It has been proposed that the central accretors of at least some of the LMXBs are strange stars 

(and not neutron stars). In order to try to answer this question, in Chapter 7, we calculate the 

values of several properties (including the disk temperature profile) of a rotating strange star and 

compare them with those of a rotating neutron star. 

In Chapter 8, we give a summary of our work and discuss the future prospects. We also mention 

the main conclusions of the thesis. 
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Chapter 2 

Formalism for Rapidly Rotating 
Neutron Stars 

2.1 Introduction 

The necessary condition for disk accretion is that the accreted matter must have intrinsic angular 

momentum. Because of this property, matter coming out of the companion star can not fall on 

the surface of the neutron star radially, but moves almost in circular orbit and forms a disk. 

The specific angular momentum of this matter is much higher than that of a neutron star. As 

a result, when it hits the star, the stellar angular momentum increases, making the star rotate 

faster in general. Therefore accreting neutron stars are expected to be rapidly rotating due to 

such accretion induced angular momentum transfer. This was the reason that the LMXBs were 

speculated to be the progenitors of millisecond radio pulsars for long time (Bhattacharya & van den 

Heuvel 1991). Recently such speculation has been confirmed with the discovery of a millisecond 

pulsar (SAX J1808.4-3658) in an LMXB (Wijnands & van der Klis 1998). SAX J1808.4--3658 

shows periodic pulsations (P = 2.49 ms) in X--rays, which proves that accretion can actually spin 

up the central accretor very effectively. We also observe kHz QPO and Burst Oscillation (van der 

Klis 2000). The frequency separation (,...., 300 Hz) between the two simultaneously observed peak of 

kHz QPO is equal to the rotational frequency of the central star according to the beat-frequency 

model. The Burst Oscillation frequency is also believed to be close to (or integer multiple of) the 

stellar angular frequency (van der Klis 2000). These indicate the rapid rotation of the accreting 

neutron star. 

It is therefore essential to construct equilibrium sequences for rapidly rotating neutron stars, 

considering the full effect of general relativity. The Schwarzschild metric is no longer valid even 

outside a rotating neutron star, as the relativistic effect of dragging of inertial frames in the vicinity 

13 
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of the star will be important. This will affect the luminosity and the spectra of the accretion disk. 

Therefore to model the observed spectra more accurately, we need to compute the metric coefficients 

around rapidly rotating neutron stars. 

Relativistic models of slowly rotating neutron stars were constructed by Hartle & Thorne (1968). 

Their formalism is valid for strong gravitational fields, but only in the limit of slow rotation (neglects 

terms higher than O(n~/n~s)) compared to the critical angular speed for centrifugal break-up 

(nms). Similar calculations, using the same formalism, were performed by Datta & Ray (1983), 

to construct models based on a variety of proposed equations of state. An extensive study of the 

properties of these models has been made by Datta, Kapoor & Ray (see, for example, Datta 1988 

and references therein). For a description of the structure calculation of slowly ri:ltating neutron 

stars, see Thampan (1999). 

A formalism, appropriate for a rapidly rotating neutron star, should be exact in its treatment of 

Sl*. The metric coefficients for such models are to be calculated numerically, unlike the case of slow ly 

rotating models, where the metric coefficients have analytic expressions. The exact models are the 

solutions of Einstein's equations for the stationary gravitational field in axisymmetry, coupled 

to the equation of hydrostatic equilibrium. Such models have previously been constructed by 

several authors, including Bonazzola & Schneider (1974), Butterworth (1976) (for polytropic EOS) 

and Friedman, Ipser & Parker (1986) (for realistic EOS). An alternative approach using spectral 

methods was developed by Bonazzola et al. (1993) and used for many realistic EOS by Salgado et 

al. (1994a; 1994b). However, we follow the procedure used by Cook, Shapiro & Teukolsky (1994), 

based on a formalism due to Komatsu, Eriguchi & Hachisu (1989). For a comparison of different 

formalisms, see Stergioulas (1998). 

For our preliminary study, we calculate different sequences. These are mainly of two types: 

evolutionary sequence and limit sequence. We call sequences along whieh the rest mass Mo is held 

fixed evolutionary sequences. An isolated neutron star is expected to evolve along such a sequence, 

as it slowly loses energy and angular momentum via, for example, electromagnetic or gravitatiollal 

radiation. The set of all evolutionary sequences is naturally divided into two groups: the norrnal 

sequences and the supramassive sequences. Normal evolutionary sequences are those that terminate 

at one end with a nonrotating, spherically symmetric solution. Supramassive sequences do not 

contain such static solution. 

The set of equilibrium solutions for a given EOS forms a two parameter family. The boundary 

of the set of stable equilibrium solutions is formed by the four limits. The first limit is the static 

limit, where Sl* -t 0 and total angular momentum J -t O. Models on the static limit sequence are 

solutions of the TOV equations for spherically symmetric models, described in Chapter 1. 
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The second limit is the mass-shed limit, which is reached when the gravitational attraction at 

the stellar equator is not sufficient to keep matter bound to the surface. For the case of general 

differential rotation, mass-shed limit occurs when 

(2.1) 

at the equator (Cook et al. 1994). Here the relation F(n*) = utu<jJ specifies the rotation law, v 

is the proper velocity of matter at the equator with respect to a zero-angular-momentum-observer 

(ZAMO) and p & I are the metric coefficients (see section 2). 

The third limit is the stability limit, where an equilibrium solution is marginally stable to 

quasi-radial perturbations. The stability limit sequence begins at the maximum-mass point on the 

static limit sequence and usually terminates near the maximum-mass point on the mass-shed limit 

sequence. The intermediate points lie on supramassive evolutionary sequences where the stability 

condition 

( OJ) < 0 
[he Mo 

(2.2) 

is marginally satisfied (Cook et al. 1994). Here tc is the central total energy density. 

Finally, there is the low--mass limit, below which a neutron star cannot form. However, we have 

not attempted to determine this limit, as it is of minimal importance. 

In our work, we, in general, choose gravitational mass (M) and n* a::; the independent pa­

rameters for a given EOS. The reason is that these are the quantities that can be observationally 

measured. Therefore we construct gravitational mass sequences (i.e., M is kept constant) and study 

the values of different quantities for equilibrium configurations. 

In section 2.2 and 2.3, we describe the procedure for structure calculation of a rapidly rotating 

neutron star, considering the full effect of general relativity and the corresponding luminosity­

calculation--procedure respectively. A description of equations of state is given in section 2.4. We 

show our results in section 2.5 and give conduding remarks in section 2.6. 

2.2 Structure Calculation 

We assume that the space-time in and around a rotating neutron star is stationary, axisymmetric, 

asymptotically flat and reflection-symmetric (about the equatorial plane). The metric may be 

written in the form (Bardeen 1970) 
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ds2 = g>"{3dx>"dxf3 (\!3 = 0, 1,2,3) 

= -e'Y+Pdt2 + e2Q (dr2 + f 2dlP) + e'Y-Pr2sin20(d¢ - wdt)2 (2.3) 

where the metric potentials" p, 0:', and the angular speed (w) of zero-angular-momentum-observer 

(ZAMO) with respect to infinity, are all functions of the quasi-isotropic radial coordinate (r) and 

polar angle (e). f is related to the Schwarzschild-like radial coordinate (1") through the equation 

1" = reC'Y-p)/2 (see Misner, Thorne & Wheeler 1974). Here we use geometric units c = G = 1. 

We assume that the matter source is a perfect fluid with a stress-energy tensor given by 

(2.4) 

where E is the total energy-density, P is the pressure and uP is the matter four-velocity, given by 

(Cook et al. 1994) 

(2.5) 

Here 0* == u31uo is the angular speed and the proper velocity v of the matter, relative to ZAMO, 

is given by 

(2.6) 

The tilde over a variable represents the corresponding dimensionless quantity. For example, we 

use r == ",-1/2r, t == ",-1/2ct, W == 1",1/2w, {L == 1.11:1/ 2°*, E == %II:E, P == gll:P, j == !iJgII:-1 J and c c c. c c 

M == ~1I:-1/2 M, where the fundamental length scale ",1/2 is given by II: == 0:0' with Eo = 1015g cm-3. 

For an axisymmetric and equatorial plane symmetric configuration, the computational domain 

in spherical polar coordinates covers 0 :::; r :::; 00 and 0 .s () .s 7f 12. For numerical convenience, we 

make a change of variables (r --+ sand () --+ J..L) given by 

r s re--; 
1 - s 

e = cos-1 J..L (2.7) 
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where 'Fe is the quasi-isotropic radial coordinate of the equator. It is easy to see that sand fJ vary 

in the range 0 ~ s ~ 1 & 0 ~ fJ ~ 1 and at the equator 8 = 0.5. 

For these variables, the Einstein field equations projected on to the frame of reference of a 

ZAMO yield three elliptic equations for the metric potentials p, "I & wand two linear ordinary 

differential equations for the metric potential a (Bardeen & Wagoner 1971; Butterworth & Ipser 

1976; Komatsu et al. 1989). The elliptic equations are of the form (Thampan 1999): 

(2.8) 

( A + (1 - 8)3 a _ (1 - 8)2/1, _,a ) 'Ve'Y/2 = -
L.l. ..:.----...:- ~ 2;) I S'Y ( S , fJ ) 

s uS 8 up 
(2.9) 

( ;;: + 2(1 - 8)3 !!.- _ 2(1 - s)2/L~) w'e(-y-p)/2 = - ( ) 
L.l. 2 Sw 3, It 

/3 AS S UfJ 
(2.10) 

where the elliptic differential operator is.. is given by 

The effective sources iPs are defined as (Cook et a1. 1994) 

s ( ) = 'Y/2 [8 20< -2(- + P) (_8_) 21 + v2 
p 8, fJ e 7fe r eEl _ S 1 _ v2 

2 

+(_8_) (1-11,2)e-2p{[s(1 _ .5)W s]2 + (1 - fJ2)w~,} 
1 - 8 ',,.. 

+s(1 - s hs - P"I,M + ~ { 16rre2af; P ( 1 ~ s) 

2 

-s(1 - shs (8(1; s) "1,8 + 1) _ "I,M (1 ~fJ2 "I,M - fJ) }] (2.12) 
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(2.13) 

(2.14) 

where 

W - few , 

tt - fen* (2.15) 

The differential equation for ex with respect to s does not provide any new information (see 

Butterworth & Ipser 1976). Here we use the differential equation for a with respect to fL 

a,/-L - ~(p,,', + I,lL) - {(I - fL2)[1 + 8(1 - s)r,s]2 + [-f.L + (1 - f.L2h,/-L]2}-1 

X [~{8(1 - 8)[s(1 - sh,sl,s + 82(1 - 8)2,~ - [(1 - f.L2)r,J.LLp 

-',J.L[-fL + (1 - fL2h,/-L]) [ -f.L + (1 - fL2)r,,..] + ~[S2(1 - s)2(p,s + ,,8)2 

-(1 - f.L2)(p,,.. + I,,'L)2][-fL + (1 - fL2)r,p] - 8(1 - s)(1 - f.L2) 

X (~(p,s + 'Y,s)(p,,.. + I,,',) + I,S,.. + ',S',,..) [1 + s(1 - 8h,s] 

1 
+s(1 - s)f.L'Y,s[1 + 8(1 - s)r,s] + 4(1 - f.L2)e- 2p 

x {2 1 ~ 8 (1 - fL2)W,sw,p[1 + 8(1 - s)r,s] 
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(2.16) 

with the initial condition that a = b - p)/2 at f.1. = 1. 

In the formalism given by Komatsu et aI. (1989), the elliptical differential equations are con­

verted to integral equations (so that the boundary conditions can be handled easily) using Green's 

function approach. Therefore, the three metric potentials p, "( & w can be written as 

p(s, It) 

(2.17) 

"((8, It) = 
. 2n 

_ 2e-,,(/2 ~ sin[(2n - 1)0] [( 1 - s) 
IT L (2n - 1) sin 0 S 

n=1 

r ds's'2n-l r1 . _ ( s )2n-2 
X 10 (1~'s')2n+1 10 dr/sin[(2n-l)e']S"((.<;',{l)+ 1~" 

£1 ds'(l _ '1')211-:3 ~I _] 
x -~1::-1--' dfl' sin[(2n - l)O']S,,((,,', ;/) 

• 8.9 . () 
(2.18) 

( )
2n-2 

·s I ' ''Ln I c (88 /.,)1'-" ., 
x I '('-.-"'---)-2' +.2 r dft smO]'.ln_I(f.1.)Sw(S,fL ) + -1-Jo 1 - .~, n Jo - .5 

I I (iL'/(l -- s')211--a ~I -] ,,0.. ,. ') 1 , / I 
X -------.--- dll Hill 0 I" 1 (II )8- (8 J:t) .,2n- I . ,,'/!--'" w·_, 

s S .0 
(2.19) 

w\u'r(l P'l (fl) an' t.IH' Legml<in) polynomials, Fl~' (fl.) <I.re the associated Legendre polynomials and 

Sill(1/(}) is a fUllction of It through 0::;:;: cos-- 1 It. 

'1'1)(, p(lImtioll of hydl'OHtatic' (.~qllilibrium for it \mrytropic fluid is 

(2.20) 

whp)"f' fI( J» is till' dillll'IlSioll\l'ss specific entha.lpy as a function of pressure. Fp, 'u~ and hp are the 

dillll'lI!.;jolljpss vahll's of pn'ssum, t-compommt of tlw four veloeity and the specific enthalpy at the 
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pole. 0.*,c is the (dimensionless) central value of the angular speed, which on the rotation axis 

is constant and equal to its value at the pole. F(O,*) = utu<jJ is obtained from an integrability 

condition on the equation of hydrostatic equilibrium. Choosing the form of this function fixes the 

rotation law for the matter. Following Komatsu et al. (1989), we set it to 

(2.21) 

where A is a rotation constant such that rigid rotation is achieved in the limit A --7 00. An 

appropriately chosen value of hp defines the surface of the star. 

Integrating Eq. (2.20), we obtain 

(2.22) 

where IP and Pp are the values of the metric potentials at the pole. Therefore for the center and 

the equator of a rigidly rotating neutron star, we get 

(2.23) 

and 

(2.24) 

where the subscripts p, e and c denote the values at the pole, equator and center respectively. 

We follow the formalism of Komatsu et al. (1989) to compute the equilibrium configurations of 

a rapidly rotating neutron star. For a given equation of state (EOS), we take the maximum energy 

density tc and the ratio (fp/fe) of the coordinate radii at the pole and equator as the inputs. An 

equilibrium solution for given values of the configuration parameters is obtained iteratively in the 

following way. Let r~ and the metric potentials pi,,' & a.' be values of the current approximate 

solution. Then p', I' & ci are first scaled (divided) by (r~)2 to obtain p/y & &. A new value for T'e 

2[h(P(EC)) - hpJ 
'Yp + Pp - i'c - Pc 

(2.25) 
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is obtained using Eq. (2.23). Using Eq. (2.24), we compute the value of ~t,c as 

(2.26) 

Now p, l' & a are rescaled (multiplied) by the new value of i~. Using these values, we solve Eq. 

(2.23) to obtain the new matter-energy distribution, namely €, ft, v etc. Finally, Eqs. (2.16)-(2.19) 

are solved for the new values of the metric potentials. These steps are repeated until the value of 

ie converges to within a tolerance of 10-5 . For a detailed description of the numerical procedure, 

see Cook et a1. (1994); Datta et a1. (1998) and Thampan (1999). 

Once re converges, the metric potentials p, /, wand a together with the density (€') and pressure 

(P) profiles can be used to compute the structure parameters with the following formulae (Cook 

et al. 1994). The total mass M is 

(2.27) 

The toted rest (baryonic) mass Mo of the system is given by 

Mo = 
1/2 2 -3 1 2 ·1 

411'K mBC r"e r .s ds I d 2(H(r-p)/2 n 
G Jo (1- s)1 10 pe (1 _ ij2)1/2 

(2.28) 

where ii is the dimensionless baryonic number density and mB is the ma.ss per baryon. The 

total proper rnass M1J of the system represents the energy stored in the configuration excluding 

gravitational potential energy and rotational kinetic energy. It is defined as 

1/2 2 -3 1 2d 1 - p' 411';. C r'e r .s .s r d 2(t+(r-p)/2 E + 
G Jo (1- 3)4./0 pe (1 _V2)1/2 

(2.29) 

The total angular momentum J of the system is given by 

J = 
4 3 -4 J ,3 d ' 1 -

11'KC r e r .s .9 r d (1 _ 2) 1/2 2ct+,-p( _ P)_V_ 
G Jo (1 - 8)5 10 p, j.t e € + 1 - ii2 

(2.30) 

The moment of inertia [ is obtained by the prescription 
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(2.31) 

The total rotational kinetic energy T of the system is defined by 

T = 7rK, C re S S d (1 _ 2)1/2 20+Y- p (- P)~ 2 1/2 2 -3 101 3d 101 -n 
G 0 (1 - 8)5 0 J.L J.L e f. + 1 - ii2 

(2.32) 

Then the gravitational binding energy W of the star is given by 

(2.33) 

The circumferential radius R at the equator is defined by 

(2.34) 

where the subscript 'e' denotes evaluation at the equator. 

2.3 Luminosity Calculation 

We calculate the luminosities of the accretion disk and the boundary layer using the test particle 

approach, i.e., we determine the amount of gravitational energy release by a test particle, as it 

spirals in. Since the chosen metric (given by Eq. 2.3) is stationary and axisymmetric, the energy 

and angular momentum of this particle are constants of motion. As we consider a geometrically thin 

disk, the particle is always confined to the equatorial plane. Then using the standard Lagrangian 

technique, the equations of motion of the particle can be written as (Thampan & Datta 1998) 

i _ dt 
d-r 

(2.35) 

(2.36) 
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(2.37) 

Here l' is the proper time, ntp , if; and i are the angular speed, specific energy and specific angular 

momentum of the test particle respectively and V is the effective potential given by 

(2.38) 

The conditions for circular orbits, extremum of energy and minimum of energy are respectively: 

if;2 = V2 (2.39) 

V-,r = 0 (2.40) 

Vrr , > 0 (2.41) 

For marginally stable orbits, 

~i'i' = 0 (2.42) 

In our notation, a comma followed by one 'f' represents a first order partial derivative with respect 

to f and so on. 

Using Eqs. (2.35), (2.36) and (2.39), the condition for drcular orbits can be written as 

E-wi 
e(-r+p)/2 

(2.43) = V -2 1 - vtp 

= 
vtp re('Y-p)/2 

)1 - vrp 

(2.44) 

where Vtp, the proper velocity (in the equatorial plane) of the test particle relative to ZAMO, is 

given by 

(2.45) 
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Conditions (2.40) and (2.42) yield respectively) 

2 + rb,r - P,r) 
(2.46) 

(2.47) 

where we have made use of Eq. (2.46) and its derivative with respect to if in order to eliminate 

the second order derivatives in Eq. (2.47). The zero of V:rr gives the radius (rorb) of the innermost 

stable circular orbit (ISCO) and the corresponding Vtp yields E and l. In Eq. (2.46) the positive 

sign refers to the co-rotating particles and the negative sign to the counter-rotating particles. In 

our work we consider only the co-rotation case. 

In a circular orbit, the Keplerian angular speed of the test particle is denoted by DK . Using 

Eq. (2.45), we get the OK profile as 

(2.48) 

where Vtp is given by Eq. (2.46). The value of DK in an orbit at the surface of the neutron star 

puts a firm upper limit on the angular speed the star can attain (Friedman et a1. 1986) and hence 

the boundary layer luminosity, when the star attains this maximum 0*, should be zero (Sunyaev 

& Shakura 1986). 

Depending on the chosen EOS and t.he values of M and D*l the equatorial radius (R) of the 

neutron star can be greater than or less than rorb. The accretion luminosities are different for 

these two cases (Kluzniak & Wagoner 1985; Sunyaev & Shakura 1986; Datta et a1. 1995). These 

quantities can be calculated in the following way. 

For R > rOrbl the disk extends upto the surface of the weak magnetic field neutron stell". The 

energy of a test particle at infinite distance from the star is equal to its rest mass mo. Now the 

specific disk luminosity (ED) is equal to the gravitational energy release by the particle in the unit 

of mo. Therefore 

(2.49) 
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where EK (r = R) is the specific energy of the particle in Keplerian orbit at the surface, obtained 

by solving Eq. (2.43), (2.44) and (2.46). 

The specific boundary layer luminosity (EBd is equal to the energy loss (in the unit of rna) by 

the particle in the boundary layer (a very narrow gap near the neutron star surface). Therefore 

(2.50) 

where Eo is the energy of the particle 'at rest' on the stellar surface (the particle will be moving 

with the velocity Vtp = v* of the stellar fluid at the surface, where v* is obtained by substituting 

into Eq. (2.6) all the relevant parameters for l' = R) and is calculated by solving Eqs. (2.43) and 

(2.44) for E at r = Rand Vtp = i\. 

For R < rorb, the accretion disk does not touch the surface of the star. The specific disk 

luminosity is given by 

ED - 1 - EOrb (2.51) 

Consequently the specific boundary layer luminosity is 

(2.52) 

Here EOrb is the specific energy of the particle in 1800, calculated using the Eqs. (2.43), (2.44) 

and (2.46) for r' = rorb. 

2.4 Equation of State 

For calculating the structure of a neutron star, we need to know its equation of state (E08), i.e., 

the pressure P as a function of the matter energy density E. The outer crust of the star is expected 

to be made of 5GFe, as its binding energy per nucleon is the lowest among all the atoms. As we 

proceed towards the center, the density increases enormously and the matter becomes degenerate. 

At the nuclear density (fO = 2.4 X 1014g cm-3), the nucleii dissolve and all the nucleons form a 

single huge nucleus. The composition of matter upto this density is fairly well understood. For 

densities E > fO, we have to rely on extrapolation from known nuclear properties under terrestrial 

conditions. The goodness of such extrapolations is checked by how well it reproduces the values of 
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parameters like compression modulus of equilibrium nuclear matter, the nuclear saturation density, 

symmetry energy etc. (for which experimental estimates are available). 
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Figure 2.1: Logarithmic plot of pressure vs. matter density for the EOS models used here. The 
density and pressure are in units of 1.0 x 1014 g cm-3 and (1.0 x 1014 ) c2 cgs respectively. 

The structure of neutron stars depends sensitively on the EOS at high densities. Although the 

main composition of degenerate matter at densities higher than EO is expected to be dorninated by 

neutrons, significant admixtures of other elementary particles (such as pions, kaons and hyperons) 

are not ruled out. In the literature, many EOS models are available. The various formalisms used 

in deriving these models give rise to a substantial spread in their qualitative features. Which of 

these is the correct EOS model is therefore a fundamental question of physics. It is hoped that 

a theoretical computation of quantities of astrophysical interests using representative EOS models 

and subsequent comparison with observations will provide an answer to this question. This is one 

of the main motivations for the work presented in this thesis. 

For excellent reviews on neutron star EOS models, we refer Canuto (1974), Canuto (1975) and 

Baym & Pethick (1975) (also see Shapiro & Teukolsky 1983). In this thesis, we have studied lumi­

nosities, disk temperature profiles and spectra for certain representative EOS models. An important 
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quantity that characterises EOS models is the stiffness parameter, defined as S = d log P / d log c. 

For higher values of S, the EOS model is stiffer. For every EOS, there exists a maximum possible 

stable mass (Mmax). The stiffer the EOS, the higher is the value of Mmax. 

For our calculations, we choose four EOS models of widely varying stiffness parameters. This 

ensures sufficient generality of our results. We describe below the salient features of these models. 

(A) Pandharipande (hyperonic matter): One of the early attempts to derive nuclear EOS with 

admixture of hyperons is due to Pandharipande (1971), who assumed the hyperonic potentials to 

be similar to the nucleon-·nucleon potentials, but altered suitably to represent the different isospin 

states. The many--body method adopted is based on the variational approach of Jastrow (1955). 

The two body wave function was taken as satisfying a simplified form of the Bethe-Goldstone 

equation, in which terms representing the Pauli exclusion principle were omitted but simulated by 

imposing a 'healing' constraint on the wave function. This model is soft, i.e., the value of S is 

comparatively low. The nonrotating Mmax for this EOS is 1.41 Mc:). 

(8) Baldo, Bombaci fj Burg'io {AV14 + Sbf}: Baldo, Bombaci & Burgio (1997) have given 

a microscopic EOS for asymmetric nuclear matter, derived from the Brueckner-Bethe-Goldstone 

many body theory with explicit three-body terms. The three-body force pararneters are adjusted 

to give a reasonable saturation point for nuclear matter. This model is intermediate in stiffness 

with nonrotating Mmax == 1.79 Mo· 

(C) Walecka {neutrons}: The EOS model of Walecka (1974) corresponds to pure neutron mat­

ter and is based 011 a mean field theory with exchange of scaler and (isoscalar) vector mesons 

rellresenting the nuclear interaction. It is a stiff EOS model with nonrotating Mmax = 2.28 Mo. 

(D) Sahu, Basu t~ Datta: Sahu, 8(;)..'311 & Datta (1993) gave a field theoretical EOS for neutron-­

rich matter in beta equilibrium based on the chiral sigma model. The model includes an isoscalar 

vector field generated dynamically and reproduces the empirical values of the nuclear matter satu­

ration density and binding energy a.nd also the isospin symmetry coefficient for asymmetric nuclear 

matter. The energy per nucleon of nuclear matter according to these authors is in very good agree­

ment, up to about four times the equilibrium nuclear matter density, with estimates inferred from 

heavy ion collision experimental data. This model is the stiffest among all the EOS models we 

have considered. The nonrotating Mmax for this EOS is 2.59 Mo· 

The pressure density relationship of the above EOS models is illustrated in Fig 2.1. The 

composite EOS for the entire spa.n of neutron star densities is constructed by joining one of the 

selected high density EOS models to that of Negele & Vautherin (1973) for the density range 

1014 - 5 X 1010g cm-3, Baym, Pet hick & Sutherland (1971) for densities down to rv l03g cm-3 and 
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Feynman, Metropolis & Teller (1949) for densities less than 103g cm-3. 

2.5 The Results 
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Figure 2.2: Semi-logarithmic plot of gravitational mass vs. central matter density (in unit of 1014 

g cm-3) for the EOS model B. The solid line is for static limit, dash-dot line is for mass-shed 
limit and the dashed line is for radial-instability limit. The stable equilibrium configurations occur 
only in the region, bound by these three limits (see the text). The dotted lines are evolutionary 
sequences with the values of corresponding Mo written. 

We calculate the equilibrium configurations of neutron stars with n* ranging from 0 to the 

mass-shed limit value. In Fig 2.2, we illustrate the nonrotating limit, mass-shed limit and radial 

instability limit for the EOS model (B). Several evolutionary sequences are also shown. 

In Fig 2.3, the above three limits are illustrated in M - R space, for the same EOS model. It 

is to be noted that M - R diagram has in general a negative slope for neutron stars (as we will see 

in Chapter 7, the slope is positive for strange stars). 

We construct gravitational mass sequences for all the chosen EOS models.' We take M = 

1.4 M0 (the canonical mass) for the purpose of illustration. In Fig 2.4, we plot n* vs. J from the 
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Figure 2.:3: Plot of gravitational mass vs. equatorial radius for the EOS model B. All the lines are 
as described in Fig. 2.2. 

llonrotatiug limit to the mass shed limit. We see that both J and f:l* increa.':le monotonically. We 

also llotice that for softer EOS, higher value of !2* can be achieved at the mass shed limit, but the 

corresponding value of J is smaller. 

In Fig 2.5, we plot f:l* vs. T /W with other specifications same as in Fig 2.4. Here we always 

prescllt the absolute value of W. As we will elaborate in Chapter 7, the higher the value of T /W, 

the grea,t(~r is the possibility for the star to be a subject of triaxial instability. As we see from the 

fig1ll'e, for a stiffer gOS, the vll,lue of T /W is higher, but the maximum value does not exceed 0.12. 

(for strange stars, it is 0.25 - 0.:30, see Chapter 7). 

The valup of Torb compared to that of R has profound effect on the disk luminosity, tempera­

ture profile a.ud spectrum. We will illustrate the variations of fin (radius of disk inner edge) and 

Iurninositi(~s with Sl* (for M = 1.4 Mc:)) in the next chapter. 
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Figure 2.4: Angular speed (D*) as a function of total angular momentum (J). The curves are for 
different EOS models (mentioned in the figure) and are for a fixed gravitational mass (M = 1.4 M0)' 

2.6 Concluding Remarks 

It is expected that the accreting neutron stars are rapidly rotating because of the huge amount 

of angular momentum, transfered to them by the accreted matter. The very short pulsation pe­

riod (P = 2,4gms) of SAX J1808,4-3658 strengthens this speculation. Therefore we compute the 

equilibrium configurations for rapidly rotating neutron stars, considering the full effect of general 

relativity. Then using the structure parameters and metric coefficients for these configurations, we 

calculate general relativistically correct values for luminosities, disk temperature profiles and disk 

spectra as functions of Q*. Comparing these model spectra with the observed ones will help to 

constrain neutron star structure parameters, as well as the EOS. In the subsequent chapters, we 

will elaborate the importance of rapid-rot at ion-calculation, by showing that the results for such 

calculation is considerably different from those for Schwarzschild or Newtonian case. 
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Chapter 3 

Calculation of Disk Temperature 
Profile 

3.1 Introduction 

The soft X-ray spectra ofluminous low--mass X-ray binaries (LMXBs) are believed to originate in 

geometrically thin accretion disks around neutron stars with weak surface magnetic fields (see for 

e.g. White 1995). An important parameter in modeling these spectra is the maximum value of the 

effective temperature in the accretion disk. The effective temperature profile in the disk can be 

estimated (assuming the disk to radiate from its surface like a blackbody) if one knows the accretion 

energy released in the disk. In a Newtonian treatment, the innermost region of an accretion disk 

surrounding a neutron star with weak magnetic field will extend rather close to the neutron star 

surface. The amount of energy released in the disk will be one-half of the total accretion energy, 

the other half being released in the thin boundary layer between the disk's inner edge and the 

neutron star's surface. This then gives the disk effective temperature (Te£f) varying with the radial 

distance (r) as Teff ex r-3/ 4 and the maximum effective temperature (T:ffax)will depend on the 

(nonrotating) neutron star mass (M) and radius (R) as Tefl-ax ex (M!VI / R3 ) 1/4, where M is the 

steady state mass accretion rate. The value of (Te1fax ) in the disk, in this approach, occurs at a 

radial distance 1.36 R. 

Mitsuda et al. (1984) parameterized the disk spectrum by the maximum temperature of the 

disk, using the above formalism and assuming the mass of the neutron star is equal to 1.4 M 0 . 

These authors assumed that the inner parts of the disk do not contribute to the X-ray spectrum, 

and suggested a multi color spectrum for the X-ray emission from the disk. It was shown by 

these authors, that the observed spectra of Sco X-I, 1608-52, GX 349+2 and GX 5-1, obtained 

with the Tenma satellite, can be well fitted with the sum of a multi--color spectrum and a single 

33 
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blackbody spectrum (presumably coming from the boundary layer). White, Stella & Parmar (1988) 

(WSP) suggested that the simple blackbody accretion disk model should be modified to take into 

account the effects of electron scattering. Using EXOSAT observations, these authors compared the 

spectral properties of the persistent emission from a number of X -ray burst sources with various 

X-ray emission models. This work suggests that either the neutron star (in each system considered) 

rotates close to equilibrium with the Keplerian disk, or that most of the boundary layer emission 

is not represented by a blackbody spectrum. 

For accretion disks around compact objects, one possibility is that of the accretion disk not being 

Keplerian in nature. For e.g. Titarchuk, Lapidus & Muslimov (1998) have formulated a boundary 

problem in which the Keplerian accretion flow in the inner disk is smoothly adjusted to the neutron 

star rotation rate. The generality of such a formulation permits application even to black holes, but 

only for certain assumed inner boundary conditions. These authors demonstrate that there exists a 

transition layer (having an extent of the order of the neutron star radius) in which the accretion flow 

is sub-Keplerian. An attractive feature of this formalism is that it allows super-Keplerian motion at 

the outer boundary of the transition layer, permitting the formation of a hot blob that ultimately 

bounces out to the magnetosphere. This formalism (Titarchuk & Osherovich 1999; Osherovich 

& Titarchuk 1999a; Osherovich & Titarchuk 1999b; Titarchuk, Osherovich & Kuznetsov 1999) 

therefore provides a mechanism for the production of high frequency quasi-periodic oscillations 

(QPOs) observed in the X-ray flux from several LMXBs. Such effects, when taken into account, 

can modify the Newtonian disk temperature profile (Chakrabarti & Titarchuk 1995). 

There are several other effects which will modify the Newtonian disk temperature profile, such 

as the effects of general relativity and of irradiation of the disk by the central neutron star. The 

wind mass loss from the disk and the residual magnetic field near the disk's inner edge may also 

playa part in modifying the effective temperature (Knigge 1999). Czerny, Czerny & Grindlay 

(1986) calculated LMXB disk spectra assuming that a disk radiates locally as a blackbody with the 

energy flux detemined by viscous forces, as well as irradiation by the boundary layer, and took into 

account relativistic effects, some of them in an approximate way. The possible effects of general 

relativity were also discussed by Hanawa (1989), using the Schwarzschild (nonrotating) metric, 

assuming that the neutron star radius is less than the radius of the innermost stable circular orbit 

(rin = 6GMjc2) , which they identified as the disk inner boundary. The color temperature was 

assumed to be higher than the effective temperature by a factor of 1.5. It was found by Hanawa 

(1989) that the observations are consistent with a geometrically thin, optically thick accretion disk, 

whose inner edge is at r = rin, r being the Schwarzschild radial coordinate. 

An important dynamical aspect of disk accretion on to a weakly magnetized neutron star is that 
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the neutron star will get spun up to its equilibrium period, which is of the order of milliseconds 

(see Bhattacharya & van den Heuvel 1991, and refereces therein). The effect of rotation is to 

increase the equatorial radius of the neutron star, and also to relocate the innermost stable circular 

orbit (for a corotating disk) closer to the stellar surface (as compared to the Schwarzschild case). 

These effects will be substantial for rapid rotation rates in a fully general relativistic treatment that 

includes rotation. Therefore, for accreting neutron stars with low magnetic fields, the stellar radius 

can be greater or less than the radius of the innermost stable orbit, depending on the neutron star 

equation of state and the spacetime geometry. The effect of magnetic field will be to constrain the 

location of the inner-edge of the accretion disk to the magnetospheric (AlfVen) radius. In such a 

case, rin would lose the astrophysical relevance as discussed here. However, this will be so only 

if the magnetic field strength (B) is large. The problem addressed in this paper refer to LMXBs 

which contain old neutron stars which are believed to have undergone sufficient magnetic field 

decay (Bhattacharya & Datta 1996). Clearly, for low magnetic field case, a number of different 

disk geometries will be possible if general relativistic effects of rotation are taken into account. 

These structural differences influence the effective temperature profile and the conclusions derived 

by Czerny, Czerny & Grindlay (1986) and Hanawa (1989) are likely to be rnodified. 

In this chapter, we attempt to highlight the effects of general relativity and rotation of the 

neutron star on the accretion disk temperature profile. For simplicity (unlike Titarchuk, Lapidus 

& Muslimov 1998), we assume the accretion disk to be fully Keplerian, geometrically thin and 

optically thick. We construct gravitational mass sequences for the chosen EOS models and calculate 

the luminosities and temperature profiles for equilibrium configurations corresponding to different 

0,* values. 

In section 3.2, we will describe the procedure for disk temperature profile calculation. We will 

show the results in section 3.3 and summarise the content of the chapter in section 3.4. 

3.2 The Effective Temperature of the Disk 

3.2.1 Effects of General Relativity and Rotation 

The effective temperature in the disk (assumed to be optically thick) is given by 

(3.1) 

where 0' is the Stephan-Boltzmann constant and F is the X-ray energy flux per unit surface area. 

We use the formalism given by Page & Thorne (1974), who gave the following general relativistic 
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expression for F emitted from the surface of an (geometrically thin and non-self-gravitating) 

accretion disk around a rotating black hole: 

F(r) 
M 

= 41rr f (r) (3.2) 

where 

f(r) = -OK,rCE - OKl)-21r (E - OKl)l,rdr 
'1'in 

(3.3) 

Here nn is the disk inner edge radius, E, l are the specific energy and specific angular momentum 

of a test particle in a Keplerian orbit and OK is the Keplerian angular velocity at radial distance r. 

In our notation, a comma followed by a variable as subscript to.a quantity, represents a derivative 

of the quantity with respect to the variable. We use the geometric units c = G = 1. Eq. (3.3) is 

valid for a spacetime described by a stationary, axisymmetric, asymptotically flat and refiection­

symmetric (about the equatorial plane) metric. Our metric (2.3) satisfies all these conditions. 

For accreting neutron stars located within the disk inner edge, the situation is analogous to 

the black hole binary case, and the above formula, using a metric describing a rotating neutron 

star, can be applied directly for our purpose. However, unlike the black hole binary case, there 

can be situations for neutron star binaries where the neutron star radius exceeds the innermost 

stable circular orbit radius. In such situations, the boundary condition, assumed by Page & Thorne 

(1974), that the torque vanishes at the disk inner edge will not be strictly valid. Use of Eq. (3.1) 

will then be an approximation. This will affect the temperatures close to the disk inner edge, but 

not the Tci¥aJC to any significant degree (see section 3.4 for discussion). 

In order to evaluate Teff using Eq. (3.1), we need to know the radial profiles of E, l and OK· 

For this purpose, first we construct gravitational mass sequences starting from the static limit all 

the way upto the mass-shed limit. Then the radial profiles are calculated using Eqs. (2.43), (2.44) 

and (2.48). 

Eq. (3.1) gives the effective disk temperature Teff with respect to an observer comoving with 

the disk. From the observational viewpoint this temperature must be modified, taking into account 

the gravitational redshift and the rotational Doppler effect. In order to keep our analysis tractable, 

we use the expression given in Hanawa (1989) for this modification: 

1 + z = (1 _ 3M )-1/2 
r 

(3.4) 
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This equation is a special case of Eq. (5.3) with the inclination angle i = 0 and Schwarzschild metric 

used. Such assumptions make the calculation easier, but does not affect the general conclusion of 

Chapter 4. With this correction for (1 +z), we define a temperature relevant for observations (Tobs) 

as: 

1 
Tobs = -l--Teff +z 

3.2.2 Disk Irradiation by the Neutron Star 

(3.5) 

For luminous LMXBs, there can be substantial irradiation of the disk surface by the radiation 

coming from the neutron star boundary layer. The radiation temperature at the surface of a disk 

irradiated by a central source is given by (King, Kolb & Burderi 1996) 

(3.6) 

where rJ is the efficiency of conversion of accreted rest ma.ss to energy, j3 is the X-ray albedo, h is the 

half-thickness of the disk at rand n is given by the relation h ex rn. For actual values of /3, hlr and 

n, needed for our computation here, we choose the same values (i.e., 0.9, 0.2 and 9/7 respectively) 

as given in King, Kolb & Burderi (1996). It is to be noted that the constant value taken for hlr 

is an approximation, as n i= 1 . However, it does not change the relative feature (which may be 

important for disk instability) of Tirr(r) and Teff(r) much. Although Eq. (3.6) is derived based on 

Newtonian considerations, corrections due to general relativity (including that of rapid rotation) 

will be manifested through the factor rJ. We have made a general relativistic evaluation of fJ for 

various neutron star rotating configurations, corresponding to realistic neutron star EOS models, 

as described in Thampan & Datta (1998). Since Tirr(r) 0:: r- 1/ 2 and Teff(r) 0:: r-3/ 4 , Tirr will 

dominate over Tefl' only at large distances. The net effective temperature of the disk will be given 

by (see Vrtilek et a1. 1990) 

(3.7) 

For the modeling of X-ray sources presented in Chapter 4, we find that Tirr does not play any 

significant role. However, since this quantity has consequences for the disk instability, we calculate 

it using Eq. (3.6) and illustrate it for the rotating neutron star models considered here. 
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Table 3.1: Centrifugal mass-shed limit (Oms), the neutron star radius (R), the disk inner edge 
radius (rin), specific gravitational energy release in the boundary layer (EBL) and in the disk (ED), 
their ratio EBL/ ED, the maximum effective temperature (Tcifax), the radial location (rcir) in the 
disk corresponding to TillaX, T6b~ (see text) and the radial location (rcl:,~) corresponding to this. 
These values are listed for two values of M for all EOS models considered here (except for EOS 
model (A), where the maximum neutron star mass is less than 1.78 M 0 , so only M = 1.4 M0 
is considered). The number following the letter E represents powers of 10. The values of EBL & 
EBL/ ED corresponding to 0* = Oms are expected to be zero and the small values given here are 
the measure of numerical error. 

EOS Model (A) (B) (C) (D) 
M 1.4 M0 1.4 M0 1.78 M0 1.4 M0 1.78 M0 1.4 M0 1.78 M0 

Oms 11.026 7.001 8.219 6.085 6.808 4.652 5.088 
(103 rad S-1 ) 

R O. = 0 7.46 11.01 9.84 12.28 12.32 14.74 15.76 
(lan) O. = Oms 11.44 15.72 15.19 17.26 17.28 20.74 21.16 

1"in D. = 0 12.40 12.41 15.81 12.41 15.75 14.74 15.79 
(km) O. = Oms 11.44 15.72 15.19 17.26 17.28 20.74 21.16 

EBL O. = 0 0.275 0.153 0.262 0.128 0.185 0.097 0.136 
(moe?) O. = Oms 9.0E-5 5.0E-5 5.0E-5 4.0E-5 1.4E-4 1.4E-4 6.0E-5 

ED D. = 0 0.057 0.057 0.057 0.057 0.057 0.055 0.057 
(moc2 ) D. = Oms 0.073 0.057 0.071 0.053 0.064 0.045 0.054 

EBL/ED O. = 0 4.809 2.673 4.574 2.248 3.239 1.779 2.387 
O. = Oms 1.0E-3 9.0E-4 7.0E-4 8.0E-4 2.0E-3 3.0E-3 1.0E-3 

T max 
elf O. = 0 47.64 47.64 42.16 47.64 42.16 45.98 42.16 

(£1;,{4 X 105 K) O. = flms 56.94 46.54 49.28 43.80 45.45 38.32 39.42 

r max 
elf O. = 0 19.76 19.76 25.18 19.75 25.06 21.13 25.16 

(km) O. = Oms 16.14 21.64 21.42 23.68 24.05 28.39 29.21 

Tmax 
obs fl. = 0 39.98 39.98 35.05 39.98 35.05 38.87 35.05 

(£1;,{4 X 105 K) D. = Oms 45.99 39.98 39.98 37.79 37.79 33.95 33.95 

r max 
obs O. = 0 22.29 22.31 28.45 22.31 28.30 23.44 28.41 

(km) fl. = Oms 18.70 23.69 24.58 25.60 26.90 30.14 31.72 
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3.3 The Results 

We have calculated the disk temperature profiles for rapidly rotating, constant gravitational mass 

sequences of neutron stars in general relativity. For our purpose here, we choose two values for the 

gravitational mass, namely, 1.4 MG and 1.78 M G , the former being the canonical mass for neutron 

stars (as inferred from binary X-ray pulsar data), while the latter is the estimated mass for the 

neutron star in Cygnus X-2 (Orosz & Kuulkers 1999), that we use in Chapter 4. 

20 

S 18 
C 16 

14 

EOS (A) 

p:: 12'"--

~ 10 

8 --------2--
6o-__ ~ __ ~~ __ ~ __ ~ __ ~ 

20 
,-., 18 
] 16 
'--'" 

14 
p:: 12 

~ 10 
8 

o 2 4 6 8 10 12 
O. (10' rad s-') 

EOS (C) 

1 

2 

6~~ __ ~~ ____ ~ ____ --Q 

01234567 
O. (10' rad s-') 

20 

S 18 
C 16 

14 
p:: 12 

~ 10 
8 

EOS (B} 

~ 
2 

60-____ ~ __ ~ ____ ~ ____ ~ 

20 

S 18 
~ 16 
'--'" 

14 
p:: 12 

~ 10 
8 

o 2 4 6 
O. ( 10' rad s-') 

EOS (D) 

1 . 2 

8 

6~ __ ~ __ ~ ____ ~ __ ~ __ ~ 

o 1 234 5 
O. (10' rad s-') 

Figure 3.1: Disk inner edge radius (rin; curve 1) and neutron star radius (R; curve 2), as functions of 
neutron star angular velocity (0*) for various EOS models. The curves are for a fixed gravitational 
mass (M = 1.4 MG) of the neutron star. 

In Table 3.1, we list the values of the stellar rotation rate at centrifugal mass-shed limit (Oms); 

the neutron star radius (R); the radius of the inner edge of the disk (rin); EBL, ED and the ratio 

EBL/ ED; Terrfax: & T: and r;;;.r & r:;b~x for the two mentioned values of M and for the different 

EOS models. The last nine computed quantities are given for two values of neutron star rotation 

rate, namely, the static limit (0* = 0) and the centrifugal mass-shed limit (0* = Oms). ED and EBL 

are in specific units (i.e. units of rest energy moc2 , of the accreted particle). The temperatures 

are expressed in units of MU4 x 105 K (where Ml7 = M/I017 g S-l). From this Table it may 
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curve 2 to the Schwarzschild case and curve 3 to a IH~llt,ron star rot:~tin1r, at till' (,f'lIt rlfllgalll1a:;~, ·d 
limit, calculated using the metric (2.3). For eurve 1, it is a.H:;\llIH~(i th:lt. rill IiU I II ,Iw; 

and all subsequent figures (except Fig. :L6) the temperatllt'(! iH pxprPll!i('d ill lll!it~; IIf ,\'1 1': I , 111'· !\, 
where £117 is the steady state mass accretion ra,te in 1mit.s of 1 n 17 g ~t 1 

be seen that for a given neutron star grcwitatioua.l TIlass (M): (1) nlu;; ,!Pen-a:,,,·:,; for iw'rmSIlI).', 

stiffness of the EOS model. (2) R is greater for I:ltifft!l' EOS. (:~) Tll!! h .. ba.vinr lif I' t!1'p"wh P\I 

whether rrns > R or rrns < R and hence appears non lIlouotolik. (.\) J~:Hl. for flit' UlIll IHlatillg 

configuration decreases with stiffness of the EOS. For a coufig1ll'atioll rotatilll'. at t.l14' llIa;'i~;~dlf'd 

limit, EBL is insignificant. (5) In the non-rotating limit., Ell remainH 1'01I1.~hly l'IIW.;t;Ult f( ,I' var,yillg 

stiffness of the EOS model. However, for the rapidly rotat.ing Cil.'!(!, til!' v;l!\If' of h:!I dl·('t'/'a:i.·s with 

increasing stiffness. (6) The ra.tio EBIjEo in static limit i:; hi~lle:;t for tIll! SI.ft(l!'lt !':()S lIIlH\(·l, F'II 

the rapidly rotating case, this ratio is uniformly inHigllifieallt. (7) 7;:W1x awl 'f;I.t::, dl·en',\.'II' with 

increasing stiffness of the EOS models, However, these vahwH (~xhibit. nOll !!lowltollic' variatioll 

with f2* (see Fig. 3.5 for the first pa.rameter). (8) The rm:lt of the pm.'amdf!J'l'l, IliUlH'ly. awl 

r~t!x are non-monotonic with respect to the EOS stiffness paraulet(~r. 
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III Fig. :1.1, we <iispl;W the vari:ttioll of R (t.he dashed curve) a,nd Tin (the continuous curve) with 

H. for Ai 1 A 114(.\ for th(~ four I<;OS lllOdeiK that we Imve choSI.ln. From this figure it is seen thett 

for ;~ COllsta.ut gravitational mass scqlHmce, for both Hoft: a.nd iutt.lrrnediate gOS m.odels, r'in > R 

for slow rot.n,t.ion rates whm'eas, for rapid rotation n~teK 7"ill = Ti. In oth(~r words, for neutron stars 

spinning very ra.pidly, Uti) inner (~dge of the disk will ;dmost coincide with the stellar surfa<x~. It 

may be notl'd tha.t f(Jr the stiffgOS nH}(lei:-l, this coudition obta.ins even at slow rotation rates of 

the noutron st(~r. 

It i:-l instructive to make it cornpa.risoll of the temperature profiles calculated utling a Newtonian 

prescript.ion wit.h tha.t obt.ained in a relativistit desniptiou using Schwarzsdlild metric. This is 

:;hown in Fig. 3.2, for the EOS model (B) and M = 1.4 M(~) (the trend is similar for all the 

EOS). The vert.ical axi:; in this figure is Teff (in this and all other figures, the temperatures are 

showll in units of MN"') and the horiwntal axis, the radial distance in kIn. This figure underlines 
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Figure 3.4: Plots of Te£f vs. Sl* for chosen constant radial distances for fh:t'd neutron tita.r 1lI1!."!H 

M = 1.4 M0 and EOS model B. The plots correspond to (a) r :::::: l:~ km, (b) r' IH km, (t') 
r = 35 km, (d) r = 100 km, (e) r = 2000 km and (f) r = 5000 km. 

the importance of general relativity in determining the aeeretion disk tmnlwmtnrl' protill'H; ttl!' 

Schwarzschild result for T:&ax is always less than the Newtonia.n rel·mIt, and for thl~ IIl'\Itnm Ntar 

configuration considered here, the overestimate is almost 25%. For the sake of iIlust.rat.iotl. WI' also 

show the corresponding curve for a neutron star rotating at the maH!H;}w<i limit. (nIl'¥«' 4, Fi~r,. 

3.3a). The disk inner edge is at the radius of the innermost stable circular orbit for all HIP (,:I."~·N. 

Note that the disk inner edge should be at R for Newtonian ca.':l€j but we have ta.kcm l'in • tit: AI/e'" 

as assumed in Shapiro & Teukolsky (1983). 

The effect of neutron star rotation on the accretion disk temperature, treat.ed ~mwml ff·lativhi" 

tically, is illustrated in Fig. 3.3a and 3.3b. Fig. 3.3a corresponds to theEOS I1HHh·! (B). 'flw 

qualitative features of this graph are similar for the other EOS models, and an! uot shown Iwn', 

However, the temperature profiles exhibit a marked dependence on the EOS. ThiN ci(~I>fmdt'Il('.· is 

illustrated in Fig. 3.3b, which is done for a particular value of 0* = nrna . All tlw~~ tempemturt~ 

profiles have been calculated for a neutron star mass equal to 1.4 M(:). The temp(~ratnre profil.~1'1 

shown in Fig. 3.3a do not have a monotonic behavior with respect to 0*. This bHhavior iH a 
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lna.':IR value of 1.4 M(~) for the four EiOS models. The curves have the same significance a.'! Fig. 3.3b. 

compositE! of two underlying effectH: (i) the energy flux emitted from the disk increases with n* 
and (ii) the natun~ of tlw d{~l)(mdml(:(~ of riu (where Tefl' vanish~~s : the boundary <:ondition) on n", 
(see Fip;. :3.1). ThiH iH more dearly brought (Jut in Fig, 3.4, where w~~ have plotted of Teff vs. n* for 

Hel(~et.ed (:onstant radial diHta.UC(~S (illdicat.ed in six diff!:mmt panels) and BJOS (D). At large radial 

dista,nceH, the value 1;.tr is almoHt in<iHpmi<i(;:mt. of the boundary conditioll; hence t.he temperature 

alwaYH inenl<l.s~*, with n. ill Fig. ;~.4f. 

The vII.ria.tions of Bn, BBI" t.he ratio Em) En and Tcl}ax with n* are displayed in Fig. 3.5 

for aJl gOS models cOllsidered here. All the plots correHpoud to M = 1.4 Me!). Unlike (;()nstant 

centra.l density neutron star Hequencos (Thamp<111 & Datta 1998), for the consta.nt gravitational 

ma.':Is Heq'Hmces, EI) does not have a general mOllotonic: behavior with n... Te7ralC has a behavior 

akin to that of Bn (beca.use of the l'ea .. '1ons ment.ioned earlier). Bm, decreases with fl .. , slowly at 

first but rapidly as n .. t.endH to !~mH' The variation of Em) En with respect to n .. is similar to that 

of Em .. 

We provide a comparison between the effective t.emperature (Eq. 3.1) and the irradiation 



44 

7.0 

6.5 

~ 6.0 
t;tj 
..9 5.5 

.... ..... 

2 

2 

Chapter 3. Calculation of Disk Temp~~rat\lrt~ Profile 

3 
log(r) 

3 
log(r) 

4 

4 

Figure 3.6: Comparison between the radial profiles of Tetf (curve 1) and 11rt (curvt~ 2), ('.tkulat,~d 
for'f/ = EEL + ED, f3 = 0.9, h/r = 0.2 and n = 9/7 in Eq. (3.6) for two V'a.hlt~H of mmtron star Npin 
rates: (a) 0* = 0 and (b) 0* = 6.420 X 103 rad S-l. The curves are for a n~mtron star ('(mfi~~nmtinn 

having M = 1.4 M 8 , described by EOS model B. The temperatures are in uuits of A1 :{I, 'lud tJu~ 
radial extent is in km. For illustrative purposes, we have displayed this GOlllparisou in It l< 'R' h 111: 

plot. 

temperature (Eq. 3.6), in Fig. 3.6. We have taken rJ = Em. + ED. Fig. :Uia is for n. 0 

while Fig. 3.6b is for a higher 0* = 6420 rad S-l. The curves are for the gravit.a.t.iOlml mmls 

corresponding to 1.4 M8 for the EOS model (B). The irradiation temperature b(!COllWH largl'r t.hall 

the effective temperature at some large value of the radial distance, the ratio of tlw forttll'r to tilt' 

latter becoming increasingly large beyond this distance. For Em. small compared to 8t) (a ... "1 will Ilj' 

the case for a rapid neutron star spin rate), irradiation effects in the inner disk l'E\ginu will lIot. lw 

significant. Defining the radial point where the irradiation temperature profile (:rOHSI~S dw pfft··ct.ivf' 

temperature profile as r = rcross and the corresponding temperature as TCf()!!H, we display piotR of 

reross and Tcross with 0* respectively in Figs. 3.7a and 3.7b. It can be seen that 1'('t<>Iil\I in('n';I."I~'H 

with 0*, just as Es does, and hence the irradiation effect decreases with inerea.Ring H ... Thf'refon' 

Teross decreases with increasing 0*. 
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calculated for 1) """ Bm, +. l~n, /1 == 0.9, h/r = 0.2 and n := ~l/7. 

In Fig. 3.8, we illustrate t.lH\ diHk hlwpentture (Tdillk) profile for EOS model (B) corresponding 

t.o M = 1.4 M(:) for vmiOllH valueH of n*. WE>, illustmte th('. varia.tion of Tc\i~k with 0* at fixed radial 

pointH in t.lw disk in Fig. :3.9. TIl<:! effect of l1rt' on Tdillk ean b(~ n()t~>,d in Fig. :3.9f. 

3.4 Sumnlary and Discussion 

In this chapter, we have e<l.kulat.ed the temperature profiles of (~ceretioll diskH around rapidly rota,t­

iug and nonmagrwtized ll(~utron stars, llsing a. fully general relativh;tic formalism. The maximum 

t()mperaturt) and it.s location in the disk are found to differ substantia.lly from their values corre­

sponding to the SehwarzHehild HpaG(~-t.ime, depending on the rota.tion rate of the accreting neutron 

star. This shows the importance of the rapid rotation calculation. 

A few comments regarding the va.lidity of the Page & Thorne (1974) formalism for accreting 

neutron star binaries are in order here. Unlike for the case of black holes, neutron stars possess 

hard surface that could be loeated outside the marginally stable orbit. For neutron star binaries, 
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this gives rise to a possiblity of the disk inner edge coinciding with the neutron !:Ita.! surfn.(·(·. W.~ 

have assumed that the torque (and hence the flux of energy) V'c:l.nishes (I.t the dillk inUf~r m:lWl ('Vf'JI 

in cases where the latter touches the neutron star surface. In the ccl.S€ of mpid Spill of tIlt! lu.~utfml 

star, the angular velocity of a particle in Keplerian orbit at disk imHlr t\dgt\ will 1m dOHI.~ to t.lw 

rotation rate of the neutron star. Therefore, the torque between the neutron sta.r Hurfu.c.~(! and tlw 

inner edge of the disk is expected to be negligible. Independently of whether Of not Uw llt'utrcHi 

star spin is large, Page & Thorne (1974) argued that the error in the calculation of Teff willllot hi·! 

substantial outside a radial distance ro, where ro is given by r'o - rin = O.1nn . In our eak.ubLtion, 

we find that r~lr (which is the most important region for the generation of X mys) is gnmttlr than 

ro by several kilometers for all the cases considered. 

Temperature profile is the main ingredient for the calculation of disk spectrum. As we hlW(l SHflU 

that both general relativity and rapid rotation have profound effect on the inner disk tempemtnrH 

profile, we expect the modeling of hard X-ray spectrum to be very much sensitiv(~ to them. Thil:l 

we will study in Chapters 5 & 6. 
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Chapter 4 

Disk Temperature Profile: 
Implications for Five LMXB Sources 

4.1 Introduction 

W(! have cakulat.ed the disk t(:1lnperature profile for a rapidly rotating neutron sta.r in the previous 

dlll.ptt~r. We hav\) (\}:;o (;OUllmted the disk luminosity and the boundary layer luminosity. In this 

chapter, W(l compar<l our th(~()r<!tk(l.lresultH with the EXOSAT data (analysed by White, Stella & 

Parnll;~r 1988) to constrain different properties of five LMXB sources: Cygnus X-2, XI3 1820-30, 

GX 17+2, GX 9+1 and OX 349+2. 

XT3 1820-aO iH all a.toll souree which shows type I X ra.y bursts. Cygnus X-2, OX 17+2 and 

GX ~349+2 artl Z H(mrc:es, of which th(~ firHt two show Xray bursts. ax 9+1 is an atoll source. As 

all of them <~e LMXBs (van Pa.mdijs IH95), the magnetic field of the neutron stars ~~e believed to 

have decayed to low values ('" 108 G; s(~e Bhattc\Charya & Datta 1996 and Bhattacharya & van den 

H(mvel 1991). Therefor(!, W(l ignore the eif(lGt of the magnetic field ()u the accretion disk structure 

in our calcula.tions. 

In this chapter, we eakulate tht) ,~llowed ranges of Heveral propt.!rties of these LMXI3s a.nd make 

general comments on the rotation rates of the neutron still'S in thes() systems. We also discuss 

possible cOIu:ltraiutH on the neutron star equation of state. 

In section 4.2, we descrilH:! the proeedur() of comparison of theoretical V"d,lues of the parameters 

with the observed OlH.lS. We give the n>,sults in section 4.a and the conclusions in seetioll 4.4. 

49 
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4.2 Procedure of Comparison with Observations 

As mentioned in Chapter 3, the X-ray spectrum from an LMXB may havl' two ,'olltrihllt inm" "liP 

from the optically thick disk and the other from the boundary la.yel' lH'ltl' till' llI'Utl"!1I still 

The spectral shape of the disk emission depends on the a.c<:rt~tioli mt<'. Fur /1,/ !Ill. j', S 1. 

the opacity in the disk is dominated by free-free absorption and t.Ilf' SIH'(tnllll will I", Ii sllIII (if 

blackbody spectra from different radii. The local spectrum (with f(1/ippct to a ('() l!IlIVlllg nhsl'I'\I'rl 

will be characterized by a temperature Te/f(7') at that radius. 'I'll<' olllwl"wr at. a d 

will see a temperature TObs(r), which includes thEl effect of gravitatiollal n·(bhift awl r)npp).'!" 

broadening, as mentioned in section 3.2.1. At higher accrtltioll mt.es (1\;/ '~';;;;. 101 I'r, II 1) 1 hI' I 

will be dominated by Thomson scattering and the spectrum from tlw di:-;k willlw thHt nf ,\ IIIlHlifi"d 

blackbody (Shakura & Sunyaev 1973). However, for still higher aeerdioll I'at,('ti (~!llIIptlllli/atil!lI 

the upper layer of the disk becomes important leading to it S~ttUl'lI.tioll of th· lot'a'! HI w('t mill It 

a Wien peak. The emergent spectrum can then be describ~~d <l.'l I~ HUIIl of hllll'kbndy III:-i hIli 

at a temperature different from Tobs. The tempen1ture inf(!red by a ciil4tant nh~prvl'l' '111 tlH' 

spectrum is the color temperature Teol. In general ~:,()! :::::: f(r')1;,I", \'l I H'I'I' nil' f!lllffilill f IK nill"11 

the color factor (or the spectral hardening' factor) , and it depellci:-l 011 tlw \'I'I'Iit'aJ ~.ilnw'm!· of tilt, 

disk. Shimura & Takahara (1995) calculated the color f(~ctor for va.riOUH IU'('l'l'tioll ratc~i UlIH:llllf.'i':! 

of the accreting compact object (black hole) and found that J ~ (LH 2.(1) is llI'ariy Imkpmuh'lIt Ilf 

accretion rate and radial distance, for M ....., Me, wlwre M~! 'o,~ 1,4 X 101','/I.[ 1M, g:1 i 

find that for accretion rate", 10% of Mel f ~ 1.7. More reet'Ilt.ly. howI'vl-!', f!'llm till' .II 

of high--energy radiation from GRO J1655-40, a black holt>, tramtil'lIt l'lotllT(' I H X T F. 

Borozdin et al. (1999) obtain a value of f ::::: 2,6, whkh is higlwr thaI! prl'ViOml f·~;tl!lIi1fl"; Il?,·d ill 

the literature, With this approximation for Teo!, the speetrmu fl'OlIl optkally ! hick 

accretion rates can be represented as a sum of diluted blackhodiNI. TIH,' local tim:: ;tt i 

F'v = j\1r BvU'r;!fr) 

Willi II 

I I I 

where Ev is the Planck function. For high aceretion rates the IHHllHl;u·y laYf·r at till' IlI'lltroll:i,!,U 

surface is expected to be optically thick and an additiona.l sjn!~h! ('OmpOIIi'IIt. Illadd!!HI,\' ~;I'I'd!l1!!1 

should be observed. 

White et al. (1988) have fitted the observed data. for the said LMXB S(llIt'I'"S to sl'\"ral ~'IH'I'! I;d 

models. One of the models is a blackbody emission upto the inuermost tit.abll.' l'irl'ular Ilrhll nf tIll' 

accretion disk and an additional blackbody spectrum to account for the bmllldary laY"1 'II 

The spectrum from such a disk is the sum of bl<lckbo<iy emh::lsion with a t.'ullH'mt.Ill"!' prolil,' 
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White et a.l. (1988) have identified this temperature as the effective temperature which, as men­

tioned by them, is incol1l:listent sinee the aecretion rates for these sources are high. However, as 

mentioned above, idtmtifying this temperature profile as the color temperature makes the model 

consistent if the color factor is nearly independent of radius. Moreover, the inferred temperature 

profile (i.e., Tobs = T;;oll f) is similar to the Olle <hwdoped in previous chapter. Therefore, in this 

chapter we a.':lSllllle that the maximulll of the b(!st-fit color temperature profile T~~lax is related. to 

the maximum temperatlU'(~ T:)\;~X computed ill pnwious ehapt~?r by (T(:gt ~ fT::b~X). Shirnura & 

Takahara (1988) suggested it value of 1.85 for the factor f, for all assumed neutron star maSl:l equal 

to 1.4 Me:) ~\,lld M == 10M!" 

We <;()mpa.rt~ the bt!stAit. values ()f the parmnden-l maximum color temperature (T(:gtX ) , disk 

luminosity (Ln) and bounda.ry Iaym' luminosity (End with their theoretical va.lues for a given 

neutron star ma.ss, a.cCn!tioll ra.te (M), color fadm' f and equatioll of state. However, in order t.o 

make allowauec for tlw \Ulcertainti(~s in the fittiug proe(~d1ll'e and ill the value of z, and <tlso those 

(\rising due t.o tIw simplkity of th<' m()d(~l, we (XJllsid(~r a range of aecoptable values for Tt~~x, Ln 

<md Lm,. In pa.rticular, w(' allow for d(wia.tions in the b(lst-fit values of ~~~:t( and lumiuosities: we 

t.ake two combinat.ions of these, mmwly, (10%, 25%) ami (20%, 5(Y%), where the first number ill 

parentheStls corresponds to the tUTor in 1~~;:tlX and the second to the inTOI' in tIl(', bE'.Ht-fit luminosities. 

Note that Wi) lwghll't thtl irmdiat.ion temperat.ure her!', a.s T;IiHk ~ T(.//, :1t t.ile inner region of the 

disk (the region wht~t'(' tlw disk tmllp(~ratur(~ reaches a. maximum). We obtain a range of consistent 

vahws fot' Nt, n .. and f (and lwm:e, <~llowed l'ang(~H of different quantitit!s). The proeedure is as 

follows. 

W(! mn rnkulate tlw diffenmt quant.iti(lH (E)), Bm., 'r:,:g:x, R, r'ill' etc.) ll.'l fUllctiollS of n., 
Taking thE! observed (or fit.tE!d) values for ~:::t,J\ [ml, and (DBI, + Ln) with the ex-wI' hal'S, we have 

two limit.ing value::; for each of t,b(~H(~ qm1utit.i(lH. W(l <Lssmne a particular value for (la,eh of f and M, 
from which we obtaill tlw cOwlspoJl(ling fitted valueH of 'z:;g~L)( 1 Em. and (Em. + Bn) by the relatio)ls 

Em. := LmJM, BJl[, + ";Il (LBL + Lu)1 M and T,;r,~x = ~~glax l(f M 1/4) (because here -r:;g:x iH in 

the ullit of M1/ 4 ). By interpolat.ioll, we calculate two corresponding lilniting n*'B (i.e., the allowed 

raxl[:!;tl ill ~~*) for ea(:h fit.t.(ld quant.it.y. We take the commOll region of these three ranges, whieh is 

the net allowed rang(~ in n •. We do this for M's ill the rang<! lO--I:! M(Dy·-1 to 10",6 M(~)~(-l (which 

is reas()nahl(~ for LMXB's) wit.h logaritluui<: interval 0.0001, for a particular value of f. If for Borne 

M, thE!l'(! is uo allowed S ~" t.hen t.hat value of M is Hot (illowed. Thus we get the <tllowed range of 

M for a particular f. Next we reptl('1,t the whole procedure described above for various values of 

f, in the range 1 to 10. ff fot' SOIll~l f, there is no allowed 1M, then that f is not allowed. Thus 

we get an allowed mugt: of f. Taking the union of all the allowed ranges of M, we get the net 
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allowed range of !VI (and similarly the net allowed range of 0*) for a particula.r gOB, gravita.t.ional 

mass and a set of error bars. The allowed ranges of Vin, R, riRr etc. then ea.sily follow, Hince tllt'il' 

general variations with respect to 0* are already known. 

4.3 The Results 

In this chapter, we calculate gravitational mass sequences for different BOS modelH (uwutiOllt'd ill 

Chapter 2) and constrain several properties of five LMXB sources. For the neut.rOIl st.ar iu eath of 

the sources, we assume M = 1.4 M0 (Le., the canonical mass value for neutrOl! staI'H). For Cyguus 

X-2, we assume an additional mass value (1.78), which is the estimated ma.'lS for t.he mmtron !-Itar 

in Cygnus X-2 (Orosz & Kuulkers 1999). It may be noted with caution (Habm'i & 'I'it,ardlllk 

1995), that this value is not confirmed from X--ray burst spectra] analysis. We UHe tlw vahw of 

M = 1.78 M0 for the illustration of our results, and leave the issue for fut11ft' confirmation. W(' 

take cos i = 0.5 (i is the inclination angle of the sour<.:e) for Cygnns X-2 (OroS7. & Ktlltlk(~rH WfH», 

while for each of other four sources, we use two values for GOS i, namely, 0.2 and rUt TlImit' two 

widely different values ensure the sufficient generality of our results. 

For the source Cygnus X-2, the best spectral fit to the da.ta is whml '1;:::1"'''' 1.8 10'- IC 

LD = 2.1 X 1038 ergs S-1 and LBI. = 2.8 X 1037 ergs s-'I (White ()t al. W88). For HIP nt.lwr film 

sources, the best-fit values of the parameters T~clax, Ln a.nd Lm. a.re l'eHpeetiv~~ly H."I follow (W hitl' I't 

al. 1988): (1) XB 1820-30: 1.59 x 107 K, (1.49 X 1038 ergs S-l, 0.37 x 10:\1'1 erg:o; s I) aud 2.M;:><; tn:!': 

ergs S-l; (2) GX 17+2: 1.76 x 107 K, (6.49 X 1038 ergs s L, 1.62 x lO:IH ergs s I) awl 7.10 )( W:r, 

ergs S-l; (3) GX 9+1: 2.25 x 107 K, (6.01 X 1038 ergs s-' 1, 1.50 x 10:18 erg:; HI) aud 2})(I W:I / 

ergs S-l; (4) GX 349+2: 2.07 x 107 K, (8.54 X 1038 ergs S·-I, 2.14 x 10aH (~rgH s t) awl ·l,HO.; Ill;!'!' 

ergs s-I. Here the first term in the bracket is Ln for COH'i = 0.2 1.1Ucl the HI'('Olld t,l'rlIl is that for 

cos i = 0.8. 

We take the distance (D) of the source as 8 kpc (Orosz & Kuulkers U)!H)) for CYI';UlIS X<~ and 

6.4 kpc (BloseI' et al. 2000) for XB 1820-30. We assume D = 8 kpc for hoth C X 17 12 awl (; X 

9+ 1, as their locations are believed to be near the galactic cent~~r (Deutsch pt. al. 1 H!I!l; Ill'rt7- I't aL 

1990) and distance of the galactic center is 7.9 ± 0.3 kpc, a.s conduded by McNa.mara f'!, aJ. (20011), 

For GX 349+2, we take D = 9 kpc (Deutsch et al. 1999). 

We display the constrained values with the help of five tables. In rrabltl 4.1 (f( II' (:Y)l;lIl1S X,2). WI' 

have taken two values of M (but a fixed value for i), while in ea,ch of the otllf~r four tahlt's, WI' liS.' it 

fixed value for M (but two values of i). From these results, we notiee that the ;u'('n'tiou mtpH (d' ,L1l 

the sources are very high. It is to be noted that here tV! is presented in unit of /l.1t~ (dl'fiw'd ill tilt> 
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previous section). The Eddington a.ccretion rate (MEdd) is Me/ry, with f) = Em, + ED. Therefore, 

as the <l.ctual value of f) is much less than l.0 (generally not greater tha.n 0.3 and for rapidly rotating 

neutron star, typically less than 0.2), the value of (MEdd ) is much higher than Me. 

The EOS modd A is the tmftest in the sarnple. The rnaximurn mass of neutron stars (at 

n* = nrns) corresponding to thiH EOS is 1.6:3 M(:). So the constraint results for Cygnus X-2, using 

thiH EOS an! done only for M :::: 1.4 Me:). 

We notice tha.t the allowed ranges (combined for a.ll the ca.ses considered in ea.ch of the tables) 

of n*/nmH are 0.97 - 1.00, O.9a - l.OO and 0.75 - 1.00 for the three sources Cygnus X-2, GX 9+1 

a.nd GX :349+2 n!HI)(:~ctively (see Table 3.1 for tlw ma .. 'ls-shed limit values). Therefore the neutron 

stars in theH{l t.hree sourceH can he eOllduded to b() rapidly rotating in general. In the next section, 

we will di:-lcu:-l:-l the siguificanee of the obtaim)d result:-l. 

4.4 Sunlmary and Discussion 

In this ('ha.pt(~r, w(! hav() collst.rained the values of stweral propm·ties of five LMXB H<JUl'Ces. For a.ll 

of them, t.he accretioll rat.(~s eOl)W out to be very high (always ~ 0.5 Me ). This iH iu aecord with 

the faet that thmm a.re very hUllinollH HOllTGeH. 

F'):'Olll our wsultH, it can hE) conduded tha.t. t,lw neutron star in CygllU:-l X-2 is rotating very 

rapidly. The rot.at.iountt() of tht~ ll<mtron Ht(~r ill each of the oth(~r foUl' smu'cel) is also very dOHe 

to thE) lIlit.'lH-Hlwd limit for cos i ~"', 0.2. This is beeau:;e tht~ v<tlues of Lm,/ 1,0 1m>, very low for these 

CaS(.~H (S()(' Clmptm: a). But, for cosi = 0.8, rotation ntte Ga.n not be constrained effedively for the 

sourc()s XB 1820-aO and GX 17+,2. TlwrdoTe, for theH!) two soure(~s, no general eonc1uHion (about 

the vahwH of ~Z*) ca.n lH'. drawn. However, as mentioned in the previous Hectioll, rotation rl:tte can 

be condu<i('.<i to he very ra.pid f()r th(~ sources OX 9-H and GX 349+2. 

According to Shimllm & 1~tkahara (1988), t.he HpeGtrllIn from the disk call be represel1t~ld aH 

a multi-color blaekbody only if M > O.lMt!l which always comes out to be the case for a.ll the 

('h()H(~1I LMXBs. Our calculat(!(i allowed ranges for f are in accord with the results (f '" 1.7 - 2.0) 

obt.ailwd by Shimura & Takahara (1995). HOWeV(lr, if we take th(~ wllue of f == 2.6, as reported by 

Boro;.>;<iill d. al. (1999), tholl f()l' Cygnus X-2, one would require (l,n EOS model that is stiffer than 

tlw stim~st U:-ltld lwr~l, or a IlU1SH greater than M ::::: 1.78 Mo (if one uses the narrower limits on the 

lumiuoHity and color tmuperatllre). On the other ha,nei, if one were to use the broader limits, the 

hardeuillg factor f ::::: 2.6 is disa.llowed only by the soft(~st EOS IXlodd. For the other four sources, 

the as:sumption f = 2.6 would require a very stiff E()S model ora mass greklter th(1,n M = 1.4 Mc:) 

for most of the eases with cos i = 0.2. 
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High frequency quasi periodic oscillations (kHz QPO) have been observed fur four (CYS(1II1l-l X·2, 

XB 1820-30, GX 17+2 and GX 349+2) ofthe chosen sources. The observt~d nmxinmm klh:QPO 

frequencies are 1.005 kHz (Cygnus X-2), 1.100 kHz (XB 1820-30),1.080 kHz (OX 17+2) :md 1.020 

kHz (GX 349+2) (van der Klis 2000). Now, the maximum possible frt1qlWIICY (i.('., tlw l'Ihortest 

time scale) of such a system should be given by the rotational frequency in inn~rm()st. !ltahl.' drt.·ular 

orbit (ISCO) (!/in; col. 5 of the tables), unless the model invoked to explain tht.l tt~Ulllorll.lllf~lmvior 

predicts a substantial power in the second harmonic, i.e., IIQPO R$ 2l1!n. Th!\rt~forf', tJu~ stitff'!lt I~X)H 

model Dis unfavored for Cygnus X-2, as the maximum value of II!n (= 0.938 kHz, Tablt' 4.1) iH h·ss 

than the observed maximum kHz QPO frequency. For the same reason,BOS moc.it·l n iN unrfLVllrf~d 

for cosi = 0.2 for the sources XB 1820-30 and GX 17+2. It can also be 8etm frulli 'n\hlt~ 4.:~ that 

if we use only the narrower limits on the luminosities and color tempern.ture, }O;OR mmh'l J) (for 

cosi = 0.8) and EOS model C (for cosi = 0.2) are not likely to be the comd }<iOS for OX 17+2. 

The same is true for model D for the source GX 349+2. As we also see from Tnhlc ,1,4, r'~OH tIlcuh'! 

C is unfavored for cosi = 0.2 for this source. Further, the neutron star mn."I14 f'l4tirmth' iu CYKlItlH 

X-2 (R:: 1.78M0, Orosz & Kuulkers 1998) is not consistent with the soft EOS mnd.·l A. Om lumlYl4itl. 

therefore, favors neutron star EOS models which are intermediate in th~ IItifrllf~NH Imraulf't.f·r vnhlt'l'I. 

We have ignored the magnetic fields of the neutron stars in our t:t\kulll,tioUH. Tllt'rt·fClrc', till' 

necessary condition for the validity of our results is that the Alfven radiUM (l'A) 1", h~s thau t.t ... 
radius of the inner edge of the disk. This condition will alway!:! bt, VI~lici if Ii .:. ,. A holels. Ift'n~ ,./\ 

is given by (Shapiro & Teukolsky 1983), 

where M is the mass of the neutron star, J.l.30 is the magnetic; lUnUlE'ut. iu unit. of Iff"1 (; ('111:1 atlll 

r A is in cm. With typical values of the parameters for the chosen !lmlf(~C~H (U ;." l() kill, AI I.·' M . 

and M = lOMe), the upper limit of the neutron star surfa<:e magm~tk fidd ('omt'H nllt to tll' ahuut 

2 x 108 G. Therefore, our results are in general valid for the neutron star ma~lIf.tk fi .. ltl upt.o of 

the order of 108 G. This is a reasonable value for the magnetic field of nmtrou I-Itnrli ill LMXHl'I. <I ... 'i 

mentioned in section 4.1. However, this estimate of low magnetk fidd is lIn.'INi 011 tlw lI,mmmptioll 

of its dipolar form. If the magnetic field geometry contains higher or<if'r mmpntll'uts, tlwn tJlf' 

field-strength may be higher than the estimated value. 

In our analysis, we have assumed that the boundary layer betwe~m tlw diHk and dw IIt'ut,rllu 

star surface does not affect the inner regions of the disk. This will be .~ valid approximation whf'll 

the boundary layer luminOSity is smaller than the disk luminosity, alld til(! boundary layt~r i'xtf'Ut iii 
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small compared to the radius of the star. The first part of this condition is true for all the chosen 

LMXBs, as we see from the previous section. We now show that the second part is also true for 

the source Cygnus X-2. The flux received at the earth from this region is 

( t::..R ) . (aT4 ) 
FBI, == 27rR D2 cos~ :L (4.4) 

where t::..R is the width of the boundary layer, D = 8 kpc is the distance to the source, i = 60° if! 

the inelination angle and 1hL is the effective temperature. Speetntl fitting gives a best-fit value for 

Fm, ~ 4 x 10-9 ergs sec- 1 cue'}. and Tm, = T(:ol(BL)/ fm, == 2.88/ fm, keY, where fBI- is the color 

factor for the boundary layer and ~:ol(BL) is the color temperature of the boundary layer. Using 

these vd.hws, we get t::..lt ~ 0.2 fik km, which is indeed smaller than R provided the boundary 

layer color factor fm, is close to unity. This is supported by the work of London, Taam & Howard 

(1986) and Ebisuzaki (1987), who obtain fm, ~ 1.5. The same conclusion can be drawn for other 

four ehosell soUrCtls, a,s their parameter va.lues are similar to those for Cygnus X-2. 

We lw.ve not attempted to modE>.l the observed tempoTC:I.l behavior of the sources, and in par­

ticular, the QPO obs~lrv<~ti()ns. Beat fr(~quellcy modd idtmtifit}s tlH~ p(~a,k sepaxatiol1 of the two 

observed kHz qI)Os with the n~nltr()n sta.r spin f<Lt<'.. For example, for Cygnus X-2 the obs(;!rved 

peak sep<:l.ration is t::..u ::= :346 ± 29 Hz (WijnandH et a1. 1998) which is smalkr than the typical 

rotation frequenci(!s ca,lculatEld here. However, a. pure heat-frequ~mcy model ha..<J been called into 

question due to sev~>,rl\.l observa.tions. For instanee, D..z/ has been observed to vary by about 40% 

for Sco X-1 (V<Ul der Klis et a1. 1997) and the kHz QPO frequencies have been found to be eom~­

lated with the 'brtlak frequeney (~ 20 Hz) of the power spectrum density. Inclusion of an alterna.te 

lnodel, where th~~ QPOs a.re suggested to origina.te due to non Keplerian motion of matter in the 

disk (Titarchuk & 08herovieh 1999; Osherovi<:h & Tit<'l.rchuk 1999<:1.; Osherovich & Titarchuk 1999b; 

Tita,rdmk, Osh(~r()vich & Kuznetsov 1999), into the framework of the calculations mentioned in thi8 

work require a. n(~w formulation within the spac.:e tim.e geometry chos(m herein. 

In this dmpter, we have c<.Lkulated the allowed ranges of severa.l quantities for five LMXBs, which 

giv~~ valuable informa,tioll about these :;ystems. Sueh information will b<~ helpful to understand their 

temporal beh,wiors. Besid(~s, LMXBs are believ~)d to be the progenitors of the millisecond pulsars. 

This is in accord with our result tlu~t the neutron stars in Cygnus X-2, GX 9+1 and GX 349+2 

are rapidly rotating. However, the da.ta from the present and the future generation X·'ra.y satellites 

(Chandra, XMM, Constellation-X (~tc.) with better spectral resolutions (compared to those of 

earlier satellites) will make better use (i.e., to get best-fit values of n. and to constrain EOS 

models) of the general relativistic model presented here. 
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EOS M f R 

kHz kHz km kIll M,.~ 

(A) 1.4 L 1.37[1.16] 1.753[1.743] 1.755[1.755J lL3[10.7] 16.0[15.6] 11.2!fi,H! 

U 1.99[2.56] 1.755[1.755J 1.787[1.944J 11.4[11.4] 16.1[16"~~L~.~2~~E~.:r~i 

(B) 1.4 L 1.53[1.29] 1.106[1.087J 1.132[1.123J 15.2[14.3J 21.0[20.0J 13.8[7.2] 

U 2.18[2.74] 1.112[1.113] 1.177[1.285] 15.6[15.6J 21:.5[21.~~.~~1::~~'.~t. 

(C) 1.4 L 1.57[1.33] 0.964[0.945] 0.975[0.971] 16.8[15.6] 23.1[21.7] 14.9[7.7] 

U 2.24[2.81] 0.968[0.968] 1.015[1.134J 17.2[17.2] 2.3~[23.7L_,,~~.:.~J:~~.GI 

(D) 1.4 L 1.67[1.42] 0.736[0.719] 0.745[0.742] 20.1[18.6] 27.6[25.7] 17.[)[9.lj 

U 2.38[2.97] 0.740[0.740] 0.779[0.876] 20.7[20.7] 28.3[28.4] :34.6[42 .. lj 
..... ~""'_.~_.".._~=_.""""'_""""'''~",,''' " .. ,v" 

(B) 1.78 L 1.58[1.33] 1.303[1.292] 1.322[1.315] 14.8[14.2] 21.2[20.7] 8.9[4.7] 

U 2.28[2.91] 1.307[1.307] 1.361 [1.462] 15.1 [15.1] 21.4[21.4J 17.2[21.-1J 
-.--"",..-,.."""""'.~~'''' .. ,,-'''''~- '~~"".-"" ,., .. 

(C) 1.78 L 1.65[1.39] 1.081[1.067] 1.086[1.085] 17.1[16.2] 23.8[2:tOj 9.8[5.1 

U 2.39[3.01] 1.083[1.083] 1.109[1.209] 17.3[17.3] 24.0[24.1 J 19.:l[2.1.0j 
".-"~ .... ",....,.\ ..... "-,~, .. "",,,,, .... ,. ' •. ",,,. ~,' ~, ,<., , . 

(D) 1.78 L 1.74[1.47] 0.806[0.791] 0.817[0.813] 20.6[19.2] 28.6[27.1] 11.4[tLOj 

U 2.50[3.15] 0.809[0.809] 0.848[0.938] 21.1[21.1] 2!U[29.2J 22.2[27.7] 

Table 4.1: Observational constraints for various EOS models: (A), (B), (C), (1)) for t.1ll' Mom!'\' 

Cygnus X-2. Land U stand for lower and upper limits. The pa.ramderH are f (mlOt' fador). 1', 

(rotational frequency of the neutron star), J1in (rotational frequency in tlHl ISCO), H (t~qllat.()rial 
radius of the neutron star), '('~fr (radius where the effective temperature of t.he dil:lk iH maximulll) 
and.Nt (the accretion rate). The limits are for 25% uncertainty in luminositieH awl 10% Ul\n~l'taillty 
in the color temperature. Values in braekets are for 50% uncertainty in lmninoHitim-l ami 20/X 
uncertainty in the color temperature. For EOS model A, the mass of thtl neutron Htar cmlllot 
exceed 1.63 MC:) hence the 1.78MC:) solution is not presented. The aCCrt!tion rate is givml ill Iwit of 
Me = 1.4 X lO17MjMC:) g s-l, where M is the neutron star mass. . 
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EOS cos'; f 
kHz kHz 

R 

km 

".nlax 
elf 

km 

(A) 0.2 L l.:U[1.lO] 1.751l1.72()] 1.756[1.756] 11.2[10.2] 18.6[18.1] 7.7[3.8] 

U 1.91 [2.t11] 1.7G5[1.75fl] 1.819[2.078j 1104[11.4] 18.7[18.7] 16.1[20.3] 
.~ ... --.... -... -".-.-." ..••. -.. -.......... ----.~.-.. - ... -'-'--- ,....::..--........:...-.---.:.--.:..-....:-

(B) 0.2 L 1.4fi[t.:Wj J.lO:3[l.059j 1.l:l7[1.126] 15.0(13.7] 2:3.0[21.6] 9.7[4.5] 

U 2.07[2.1i[ j 1.112[1.11 :3] 1.197[1.:372] 15.5[15.6] 23.5[2:3.6J 19.4[24.4] 
".~"~.,,,.~-,,-,,-.,~.,--.--.,,,,,,--",~~,,,,.~,",--, .. ,,",,,--.-----.-""""'''''---,--

(C) n.:.! L 1.49[1.:301 0.961[0.91:3] O.979lo.9n] J().5l15.0j 24.8[23.1] 10.4[4.9] 

U 2.12[2.71j O.9()H[O.968] l.042[1.206j 17.2[17.2] 25.5[,25.6] 21.2[26.7] " .... """'"""'''''''''''-,"'''''----....... -,-~~--,,..,,.,,>,,'.----
(1)) 0.2 L 1.59[IAOj o.n5lo.()87] 0.748[0.74:3] 19.9[17.7] 29.1[26.5] 12.2[5.6] 

U 2.2f,I.2.Hlj O.740[O.740j O.79GlO.941j 20.()[20.7j aO.0[30.1] 25.0[:31.4] 
....... " ........... , .... ". ""., ''''''''-'''. ''' ... , .. --'''"~-, ... -... ".-.->,''-".--"'"'--------"'.--

(A) O.H L 1.7!)[UjOj J.4tl:3l0.000j 1.822[1.571J 9.9[7.5] 18.1[18.1] 1.2[0.5] 

U :Ul614.70j 1.75\[1.754J 2. Hl5[2.165J I. 1.2[11.4J 20.4l22.:~1 4.5[6.4] 
.''"' .... = .. ,~"_"".,.~,ru".,,~'''''''_,' ... "'", .. "".""",""'""'''''''''''' ..... "~_,~'''._._,.,._" __ .,, __ ''' ..... '"'''.>Ao,'''_~~'''''''''''. __ 

(B) Il.H L 1.94[1.71] OA91:l[O.OOO] 1.207[1. 152J 11.a[11.0j 20.2[20.2] 1.4[0.9] 

U :L22!4.20] 1.102[1.110] 1.782[1.782] 14.9[15.4] 22.9[2:3.4] 5.6[7.9] 

(C) 0.1'1 L U)9IL70i O.17!l[O.OOOj l.04t>[O.991] 12.3[12.:3] 21.5[21.0] 1.5[1.0J 

u a.:Hi[4.()2j O.()()O[O.9tHi] l.Gnl1.5(;8j IG.5[17.0j 24.7[25.4] 6.1[8.5] 
... v,.,,, "." .• ,,""~ .. "'~' ,_ .... ,~. ~""~~~,~ •• ,,,, .. u~c.,_.,.~,.,,",~,_,,,, "_,~"., ..• ~,~ ..... '" ....... "", ... _'" .... " ..... """""', __ , __ ,._,.." .. " .. "" ... ,._~ ..... ""~_-- ... ----

(I)) O.H L 2.1111.1'01 O.OOO[O.O()Oj O.80()[O.75BI 14.7[14.7] 2:U[2a.l] 1.8[1.2] 

I.J :t:W[3.!lOI o.n;~I().739J 1.212[1.212] 19.7[20.5] 28.9[29.8] 7.2[9.9] 

57 

Tabl!' ·1.2: ObsPl'vatiorml ('ollst.miutH for various EOS modd!:l : (A), (B), (C), (D) for the I::louree 
X B 1 H20,,:W. Till' ma.NN of t hI' IlPIlt.l'OIl st.ar is a .... smned to I)(! 1.4 M(:). Other specifications are samH 

as ill Tabll' ·1.1. 
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.. "':=:~';=;',":!!.-:',~,:'.~;:'~::' ': ,:';::~':'~\;:,."; " 

EOS cos i f /.1* Yin R rltlll.X 
t>.ff l\.~f 

kHz kHz km klll ';'1,. 
"'''''-''''''-~~''''' ''''''~'",,,,~,~-

(A) 0.2 L 1.01[1.00] 1. 754[1. 748] 1.756[1.756] 11.4[11.0] 18.7[18.5] :W.l[1H.fi] 

U 1.43[1.82] 1. 755[1. 755] 1.773[1.869] 11.4[11.4] 18.7[18.1] fi8.7[X2.fil 
__ ~ __ .""~'''''<e,,~' '. ,~." 

(B) 0.2 L 1.12(1.00] 1.108[1.097] 1.128[1.122J 15.3[14.7] 23.:~[22.6] 44.4[24.4j 

U 1.57[1.96] 1.113[1.113] 1.163[1.236] 15.6[15.7] 23.6[23.(; J 82Jl[101.7] 
.... "'-"~,""",""."'.,,.,", .. -,',~""<,"""",,',,,"'-,'''. 

(C) 0.2 L 1.15[1.00] 0.966[0.954] 0.974[0.971] 16.9[16.0] 25.2[24.2] '17.;)[20.1 j 

U 1.62[2.01] 0.968[0.968] 1.000[1.091J 17.2[17.2] 25.5[2l).6j 88.5[111 \ 

""""""",,,,,,_,,,,," . .,.,,,,,,~,,,,k,, 

(D) 0.2 L 1.22[1.03] 0.738[0.728] 0.744[0.742] 20.3[19.2J 29.7[28.aj n! qpO 71 ~,h)' ~ ~ , l 

U 1.72[2.13] 0.740[0.740J 0.766[0.849] 20.7[20.7] 30.1 [:30.1 J 1 Of) ..1[1 :~ 1. n! 
"","" .. ,""""" ..... ,<.""' ... ~"" 

(A) 0.8 L 1.39[1.20] 1. 702[0.000] 1.782[1.571] 9.9[7.5] 18.1[18. 11 fUj[2.0j 

u 2.20[3.72J 1. 754[1. 755J 2.166[2.165J 11.3[11.4] 18.t)[22·:~1 18 r. !,}r ,.,) "",d 
~_ .. ~""""_",",= ... ,."_" .. no,"."""",,,",, '"" ~",. " 

(B) 0.8 L 1.53[1.31J 1.009[0.000] 1.172[1.141] 13.1[11.0J 21.1 [20.2j 7.7[a.21 

u 2.31 [3.35] 1.107[1.111J 1.463[1.782] 15.2[15.5J 2'J 2[2'~ I": I t, • ~ • .) I 22.8[:m.7l 
''''''~~'D.......,.""'';.~_"','''',,'',..''"'' .• , . ..". _, '""" 

(C) 0.8 L 1.61[1.30] 0.858[0.000] 1.010[0.983] 14.3[12.3] 22..1[21.0! H.:~!:ttij 

U 2.33[3.20] 0.965[0.967J 1.289[1.5()8] 16.8[17.1] 2t". I [')r.V .). "".).' I ')1': (lIT> qi """~"). ' ~ .,... ••. 1 
• .... ""· ....... ,.4" ... ~ ... ,"'_._. "" ,_, . .". ' "_; ,," . 

(D) 0.8 L 1.66[1.41] 0.631[0.000J 0.775[0.750] 16.8[14.7J 25.4 [2:~. II !Ul[4A] 

U 2.47[3.10J 0.737[0.740] 1.011 [1.212J 20.2[20.61 29.5[:Hl.Oj 29.:~[;HUij 
.""""" ............. """""'" ... ".~,."-"'~"".--", .... ",~.-,.,~,, >.,., 

Table 4.3: Observational constraints for various EOS models : (A), (B), (C). (1)) for tiH~ ~nml'I' 
GX 17+2. Other specifications are same as in Table 4.2. 



4.4. Summary and Discussion 

EOS eosi f 
kHz kHz 

(A) 0.2 L 1.:3~3[1.1:31 1.755[1.755] 1.7GG[1.756] 

U 1.85[2.25] 1.755[1.755] 1.756[1.761] 
__ ' .... __ .. _' '._""_'.'~,-,,,--. __ ,~~_"""""'-"'_"_~C_" ____ "'_" __ ""'_'_" 

(B) 0.2 L 1.47[1.24] 1.112[1.110] 1.120[1.117] 

U 2.04[2.49] 1.114[1.114] 1.130[1.147] 

(C) 0.2 L 1.51 [1.2H] O.9(l8[0.9G7j 0.970[0.970] 

U 2'()9[2.t)(>j O.9(i8[O.9G8j O.97G[O.!)8Gj 
-.~ ... ,-,-''' .. ", .''''''''''''''''''''''''-'''- , .•. ",.,,, ... ,,., ... _,, ... -"" .. ""--.'''-''''-''' ..... -~ .. -.. , .. ,, . 

R 

km 

11.4[11.4] 

11.4[11.4] 

15.6[15.4] 

15.7[15.7] 

17.2[17.1] 

17.3[17.~31 

r max 
elf M 

km Me 
18.7[18.7] 36.9[22.8] 

18.7[18.7] 59.9[72.0] 

23.6[23.4] 43.4[27.4] 

23.6[2:3.7] 73.6[90.6] 

25.5[25.4] 47.5[29.3] 

25.6[25.6] 80.7[99.3] 

(0) O.Z. L l.(j![I.:Hi] O.740[0.n9] 0.742[0.7411 20.7[20.5] 30.1[29.9] 55.9[34.4] 

U 2.2-1[2.74] 0.740[O.7010J 0.741)[0.754] 20.7[20.7] 30.1[30.1] 94.9[116.7] 
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• __ """" .. a .... ,~'"'''_~'''',.,,,~.#.,'_,'''''.,.'',~~_~m''_ •• _,,'-'''',,"", ........... , _~_,_"","._'''",'",''''',''''","''.,,_"'',~''"'_''''''''"_'''" .. '" ... ~.....-,,_~",',~=""""'_"_~~''',',,'''"''...,.-.. ''',,,,'',_'_'''_'''''''' ... _ .. _~' _____ , ... ''''_ .... " ____ _ 

(A) n.H L l.R4[I.Glj 1.752[1.7281 1.7t)(i[1.756] 11.2[10.3] 18.6[18.1] 7.9[3.8] 

U 2.69[a.52] 1.75511.755] 1.81G[2.0M] 11.4[11.4] 18.7[18.7] 16.5[20.3] 
__ """"'_''''''''~''''''''''"'''''''''''~''''''''''"'''''~i·'''''''''''''';'''''''"'''''''''' ,.y""""'_""~""""'"""""""'".'''''''''''''''"",,,,.'_'"_~'''''''"""'""''''''.'''''''''''''~~_'''''''''' ___ ,"' ______ ''''_' _______ ' __ _ 

(B) 0.8 L 2.05[! .80] I.lO:3l1.064j 1. l:W[1. 12(i] 15.0[13.8] 22.9[21.7] 9.7[4.6] 

U 2.92[:t72] 1.112[1.113] 1.200[1.:Wl] 15.5[15.6] 23.5[2:3.6] 19.4[24.4] 
____ " ..... """",.,~~"'.~.,,'"'''",''' ....... ''''"',"',~ ..... '''''.N~"" .. ~' ''"''-"'''''""_'''_'''~''''"_"'''''''''~_'"''''''''''''''K'''''~,,'''''''* ___ '''-'' ____ . , ""''''''"_ .. _"_'"',..........,,' ... '''''',''''''''''''_ ...... __ • __ 

(C) O.H L 2.10[l.HOj O.9tll [0.919] 0.978[0.972] 16.5[15.0] 24.8[2:3.21 10.4[5.0] 

U :.u)n[:~.H 1 j O.9G8[O.9{;8j l.04111.l95] 17.2[17.2J 25.5[25.6] 21.2[26.7] 
.~". __ ~._"".''""''"~,'','_,~'" .. ;._~~~, ... _.,~, .... _ ... '" ... ,~."'".-";"~., .. "~ .• ,~.~,."'''" ... '>'",',,''' .... ,_ .... ,'.>,,,,''~,'-""""""'..., •• _ ..... ''''_ .. ''''''e_.~_.''4> ... ''''' ..... _,. __ ._·_,~ 

(D) O.H L 2.24 [l.!J2] O.734[O.692J 0.748[0.74:3] 19.8[17.8] 29.0[26.7J 12.2[5.7J 

{J :~.19[4JIOl 0.740[0.740] O.802[O.H:l2j 20.6[20.7] 30.0[30.1] 25.0[31.4] 

Table 4.4: OhsNvationa.l constraints for various EOS mod<lls : (A), (8), (C), (D) for the s()uree 
GX 9+· 1. Otlwr specificatiouH a.J'(~ same (1..'1 in Table 4.2. 
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-::::=,:::;:;..:=~~~;:::~,:.',::-~=::;::-;':~~.";:,::~~ 

EOS cosi f 1/* Vin R r·max 
elf M 

kHz kHz km km Ail!! 
"""~",,,,,-,,,", .. ,-... ~,,~,,,,,,,~,,,,,,,,, ... "-,,,~.,..,~,"", ",,>,,"-'-' '" 

(A) 0.2 L 1.12[1.00] 1.755[1.754] 1.756[1.756] 11.4[11.4J 18.7[18.7] 50.9[an.7] 

U 1.55[1.92] 1. 755[1. 755] 1.756[1.771J 11.4[11.4] 18.7[18.7] 8()AlIO:~.9J 
-~"'~'''''''-''*'''"''''''''''''''''",,,,,,,,,,,,,,''''''''''''"'"'''''',,",'-"'''''''-'=--

(B) 0.2 L 1.24[1.04] 1.112[1.109J 1.122[1.119] 15.5[15.3J 23.5[23·:·~1 61.2[a7.7j 

U 1.72[2.11J 1.113[1.114] 1.137[1.159] 15.7[15.7J 23.6[2:3.7] lOfi.:3[ 1:30.8] 
"'""" ....... ' ... '--.....,.,,,, ;."" ... -~"--""""''''",¥ .. ,,-'''','''~,"'-.;.-

(C) 0.2 L 1.27[1.08] 0.968[0.966] 0.971 [0.970] 17.2[17.0] 2r.: r.: [2r.: '~l ,).i) ,) ••. 67.1[40.4] 

U 1.76[2.17J 0.968[0.968] 0.979[1.000] 17.2[17.3] 25.6[25.<lj [1t3.G[ 140.1 J 
____ ,.,_H'_~'.'''<~,'_,.~,', ,.,._ """,,,,,,,,.,.' ",_ •. , __ ~,,.,,,", 

(D) 0.2 L 1.35[1.14] 0.740[0.738] 0.742[0.741] 20.6[20.4] :~().O[29. 7J 7H.R[47.:;j 

U 1.88[2.31] 0.740[0.740] 0.748[0.765] 20.7[20.7] 30.1 [:30.1] l:HUI[ 16R.flj 
..... ""''''''''-'----~"'''~'~"'''''- ~-. -,-"',~, ..... -,' .,...," 

(A) 0.8 L 1.55[1.34] 1.748[1.678] 1. 760[1. 756] 11.0[9.7] 18.4[18.1] 10.6[4.G] 

U 2.29[3.10] 1.755[1.755] 1.879[2.147] 11.4[11.4] 18.7[18.71 2;L:~[:.Hl.Oj 
·--_""" __ """"'_. __ "·"""'~'''''''~''''''''H'<"'~''''' 

(B) 0.8 L 1.71[1.50] 1.096[0.955] 1.148[1.129] 14.6[12.7] 22.6[20.71 1:I.1[G.21 

U 2.47[3.22] 1.110[1.112] 1.244[1.532] 15.4[ Hi.(>] 2:3.4 [2:.U; 1 2~·{)[:)()·()1 
-"----, ......... ""'-"'-''', .......... , 

(C) 0.8 L 1. 76[1.53] 0.953[0.798] 0.984[0.974 J 16.0[1:L8J 24.2[21.91 1·1.0[5.01 

u 2.54[3.30] 0.967[0.968] 1.093[1.:~50] 17.1[17.2J 25.4[2G.GJ :Hl:1PH,ti] .---... -..... ~~ ... ~.., .. ,--""-".,., .. ~" ... ~,.~""'. • '. __ , .. ,,, """"'_"0 ,,-,~ .\ .... 

(D) 0.8 L 1.87[1.61 J 0.727[0.557J 0.753[0.744] 19.1 [16.2] 2R.2[2.U;j 1 f I':[f '~I ).,) ) .• I 

U 2.69[3.40] 0.739[0.740J 0.845[1.069] 20.6[20.7] 29.9[:lO.lj :HUI[.16.·1] ----.. " .. ,--,-.. ,-".,,, .... -,~.""."""';"" ,,,,. 

Table 4.5: Observational constraints for various BOS models : (A), (B), (e), (D) for t.}w ilO\llT(' 

GX 349+2. Other specifications are senne as in Table 4.2. 



Chapter 5 

General Relativistic Spectra of 
Accretion Disks around Rotating 
Neutron Stars 

r: 1 ,). . Int rod uctiOIl 

Low Ma.ss X-ray Binaries are beli(w~ .. d to harbor black holes or weakly magnetized mmtron stars 

with (~u accretioll disk. The X~my emission aris()1l from the hot (~ l()'l K ) innermost. r(~gion of 

the disk. In the GHSe of a neutron star there will be emission, in addit.ioIl, from a boundary la.yer 

Iwtwtxm thp. i1c(:rdioll disk }111<1 mmtron star surface. Since the observed emission arises from regions 

dose to a compact ohj<.~d, these llources are possibl(l ci:lndidates for studyillg strong field gravity. 

In tho standard th(,'ory (Shakura & Sunyaev 1973), the aeeretion disk is assumed to be an op­

t.kally thkk N(lwtollian mw. In this model, tlw local enwrgent flux (assumed to be a blackbody) 

is equa.ted to t.he mwrgy dissipation at a pc1rtieular ra.dial point in the disk. The observ(ld spec­

trmll is til()ll (I, Hum of bla.ck body COmpOIl(mts arising from different radial positions in the disk. 

Gen<!ral rela.t.ivistic effects modify this Newtonian sp(~ctrum in two sepa.l'ate ways. First, the 10<:al 

euorgy dissipation at. a radial point is diffenmt from the Newtonian disk, giving rise to a modified 

tmnpCl'atllre profile. Secolld, t.h(~ obs<~rved sp(~etrum is no longer a Hum of local spe<:tra because of 

dfm:ts like Doppler Broadening, gra.vitationa.l rmh;hifts, and light-bending. Modified spectra, incor­

pora.ting these effeds, but with diffenmt approximations have been computed by several authorH 

(e.g. Novikov & Thorne 1973; Asaoka 1989) for H.<.:eretiotl disks a.round rotating (Kerr) black holes. 

These computations ton firm the expected result, that the relativistk spectral shape differs from 

the Newtonian OIl(! by I;).round 10%. Thus, for comparison with obsel'v(cxi datl:1 with systematic and 

statistical errors larger than 10%, the Newtonian approximation is a.dequa,te. Ebisawa., Mitsuda 
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Stars 

and Hanawa (1991) showed that for typical data from the Ginga satellite, the rdativistk spectrnlll 

cannot be differentiated from the Newtonian disk spectrum. They also fouud tha.t the rf'lat.ivistic 

spectrum is similar in shape (at the sensitivity level of Ginga) to the Cornpt()nized mod!ll slH·(trmll. 

Although, Ginga was not sensitive enough to distinguish between the differimt spectra, bt~t.t!'r {'H 

timates of fit parameters like accretion rate and mass of the compact object were obtaitwd willlll 

the data was compared to relativistic spectra rather than the standard Newtonian OIIE!. 

The present and next generation of satellites (e.g. ASCA, RXTE, Chandra, XMM, Con8tdlatwtl 

X) with their higher sensitivity and/or larger effective area than Ginga are (lxIH!cted t,o diffpf(mt,jatfl 

between relativistic and Newtonian spectra from low mass X-ray binaries (LMXB) aud black ho\(· 

systems. However, as pointed out by Ebisawa, Mitsuda and Hanawa (1991), the pl'(,'s(~nrt' of ad·· 

ditional components (e.g. boundary layer emission from the neutron star surfact~) and Hlll!'ll.l'illJ.( 

effects due to Comptonization may make the detection ambiguous. Nevertheless, the c\!,t.t'ctioll of 

strong gravity effects on the spectra from these sources will be limited by the ac(~nr;\ey of tlw()· 

retical modeling of accretion disk spectra rather than limitations on thf>. quu,lity of th~ nill'lf'l'vt'd 

data. Thus, it is timely to develop accurate relativistically corrected spectra for {'ompariHclli with 

present and future obserV'd,tions. Apart from the importance of detecting strong gra.vity dft~ds ill 

the spectra of these sources, such an analysis may also shed light on the geouwtry and (iYllmnic:-; 

of innermost regions of accretion disks. 

Novikov & Thorne (1973) and Page & Thorne (1974) computed the spectra of a.e('rdioll diskN 

around rotating (Kerr) black holes. This formalism when directly applied to rot.at.ing !H~lltrnll !-Itars 

provides only a first order estimate: the absence of an internal solut.ion in t}w (·<I .. 'W of KI'l'l' gl'Ollll'tl'Y 

makes it difficult to obtain, in a straightforward manner, the coupling betw{~{m tJH~ m:\HX awl till' 

angular momentum of the central accretor. On one hand, this coupliug deplmds Oil tlw p(pmtioll lit' 

state of neutron star matter, and on the other ha.nd, it depends OIl tll(~ pr()p(~r t.reatuU'lIt, of rotatit III 

within general relativity. Equilibrium configura.tions of rapidly rotating neut.ron st.ars for I'paJistil' 

equations of state have been computed in Chapter 2. One crucial feature ill ,dl t.hes!' (',dnllatiomi is 

that the space-time geometry is obtained by numerically and self consistent.ly solviug till' i<:illst.l'ill 

equations and the equations for hydrostatic equilibrium for a general axisYllmH~trk Ilwt.ric-. \\lith 

the aim of modeling spectra of LMXBs, here we attempt to compute the spectrum of acrr't'tioll diskl'i 

around rotating neutron stars within such a space" time geometry. This is particularly illlpnrt.;mt. 

since LMXBs are old (population I) systems and the centra.l accretor in thpHe SyHtt~lIIH an' I'xppj'f,'d 

to have large rotation rates (Bhattacharya & van den Heuvel 1991 and refel'Plltes tlwl'l~ill). 

In section 5.2, we describe the spectrum calculation method, without c(Hlsidf!rilll!; t.11!' lip;ht.­

bending effect. This effect is taken into account in section 5.3. We display th{~ result.s ill Hl'ctiou 
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5.4 and draw conclusions in section 5.5. 

5.2 Calculation of the Spectrum: Without Light-Bending Effect 

The disk spectrum is expressed as: 

(5.1) 

where tho subscript 'oil' dellott!S the quantity iu observer's frame, the flux F is expressed in 

phot<)lls/see/tm'2/keV, B is photon ent~rgy ill keV, 1 is speeifk intensity and IT is the solid an­

gle subtt'llded by the li(HU'Ce a.t til(>' observer. 

As 1/ E:l remains lll)(:lmllg(~d aJong the path of a photon (see for e.g., Misner et al. 1973), one 

('an calculatt~ 101ll if 1t~m is known (hereafter, tlw subscriI)t '!~m' denotes the quantity ip emitter'!:; 

frluw>,). We a.ssume t.lw disk to t~Illit like a diluted blackbody, so 1em is giveu by 

(5.2) 

WiWl'l' f is tlw color fador of til<! disk a.ssumed to bE~ indepelldcmt of radius (e.g. Shimura & 

Takalmra 199;»), H is the Plallck fUllction aIld T(. (th(~ tmllpera.ture ill the eentral plaJl(~ of the 

<li:;k) is rda,t(~d to th(~ pff~~d,iv(~ t.mllp(~mt\ln~ 7:!ff through the relation 'n,. ::= fTdf. The effective 

t,pmperaturn, T;'ff is it ftUlc'tion of t.he ra,dia.l coordinat.e T' and for a rota.ting accretor is given by gq. 

(:U). 

'l'lw qll1~lltiti(~s J,,'oh and 8 1'111 <I.re rela.tE:~d through the exprmmion Bern :::: Bob ( 1 + z), Whtlre (1 + z) 

(,(H1t.I~il\S the dftl(:t.S of bot.h gra.vitational n!dshift and Doppler shift. For a. general axisymmetric 

mdrk (r(!pJ'(!sellt.iug t.1l(' spacn time geometry around a rota.ting lwutron star), the factor (1 + z) 

il'l (!xpwsl'lnd as (see for pXalltple, Lmninet 1979) 

1+;;; (5.3) 

WiJl!l"(! t,lw fI/tI' 's aw t.lw mdrk ('oHfrkients and t a.nd 4) a.re the time and ll.7,irnutha.l coordinates. In 

til(' ahov(! (!xpn's:-lioll (w h iell iltdlHles light. bending (dfed:;), 'i is the inclination angle of the source 

(i 0'; 0 imp lies fac(! Oil), 6 till! impa.ct paxameter of the photon relc\.tive t.o the line joining the source 

and tlw ob:·j('.rver awl n till' polar angl(! of the pO}litioll of the photoIl on the observer's detector 

plane. For the :-la.ke of illustratioll and simplicity in ealculationH, here we neglect light-bending. We 

thus wri te b Hill n "',; 1" si II (p and 

d110b == 
rdr'd<fJ cos i 

D'2 (5.4) 
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where D is the distance of the source from the observer. 

For our purpose here, we compute constant gravitational mass sequenees (aH cleseribpc\ in Chap, 

ter 3) whose rotation rates vary from zero to the centrifugal mass shed limit (where gravitational 

forces balance centrifugal forces). For realistic neutron stclIS, the inner mdil.lH f'ill may be locat.l'd 

either at the marginally stable orbit or the surface of the neutron star depending Oll its ('tmtml d. '11-

sity and rotation rate (see Chapter 3), having important implications for tlw gmvit.ational ~'lwrI!.Y 

release as well as the temperature profiles of accretion disks. The procedure of calculating '1;,11 fi It' 

rapidly rotating neutron stars considering the full effect of general relativity is given ill ChlLpt.t'l' 

3. In Fig. 3.2, it is shown that the difference between Newtonian temperature pl'ofilt~ and gt>twml 

relativistic temperature profile is substantial at the inner portion of the disk. As will b., showlI 

herein, it turns out that this is the major reason for the difference between Newt(.llIia.n and glm~'raJ 

relativistic spectra at high energies. 

To summarize this section, we calculate the accretion disk spectrum using gq. (5.1), takillg 

the radial integration limits as nn and f'out and the azimuthal intt!gration lilnits H.H 0 and 21!'. \Vl' 

choose a very large value (~ 105 Schwarzschild radius) for 'fout.. 

5.3 Calculation of the Spectrum: With Light-Bending Ejffcct 

We describe the calculation of the spectrum, considering light bending effm:t, in a Htlpamtt~ !w('tioll. 

because it involves very time consuming numerical computations. Whetlwr snch computatiou); arl' 

worthwhile to do, we will see that in the next section. Light-bendiug cai('u\atioliH UHf' t.lw tt:,,!'!, 
(5.1), (5.2) and (5.3). nut the elementary solid angle will be given by 

dII :::: b db d(~ 
, ob D'2 

where b, a and D are same parameterH, as mentioned in section 2. As WP ('OllHidpl' till' pffpd (If 

gravity on photon's path, here we Heed to trace the photon':;! trajectory llI1111~lrkally. Tht' pron~d\ln' 

is described below. 

For a configuration, described by M and Q* (a.nd thus specified by a HIlt of f1/w) , we oht..till U", 

To calculate the spectrum for a given value of i with light bending effects, we backt.rack tlw photou's 

path from the observer to the disk, using standard ray tracing tedmiqm!s (t!.p;. Challdra.:.wkbar 

1983) and the relevant boundary conditions. For convenience, we use tt cos f)) illHtp,\,(! of (I awl 

s (= r / (A + r)) instead of r as the coordina.tes. Here r is the qua.'li ilmt.ropit radial ('()oniiuatf'. 

Consequently, the metric (2.3) becomes 
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dS'2 = -e'Y+Pdt'2 + (~'2(~((A'2 /(1 - s)4)ds2 

+A 2 (8/ (1 - s) )'2(1 / (1 - p,2) )dp2) 

+c'Y""-p A'2(8/(1 - 8))2(1 - p'2)(d¢ - wdt)2 
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(5.6) 

Ill're, A iH it known {·OllHtant of the dimension of distanee. Now it is quite straightforward to 

mk\llaJ,(~ thp p;eo<iesic eqnatious for photons, which an'. given below. 

riNdA .. "- (! b+p)w(l - wL) 

2 '2 '2 +L/((!'Y-P A (s/(1 -- 8)) (1 --It )) 

e-2(~ (( 1 -- .'1)4/ A2)( e··(-YI p) (1 - wL)'2 

1}/((~'Y"PA2(8/(1 - s))'.!(l -lt2 ))) 

-'8'2(1 - 8)2(1/(1 --1),2)hl 

dJL/dA- 1/ 

dU / dA-2( n,H -+. (l/(.~(1 -- .':1)) ))y(d . .'I IdA) 

t (~,'L( 1/(.0;(1 - 8)))2(1 -. IL'2)(ds/dA)2 

'2 '2 (o,IL+' (/L/(1 - JL )))1) 

+ (( 1 /2)el' -p- 2(~ (,)",£ - fJ,IJ (1 - p,'2)2w'2 

',,-e7 p'2°,t(1_lt'2)W2 

h:'"Y p2(k (1 -- Jj,'2),i. WW ,IL 

(1 /2) ~!7+p-2~ (')','L + p,jJ.) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 
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((1 - S)/(A8))2(1- fJ.'2))(dt/dA)'2 

+e1'-p-2(~(1 - p,2)2( -w,J_ - W(-Y,11 P,P) 

+2w(,u/(l - p,2)))(d¢jdA)(dt/<lA) 

+e1'-p-2a(1- p2)2((1/2)(',IL 1',11) 

-J.1,j(1 - JJ,2)) (d¢/dA)2 

where, A is the affine parameter, L is the negative of thE:~ ratio of t.llt! q)-('ompnmmt. of till' ;UI~;lIlal 

momentum and the t-cornponent of the angular momentulll of photon aud a (~umma fnllowf'd hy 

a variable as subscript to a quantity, represents a deriva.tiVE! of tlw quantity wit,h l't'f'\ppd tu t hI' 

variable. 

We cover the disk between ra.dii rin and rrnid :::: 1000r'g; rill bt~ing Uw r(~(liUH of tht' lIItU'! I·d!! .• · IIf 

the disk and rg the Schwarzschild radius (increasing T'mid has no significant t·~fft·('t em tJII' ~;PI'('hIUlIl 

Beyond T'mid, we ignore the effect of light-btmding Le., we tak~~ bsin n T Hill/p (lj~ is t.1I.· ;VIlIIllt Iml 

angle on disk plane) and dilob = (r' dr d¢ C()~l'i) / D2 (see section 5.2). 

We have performed several consistency cheeks on our re:-mlts: (1) by swit,('hirW. off t Iw lildll 

bending effect (i.e. by considering fiat space-time while ba('ktra.ckin~ t.lH~ phot.on's pat h l. WI' ~Ii'l' that 

the spectrum matches very well with that computt!d by ignoring li~ht,lH'ndillg pff.'I,tH ((',lIl'ulil1I'd 

by an independent (:Ode section 5.2). Also, in this e(l.'le, the analyt,kally cakll!al.l·d vahll'~~ iiI' 

several quantities on the disk plane (e.g. r, r/>, d(pjdt, (W/lit etc.) an' rl'prodlwl·d Mti~fadoril~' 

by our numerical method, (2) an increase in the numl.H:~r of grid points 011 the (lI,O) plaw· till lIut 

have any significant effect on the computed spectrulll, (3) th(~ Hlwctnull 1l1iltl'llt':1 wry Wi·l! wit II till' 

Newtonian spectrum (Mitsuda et al. 1984) at low mwrgy limit. This would imply that 1'111 II 

frequencies, our spectrum is correct to wit.hin 0.2%) to (1.:3%. 

5.4 The Res ul ts 

We calculate the general relativistic spectrum from the aC(Tetioll disk lLt'(nmd rapidl:., rlltatin,'. 

neutron star, taking into account the light-bending effect.. rrhe spectrum is mkulatl·d as it flllll't inn 

of 6 parameters: M, n*, distance of the source (D), iuclination iLlI/l;lp (i) (for fan"(llL I If' ,. 

accretion rate (JV!) and color factor f, for each of the chosen EOS. Our n~:-;lllt~l an' diHp!a,YI'd ill 

Figs. 5.1 to 5.5. In all the displayed spectra, we ha.ve assumed A1 ,,:: I.·IM.. (('(monical 111.\.,"11' for 

neut.ron stars), D = 5 kpc and f = 2.0. 

In Fig. 5.1, we have plotted the Newt.onian spectrum and elB, sp'~ctl'l~ with (LB(aq awl 

without (NLBGR) light-bending effect, keeping the va.lues of all the paranwt,'~rs sailH'. At 10 kf'V, 
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Figut'e n.l: gm~ct of gmHlr<ll relativity: spectra from accretion disk around ~1 neutroll sta.r of mass 
1.41\.1,." All t.lw curves a.r{~ for gOS model (B), n ... =: 0, D := [) kpc, i := 600 , M == lOiS g/see 
ami.f 2. CIll'W (1) correHponds to the Newtonian <:as(~, curv~! (2) to the genera.l relativistic 
('il..<{(! induding the efft!ct of light-bending and curve (;3) t.o tlw general relativistic ea .. 'le without 
('ollsid('rillg t.he df(~ct of light-bending. 

the Newtouia.u fiux: iH almoHt 2.5 times the LBGR flux. This is quite expeeted, because in the inner 

partH of the disk, Newtouian tmnptlnl.ture is considerably hightlr than the OR temperature (Hee Fig. 

:L 2). LBG R flux is <~h()llt 50% higher than NLBG It ft ux a.t 10 ke V. This is b~lcause light-bending 

CaUS(~H the diHk to subtend a larg(~l' Holid allglt! at the OhH(!rVer tha,n otherwise. Thus the g(meral 

dfoct of light-IHnI<lillg is to illCn!il..'l{! t.he observed ftux. 

According to Shimura & Takaham (1995), the thin blackbody description of the accretion disk, 

a.s ad()pt(~d in this pa.per, is va.lid for O.lMe < M < b1F"ld, wh~!n! Me:= LBdd/C2. Here Lp,dd is the 

l'~ddingt()ll luminosity alld MI'~!d iii the Eddington aecT(!tion rate (see Chapter 4 for description). 

For the puq)OS(! of deuwnstratioIl, we have taken three different values of M in this range (for the 

mass-iihed configura.tion) a.nd plotted the corresponding spt~<:tra in Fig. 5.2. As is expected, we see 

that tlH! high <nwrgy part ()f the Hpectrum is more sensitive to the v<l.lue of M. It is seen that the 

spectra for differellt valu~)H of M are easily distinguishable. 
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Figure 5.2: Accretion rate dependence: general rela.tivistic spectra including light-hending dff'cts 
from accretion disk around a neutron star of mass-shed limit configuratiou (0.. 70(11 rad/s). 
Curve (1) corresponds to IV! = 1018 gjsec, curve (2) to !VI = 10 17 gjsec and (:lU'v(~ (:J) to /\', 
2 x 1016 gjsec. The values of all the other parameters are as in Fig. G.t. 

The inclination angle i is a very important parameter in (ktermining the :-;ll<q)(' of t,lll' Spt·d.l'llIU 

and its overall normalisation. In Fig. 5.3, we have plotted the spectra for foUl' inclillatiol\ :L1I1!;!\':-;. 

for the mass-shed configuration. We see that the observed flux at low erwrgiE's i:; higlH'1' f()), low!'!' 

values of i. This is simply due to the projection effect (proportional to cos 'i), But at. hiV;!lf'l' 

energies (> 10 keY) this trend is reversed rnainly because Doppler (~m~d heCOllW:-l important. Tht· 

most energetic photons mainly come from the inner portion of the disk, where th/~ liuettr Slwpd 

of accreted matter is comparable to the speed of light, The net effed of Doppler broadtmiuf!; is a 

net blue shift of the spectrum, as a larger amount of flux comt~S from the blue-shifted regiolls than 

from the red-shifted regions. This is a monotonic trend, but it will be lloticed from Fig. !'U t.b:lt 

the curve for i = 85° overcomes that for i = 60° only at the edge of t.he figure, i.e., at t~ll('rgif's 

2 30 keY. This is due to the fact that between these two inelinations the difft~rew:e ill t.lw cos i 

factor is severe, and the blueshift overcomes this only at high energies, 

In Fig. 5.4, we have four panels for four inclina.tion angles, In each pa.ne), we ha.ve shown spHctm 
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Fi~~llW f).:~: Illt'\illa.th III ang\p (kp<'.n<ience: w~r\(~ra\ rela.tivistic sp<!et.ra, including light-bending dfeds 
from a.(·('n~tioll disk lLl'mmd it IHmtX'Oll st,~r of mass-shed limit eonfigumtion (st .. = 7001 radjs). 
Curve ( I) cormipOlldH til i 0'\ curve (2) to 1:"",; :W'" curve (a) to i =: 6()'J and curve (4) to i :::.::: 85°. 
'I'll(' Vl~hH'H of all 1.1\(1 otlwr pa,mmeterH ;m~ as in Fig. 5. L 

fur :~ dim~n~llt H. (COITPSP( IUciing to n(m-rot,~ting, intermediate ,,~lld the mass-shed Gonfigura,tiolls). 

With tbl' iw'l'(·;I.'l(· of ~2., db,k t(!IllI)(Jratllf(:l profile does not vary mOllotonically (see Fig. :3.3<t). 

lIP1Wt. !.lUI lwhavior of 11H' HIH'drulll is ah:lo lIoll-monotonic with r~*. For non-rota.ting and InaHS­

!4Jwd (,(llIfi,[,lImtiolls (for tlll' a,'l:·mmed vahwH of other p<~ra.met(lrs) the temperature profiles a.r~l very 

similar. A:; it l'C'!mit., t111~ pl()tt.(~d Hpect.ra for these two caSElS lie almost on top of each other. 

HOWI'VI'!', for i IT' til!' fll1X mn'nHpondillg t.o the masH-shed <:onfiguratioll is slightly higher tha.n 

th;~t for H. II, whi1p till' ('a.'ll' is OPP()Sitl.~ at hiv,her inclinationH. This is a result of the inclina.tion 

dl'!)('w!('w'" of t 1\1' (1, ) fador giv~m in 1<:q. fi.:~. 

III Fig. ;J':l. WI' haw c(llllpan'<! tlw SIH\dm for the four EOS models a.dopted by us, for config­

mll.t.i(IUM at tlw !'I'spI'cliVl' lIlitSHmHIWd limitH (which correspond to different values of D .. be<:ause of 

tlIP E()S (iP1H'wlplIl'f' of tllf' st.dla.r Htrllct.1l1'e). The va.lues of all other pa.rameters hav~! been kept 

tlw H;mll~. WI' :-w/' that till' t.ot.al flux 1'1!(:(~ived vfl.ries lllonotonically with the stiffness parameter, 

and iH hip;lwl" fill' till' soft.\r 1-;08. This effect ha..q beell mentioned in Chapter 3. We see that at 
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Figure 5.4: Rotation rate dependence: general relativistic spectra including light-bending df(~('tH 
from accretion disk around a neutron star. Panel (a) corresponds to i = 0°, panel (b) to'i :Hl", 
panel (c) to i = 60° and panel (d) to i = 850 • In each panel, the solid curve correspml<.il.; t.o H. n 
rad/s, the adjacent dashed curve corresponds to 0* = 7001 rad/s (the mas~Hlhed limit) ami Ulf' 
dotted curve corresponds to 0* = 3647 rad/s. The values of all the other parametefH art! as iu Fig. 
5.1. 

gies the fluxes for different EOS are considerably different. Therefore, fitting the obHt'.l'wd Hlw('tra 

of LMXBs with our model spectra, particularly in hard X rays, ma.y providE~ a wa.y t.o colIHtmill 

neutron star EOS. However one must remember that these computations ha.ve heen ma.dE! assllming 

that the magnetic field of the compact object does not limit the inner bounda.ry of the a(ocr!'t.ioll 

disk. In the presence of a magnetic field strong enough to do so, appropria.te modifications lllll:;t. 

be taken into account for the expected flux at high energies. 

5.5 Conclusion 

In this chapter we have computed the observed radiation spectrum from accretion disk!:! a.round 

rapidly rotating neutron stars using fully general relativistic disk models. This is the first tinw 

such a calculation has been made in an exact way, without making any approximation in tlw 
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Figure 5.5: gOS modd dependence: gf.meral reh~tivistic spectra induding light-bending effects 
from accretion disk a.round a. neutron star of ma.S!Nlhed configuration. gOS model (A) is for 
[2* = 11026 rad/s, Illodel (B) is for [2* :::::: 7001 rad/s, model (C) is for n* :::::: 6085 rad/::; and model 
(D) is for n* = 4652 rad/s. The values of all the other pa.rameters are <I.'l in Pig. 5.1. 

treatment of f~ither rotation or g<meral relat.ivity. In eomputing tlw observed spectrum from the 

disk, we explicitly include the effects of Doppl(~r shift, gravitational redshift and light-bending for 

an appropriate metrie deHeribing spa.ce time a.round nl,pidly rotl;tting neutron stars. We find tha.t 

the effect of light-bending hi most important in th(~ high-energy (> 3 keY) part of the observed 

spectrum. Photons a.t these high energieH originate clOSE) to the contral star, and hence their 

trajectories l:~re most affected by the light-bending effect. Depending on the viewing angle, this 

ean enhance the ObfH!fVed flux a.t '" 10 kE~V by as much as 250% c:()nlp~tred to that expected if 

light-bending effectH are neglected. 

It is to be noted that in this work we have neglected the effeet of irradiation of the disk. Miller 

& Lamb (1996) have discussed such effects on a test particle lnoving towards a slowly rotating 

neutron star. A strongly irradiated disk may not remain thin and the radiation force may relocate 

the position of inner edge of the dL~k. In addition to thl:tt, fractions of angular momentum and energy 

of the accreted matter may be transferred to the irradiating photons, resulting in a redistribution 
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of emitted flux in the disk. These effects will change our calculated spectrum to Henne t~xtent. 

Therefore, we aim to modify our calculation in the direction ofthe work of Miller & La.mb (1996). 

However, it is to be noted that for rapidly rotating neutron stars, boundl;lrY la.y(~r emiHskm is Hma.ll 

and hence the effect of irradiation may not be important. 

The calculations presented here deal only with the multicolor blackbody disk. In reality, then~ 

will be additional contributions to the observed spectrum from the boundary bLyer as w(~ll H.S a 

possible accretion disk corona, both of which are likely to add a power-law component at high 

energies (Popham & Sunyaev 2000, Dove et a1. 1997). On the other hand, the slHlctm prt!Blmt(>d ill 

Figs 5.2, 5.3 and 5.5 should remain essentially unaffected by boundary layer contrihution, II .. '! tht~st~ 

are for neutron stars rotating near the mass-shed limit for which the bmmda.l'Y la.yer luminosity 

will be negligible. For slowly rotating neutron stars, the disk component of the Hlwctrulll can bi' 

obtained by fitting and removing the contribution of the boundary layer, provided f\ good m<HiPl 

for the boundary layer spectrum is available. Popham & Sunya.ev (2000) have made I\H attmupt 

to compute the boundary layer spectrum in the Newtonian approximation. General R(~Jativb;ti(' 

modifications need to be included in these calculations to get a. realistic t~stimH.te of the Spt'<.'t.rulIl 

of the boundary layer. We plan to address this issue in a. future work. In the ~low rot<~ti()l1 (,,,,,'i.', 

the spectrum of the disk itself may be somewhat modified by the presence of a bmmda.ry laY/!f if it, 

extends beyond the disk inner radius assumed in our computations here, thus <:urtailing tht.~ imll'1' 

edge of the disk. 

In addition to the contribution of the boundary layer, the possible contribution of }lll a.tTl'I'tioll 

disk corona to the emergent spectrum could also be significant. To be a,hIe to costl'ain tJw E( >S 

models of Neutron Stars using the observed spectrum, this contribution mllst also 1H' a(·cm;l.tdy 

estimated. We have not attempted to estimate this in the present work, wherE:~ we restrk.t OHrHdws 

to thin blackbody and non-magnetic accretion disks in order to l.md~~r!:!ta.lld the ~·fft'rt. of the Ji;()S 

models describing neutron stars on the spectrum of the accretion disk a.lone. We view this <I." t.IH' 

first step in accurately modeling of the spectra of accreting neutron sta.rs including tlw dr/,ets of 

general relativity and rotation. We may mention that the radia.tion originating in tilt! Itcerptjo!l 

disk corona would also be modified by the gravitational redshift and light-l.H:mding efft)dH\ and tlu' 

technique presented by us here will be useful also in that context. 

The comparison of the non-rotating limit of our results with those of the fitting routirH: GRA D 

in the X-ray spectral reduction package XSPEC (Ebisawa et al. 1991), shows tlmt the la.ttt~r mod!'] 

overpredicts the high-energy component of the flux by a large factor. With th(~ help of K. Ebisawa 

& T. Hanawa we have been able to trace this disagreement to certain simplifying approximatiolls 

made in the GRAD code) as well as a couple of incorrect expressions being used tht~re. Conclusions 
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based on the use of the GRAD routine may therefore need to be revised in the light of the new 

calculations presented here. 

The computation of the complete spectrum in the manner presented here is rather time­

consuming and therefore not quite suited to routine use. Therefore, in order to make our results 

available for routine spectral fitting work, we need to present a series of approximate parametric 

fits to our computed spectra. We do it to some extent in the next chapter. 

The speetm prcS(mted here will find use in eonstraining the combined parameter set of the mass, 

the rotation speed and, possibly, the gOS, particularly of weakly magnetised, rapidly rotating 

neutron stars. The reltlVant sigllatur(~S are most prominent in hard X-rays, above "" 10 ke V. 

Sensitivt! ()bs(~rvations of ha.rd X ra.y spectra of LMXBs, therefore, are needed to fully utilise the 

potentia.! of these result.s. 
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Chapter 6 

Functional Approximation of Disk 
Spectra 

6.1 Introduction 

1'lw ()h*,(~rv('(I *,pedrum for Imninoml LMXBs can be wdl-fitted by the sum of a, multi-color black­

body slwctnull (pre!-lumably from the accretiou disk) and a single telllpera,ture blackbody spectrum 

(pre:mmably from the hOl1lHiary laY(lr) (s()(~ Mitsudl\, et aL 1984). The multi-color Hpectrum can 

Iw caknlat.ml if the t.emperature profil(l of the aeeretion disk is known. Snell a c;~kula.tioll should 

indude tho gmwral rdativistie (1ffeet, as Ileal' the surfae~) of the neutron star, aeeretioll flow is gov­

t~nwd by the !-ltrong gravity. As is a.rgued in Chapter 2, tli(~ effect of l"a,pid rot(~ti()n I:Ihould also be 

takeu illto account. We have eakula,t.ed such a Hpectrum for thin acc:n!tioll disk in Chapter 5. The 

comput.a.tioll has been done bot.h igIH.)ring and GOllsidering the light-bending effect. 

Our modd Sp(~(;t,ra, when fitt.(~d to the observational data, ean in priIldpk constrain EOS and 

t.1w va.hlPs of the s()urC(~ panunders. However, eomputation of the speetm is numerically time 

cOIlsumiug and h(mc(~ dired fitting to the ohS(lrv<ttional data is imllntcticaJ. For the sake of ease 

ill lIlodding, we present ill this ehaptel', <t simple (Hnpirkal an<tlytkal expreHsioll that describes the 

Imlll(~ric:dly computed spedm. As shown l<tter, the same expression (which haH three parameters 

including llornudillation) Ca.ll also dCHeribe the Newtonian spectra.. In pa.rtieu1cLr, the value of one 

of tlw panulleterH (ca.lled f1-paranwter here) determineH whether the spectrum iH relativistically 

corrected or tlot. This will fa,eiJitat.(\ comparison with observational data since only this /3-parameter 

ha.':l to he constrained to indicat(~ the effect of strong gravity in the observed spectrum. 

H.ere, for fitting, we consider speetra, without light-bending effect, as the light bending-calculation 

takes a huge amount oftime. Howev(~r, we fit the analytical function to a few light bending···spectra, 

and show that the g(ln<~ral c:ondusion remains the same, if the inclination angle (i) is not too large. 

75 
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In section 6.2, we describe the method of functional approxirlUl.tion of th(~ ('mllpllt.(~d Hpc·(tra. 

We display the results in section 6.3 and give ::t conclusive discussion in sedioll 6..1. 

6.2 Functional Approximation Method 

In order to facilitate comparison with observations, we introduce a simple mmlytkal t'xprt'l-ish III 

which empirically describes the computed relativi8tic (and Newtouian) Hpert.rn.. 

5f (E) = SoE;;2/3 ( E ) "( exp ( - ~) 
Eo. 8(1. 

(Ii. I) 

where, "I = -(2/3)(1 + Ef3jEo.), Ea , f3 and So are parameters and E is the c.meTp,;y of tilt' photollH 

in keY. 5f(E) is in units of photonsjsee/cm2jkeV. To compare thi8 empil'k~d fUllCt.ioll wit.h t.lw 

computed spectra, we use a reduced X2 technique. In particular, we defhw it fUllctinll 

where 5 e (E) is the computed spectra. The spectra are ~lividt~d into N logarithlllk l'I\I'I')[.y hillH, 

We have chosen the range of energy used in calculating X2 to b(! deptmdent on the Im'atioll !If Uu' 

maximum of the energy 8peetrum (ESc;(E)) which is typically at 2 k('V. Tht~ minimum I'IH'l'VS b 

set to be one hundredth of this value (typically 0.02 keY) whil(! the maximulll is HI't. at t!'!1 dUll's 

(typically 20 ke V). X2 is fairly insensitive to the number of energy bins; W(~ takfl N 2fHl For I'adl 

Se(E) the best-fit parameters (Ea, f3 and So) are obtained by millimi?:ing y:l, 

The So parameter in Eq. (6.1), is the normalization factor and is ill<iPjH'wlc'llt. of tJw n·lativlstk 

effects. It depends only on the ma.':!s of the star (M), ;1(:eretioll rati~ (fl.:!), clistaw'p t.11 t h.· Hllm'!'!' 

(D), color factor (f) and inclination angle (i) i.e 80 ex tVf'l./:lf·.tj:IAI1/'l.[) "('(lsi. TIlt' h:" paramdl'r 

(which is in units of keY) describes the high erwrgy cutoff of the spertrnlll. It.s d('IH·wil,tt<'!· (II! 

the space-time metric: and inclina.tion angle is complicated but it sml(~s as 1':'1 'x It) 1/1 f, Th.· 1 

parameter depends only on the space-tim(" metric (a.nd the inclinat.ion allglp), h1lt, not. 011 .tnT!'!. it'll 

rate, distance to the source or color factor. This makes the jJ-paramdpl' IlSf'flll <l. .. 'l a prob!' illtll till' 

underlying spaee-time metric. 

6.3 The Results 

To illustrate the differences between the relativistic and Newtonian spect.ra, W(~ show ill Fi/1:. Ii. I. 

the computed relativistic spectrum (solid line) and the Newtonian Spi~etrnm (da .. 'ilH~d lim') for th!> 

same parameters. It is to be noted that, here we plot energy flux (ES'<:[B]) , inst,~~ad of phot.oll flux 
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Figure (i. I : Gmwral relativistic SI>twtrlllll (solid line) for a. neutron sta.1' configura.tioll with mass 
M ,= L4Mi~), spill mte U. 0, dii,tallc(~ to the souree D =: 5 kpt, inclination angle i= ~lO° 1 

accretion mt,(' Nt lOtH g S I a.nd color factor f = 2. Da.shed line: the Sp(~ctl'llm (~xpected from 
a H<.nu'ce wit.h tlw saul(' (iisk paranwtel"s but wit.hout the t'(~lativiHtic effncts (N(~wtoniall sp(~etrum). 
Dott(~d line: '1'he spectrum fCll' th(;l saul(' disk pcmmHlters but without the ()ffeet of Doppler and 
gravit<Ltioual rt>d-ldlift.s (i.El. z is set to 7,(~ro). Tlw gOS mod<ll (13) is used hEm::. 

(8c[8j) (as is tlw ca:-w iIi Fig. 5.1). 'l'his is, hec<tns(), E8c [BJ is US/let to choose tht~ energy range 

for fitting. HOW(lV(lr, n."! llll'lltioned in t.lw pnwions secUml, we fit. 8c:[ B] by the analytieal func:tion. 

The N(~wt.()nial\ s]H'ctrmn il'l the spectrulll E\xpect(~d from a st"uldard llOn-rdativistie disk (Sha.kura 

& Sunyaev 1 nn) \mt. with tlH~ specific intnnsity and the efff!c:tivn ternJlerc~ture modified by the 

color fact(Jr (Eqs. :L I and 5.2). III order to isolate the diffenmt <:olltributiollS, w(~ have a.lso plott.ed 

ill Fig. <i. I, thE' tiwordical s]wd.rutll arising froIll relativistic temp(>rature profile hut without the 

effect of Doppl(!r/gravit.atiollal rod-shift (clott(,~d linc). The relativistic spectrum is under-luminous 

compared to the N(!wtonian one at high (mcrgi{)s this is primarily because of the difference in 

the radial tCllllH'I'a,t Uft! profile (see Cha.pter 3). Tll(~ difference bf:!tween the two spectra is nearly 

50% at 2 keY. We empl!a,siz;e here, that such high differtmce is only true when both the spectra are 

calculated for the same diHk parameters. If the Newtonian spectra is calculated for slightly different 
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Figure 6.2: Relativistic spectra for three different inclination angles (i ::::'0: n°, aOK\ (iO") with n'Nt llf 

the parameters same as in Fig. 6.1 (solid lines). Dashed lines: empirka.l fit to tlw rl'lativiHtje ~Iwdra 
using Eq. (6.1). The minimum X2 = 0.073,0.049 and 0.026 for i == OP,~W()aruW()O rt':-Il)(~I'tiVl'ly. 

values of disk parameters (e.g. accretion rate, inclination angle, distance to the HOUlTI') ttwawlag!' 

discrepancy between the two spectra will be less (Ebisawa, Mitsuda and } IawIW,t 1!J!) 1 ). 

Fig. 6.2 shows the relativistic spectra for three diffenmt inclination angles (soli(l lillI's) awl til!' 

corresponding empirical fits using Eq. 6.1 (dashed lines). The minimum Xi! ohta.iw'ci whilt- fitt it I)', 

these spectra was < 0.1, which means tha.t the avemg(~ discrepancy is less tlmll :~%. This is also trill' 

for other disk parameters and EOS models considered in this work. Thml tlw I'lupirkal fund inn 

(Eq. 6.1) is a reasonable approximation to the computed rela.tivistie sped-m. It abo r\l'l·wrihl'!-l t hi' 

Newtonia.n spectra to a similar degree of accuracy. 

We show in Fig. 6.3, the variation of minimurl1 X'2 (i.e. minimir,ed w.r. t.. to paralllt'ti'rs 1"1 

and So only) as a function of the ,a-parameter for the three spectra. shown in Fig. (i,2 awi for till' 

Newtonian one. For the Newtonian ca.se the minimum X'2 occurs for jJ ~ 0..1 while it is low!,!" fIll" 

the relativistic cases. For example, consider the relativistic spectrum for pa.mnH~ters listed ill Fig. 

6.1 and for i = 30° (line marked a.s 3 in Fig. 6.3). If this spectrum is fitted with tJ\(~ j'mpirical 
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Figut(~ ().:~: Variatioll of minimum X'l. (i.!!. millirni7.ed wit.h respect to parameters Ea a.ud S'o) with 
p~mmH't.Hr /1. CurVt.~H m:~l'k(!d 2, :~ a.nd 1\. correspond to the spectra Hhown in Fig. :3 for i :::::: 0°, 30() 
:md 60" r(~SI)(~(:tiv(~ly. C:\ll'Vf~ llHtrk(l(i 1 is for the N()wtolliall spectra shown ill Fig. 6.1. 

fnlldioll till' miuimum X'l. (l.OG (<:OlT(~sponding to an avera.ge distn~pancy of 2%) <md the best-fit 

Ij·pl~mm('t.!·l' if! /J ~ O.2G. For Il. Newtonia.n fJ-paranwter v(~lue of ~ 0.1, the In.ininmm X'1. increases 

t.u n.l, corr(~spo!Hlillg t.o an t~Vt!mge disnepancy of more than 3%. Thus the empirieal function 

call l'(~~-lOlw t,lH~ diff<ll'PllCe but.weml tlw Newtonian tmd the relativistic one at the 10% level. For an 

obwrvod Hppd,rmn fittHd uHing the empirieal funetioll, if tll(~ best-fit range of j3-parameter excludes 

tll(~ Newt.ouian vallie of (lA, t.hat would strollgly indicate tha.t the spectrum has been modified by 

Htroug gravitational df(!cts. To show the robustness of this result Wt.! display in Figs. 6.4, 6.5 and 

(l.H, t.h{! variat.ion of the best-fit j3.parallleter with i, for different gOS models, masses and spin 

rateH of t!w c(!lItml object. respectively. For all t.hese eases the best-fit (3-parameter is less than 

OA. How(~vel', for vmy high value of i (i !2: 85 tl ), fitting to the light bending spectra gives j3 > 004. 

TherdoX't\ for i Z; gso, Newtoui<w a.nd genera.l relativistic speetra can not be distinguished by 

this met.hod. But for upto moderatdy high values of i (for which light bending spectra still gives 

{'3 < 0.4), thiH method is very dfeetive. Parameter Ea is useful to determine the accretion rate. 

Howt!vcr 1 it also dt!pends on the llHltric a.nd inclination angle. We show this dependence in Fig. 
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Figure 6.4: Variation of the best-fit /3-p<Lrameter with inclination anglt! for diffm··i~nt equatlollS Ilf 
states (each curve is marked by the corresponding EOS model). The v1thIes of tlw otlwr panuw.t,!'n, 
are as in Fig. 6.1. 

6.7. 

6.4 Summary and Discussion 

In this chapter, a simple empirical function has been presented which de:,wrilH's tlll' 1lI11111'I'irally 

computed relativistic spectra well. This will facilita,te direct comparison with ob:wl'vaJioHH. '1'114' 

empirical function (Eq. 6.1) has three pararneters induding llormali:.>;a.tioll. AllotlH'1' illlportallt. 

advantage of this function is that it also describes the N~)wtollian spectrnIll 'I.di'qnat.t'ly, and t.1l .. 

value of one of the param.eters (/3-pa.rameter) distinguishes betM~en till! two. III particular, thl' 

best-fit p'-parameter ~ 0.4 for the Newtonian case, while it ranges from 0.1 to o.:~r) for rdativi!'ltk 

case depending upon the inclination angle, EOS, spin rate and maHS of t.he lwutroll Ht-arl'!. !fIlWP .... t.r. 

a.s mentioned in section 6.3, this method is effective for upto moderately high vahlPl-l of 'i. 

In principle, for sufficiently high quality data, the effects of strong gravity on the disk Hp~!ct,nllli 

can be detected using this empirical function as a fitting routine and constraining the 11-pa,mnwtn. 
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Fip;ltrl· fUi: Va,riatioll of t.hp hmlt,··fit {1-parmneter with inclination angle for different neutron sta.r 
lW!,.'I:-WS, CurV!' I: M", 1.0M\.I, ('UI've 2: M ::::; l.4M(:), eurve ;~: .M::= 1.788Mc;), The values of the 
ot,iwr pa.!'iUtH't.i~rH ;m' a.'l ill Fig. (i. I. 

HowI'WI'. it lllUSt. be mnphasi7.ed th;~t therE~ a.re several rea,sOIlS why this may not be possible. Thef(~ 

(,()lIld })(! HysklW:! which ha.w additional components in the Xray speetra; for example boundary 

lay •. ·r mllis~li()lI from the wmt.roll st,u surfac(). Uncertainties in modeling these additional components 

may Ii'ad t.o a wider nmgH ill t1H~ be:;t,-fit /1·para.nwter. Thus a<:cu!C\te spectra of the boundary htYfolr 

(wit.h l'l'ia.t.iviHtk GOI'rediollH) iH also lw(!<ied for modeling tht)s€ systems, Moreover, X·rays eouid be 

I'lllitt.,~d from h()W~r regiolls (f~.g ;~n illnermost hot disk or a corona) giving rise to a Comptonir,ed 

sIH~('tm illHt,(',vi of the HUlll of local eluission assumed here. In thii:l eaH€, the empirical fit will 

probably !lOt. d(~s<Til)(~ th(~ ()hH(~rvat.i()md data well. It has been assumed lwre that the eolor factor 

iH illd(~pf'll(klit of radiu!'l. Shimnm and Takahara (1995) have shown from nllluerkal computation 

t.hat t.ili!'l could he the ca.H(~ for all acct(ltioll disk in a Schwarzschild metric. Apart from the fact 

t.hat t.hi:-; W(!"'l donn for fkhwlLr7,schild metric, their numerical computation dt~pends on the vertical 

stl'1ldul'(' of t.lw disk which in tum depends on the unknown viscosity meehanism in the disk. If 

the color fact.or has a ra.dia.l dependence, the spect.ral shape might change, which may be confused 

to be It relativistie effect. 
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Despite these caveats the method described in this chapt.tll' will bl~ a xtpp forw;~nl ill tJlf' t\ptt.(tii III 

of strong gravity effects in the spectra. of X-ray bina.riEls. ~'Iltmt' (:ompal'iSOll with hip;h qlla. lit:v' 

observational data, will highlight the theoretical requiremeuts tlmt. hay!! to 1)(' Ill/'!. IH'forl' mUITI-tl' 

evidence for strong gravity are detected in these !:lystems a.nd til<' (!llignmt.ic t'{·gioll itnllllll! ('Olilpact 

objects is probed. 
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Clulpter 7 

Disk Telnperature Profiles for Strange 
Stars: A Comparison With Neutron 
Stars 

7.1 Introdud,ion 

Wt~ h.tVl' IllPutiOlwd ill tilt' (>"triier ch;~ptel's that low maSH X ray binaries (LMXBs) are believed to 

nilltaill f!itlll'r 1lI'IIt-roll stan; (NSH) or black holos acereting from an evolved or main sequenee dwarf 

(,(l!UpatliOll that fillH it.!>! Hodw lolH~, The proximity of the companion ill theHe systems cause matter 

to HpiI'1l1 ill, fOl'lllilll!; ,\,II H!'cl'ption ciillk around the (;eutra! aecr(~tor. Observa.tions of LMXBs call 

pl'Ovidl' vital dlWH of tlH' Ht,nld,\ln~ pa.ra.meterH of th!! a.CCl'(:)tors a.nd, in particula.r for N8s, this can 

Iliad to ('oIlHtrai!litl~ 1,11(' property of the high (hmHity matter composing their interiors, Therefore, 

till- I'Htimatioll of t.lw mdinH of tht~ centra.l a.c.:cnltOl' in SAX J1808.4.-3658 and 4U 1728-34 (Li et al. 

IH!Wa; 1.i \'t, al. l!HJ!)b: Bunkl'i & Killg 1998; PsaltiH & Chakrabarty 1999) indicating the object to 

lH~ mono ('OlIlpa.d than St.lll'H ('ompoHed of high d(lnsity rmdt~ar matter, acquircs significance. These 

n'Hlllts lIloot. aitl'ruatl' :;l1j!J~I'Htion about the nature of th(! central a<;cret.ors in at lea.'lt some of the 

LMXBH. 

III t.1I ix 1'1'~a,rd, t.}H~ Hi 1'IWIJ I' matter' hYl'oth(~Bi8, formulated by BodnH.~r (1971) and Witten (1984) 

(see also holt 1!J70; 'n'nlZ<tWlL H)79), has re<:eived much attention recently. The hypothel::lis suggests 

Htmllgl~ quark mat.tpr (SQM, lw~(h~ up of H, d and H qllarkH), in equilibrium with weak interaction!;, 

to be t.lu~ actual ground Htl\,t.(~ of Htrongly int.eracting mattE.lr rather than 56Fe. If this were true, under 

appropriat,p (,OlHiit.iotlll, a plHtHIl trmll-lition within fl, neutron star (e.g, Olinto 1987; Cheng & Dai 

199G; Boml.md & D,~t.t.a. 2(00) could convert tlw entire system instantaneously into a conglomeration 

of Htrange matter or, as is commonly refen'ed to in literature, strange stars (8Ss). Here we consider 

85 
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Stars 

only bare strange stars, i.e., we neglect the possible presence of a crust of llormal (~()lIfilwd) mattl'f 

above the deconfined quark matter core (see e.g. Alcock, Farhi & Olinto 19Hti). 

It is of fundamental interest - both for particle physics and astrophysicl:{ • to know wbl'tlll'l' 

strange quark matter exists. Answering this questioIl requires the ;~hility t.o diHtill~tlixh bl'tWI'/lll 

SSs and NSs, both observationally as well as theoretically and this lin .. " bef'll t.lH' motivatillll IIf 

several recent calculations (Xu et al. 2001; Gondek·R.osinskl:1 et al. 2()()(1; Homhad I't al 10no; 

Zdunik 2000; Zdunik et al 2000a; Zdunik et al 2000b; Datta ~\t al 2000; Stf'q!;iou\;.I."i d al l!lU!I; 

Gourgoulhon et al 1999; Xu et al1999; Gondek & Zdunik 1999; Bulik et aI. HW9; 1,\1 H19H: l\'latiMI'II 

1998). One of the most basic difference between SSs and NSs is tJw maSH mdillH r(,jatinH:-lliiJl 

(Alcock, Farhi & Olinto 1986): while for NSs, this is ~1n inverse rehttiomlhip (rndillH dl·('l'f';I.'Iillg 

for increasing mass), for SSs there exist a positive relationship (radiuH in('rl~aH('14 with illcrl'aHill~!; 

mass). In addition to this difference, due to SSs being self bound objt!cts, tht'ft· aJso l'xiNts til!" 

possibility of having configurations with arbitrarily srm1l1 ml:l..<Jses; NS:-; 011 the ()tlH~r halld. havl' a 

minimum allowed mass (e.g. Shapiro & Teukolsky U)83; G lendellllillg 1997; and mort' rt'('f'lIt I~" 

Gondek et al. 1997; Gondek et al. 1998; Goussard et a1. 1998; StrobEd I't <\1 InnH: StrnlH·1 ,I..: 

Weigel 2001). Nevertheless, it must be rerna,rked that for 1:1 value of gmvitat.iowd U\}l.,'lS I'qual tn 

1.4 M0 (the canonical mass for compact star c<:mdidates), the diffen~il('(' lH'tWf't'l1 thl' pl't'd ktl'd 

radii of nonrotating configurations of SS and NS amounts, at most, only to ahout f, km: it wd 111 , 

that cannot be directly observed. There arises, therefore, a. neet~Hsity to IlI'lwily fr·ly oil IWH!I·h; PI' 

astrophysical phenomena associated with systems (:ontaining a eompad st.ar to !'stilllat.t' t II" i'lL! !ills 

for isolated pulsars, models of glitches (e.g. Da.tta & Alpar 199:~; Link I't. al. l!192) haw 111'1'11 wwd 

in the past for making estimates of the strueture parameters and for ('ompact stars ill hillarlPs, 

such estimates have been made by appropriately modeling photoHplH~rk t'XIHWHiol\ ill X !'a,v hllr~!N 

(van Paradijs 1979; Goldman 1979) and more n~<;elltly by constrainill~ tlw illlll't" I'dgl' nf HIT!'!'! illll 

disks and demanding that the radius of the compact star be lotated insidE' l,hiH illlH'1' 1'1\11,(' (I,i I't al. 

1999a; 1i et al. 1999b; Burderi & King 1998; Psaltis & Chakrabarty 1999). III pmtkllla.t'. till' w!!rk 

by 1i et al. (1999a; 1999b) suggest strange stars as possible a.een~tors. II OW!'VI'l' , tlll'!'lI' caklliat if IUN 

did not include the full effect of general relativity. Even on inchlHioll of tllt'~-H' dfp('ts (B(lllIilll.1'I l't 

al 2000), the results for at lea,st one source: 4U 1728-34, remain lmchallg(~d. Tlwl'f' haw ;d~i(j bl'l'lI 

contradictory reports on the existence of strange stars: for examplt~, eakulat.icms of lIIaglll't iI' fil'ld 

evolution of SSs over dynamical tirnescales, make it difficult to explain the ()b~wrVl'd magllt't.ir til,ld 

strengths of isolated pulsars (Konar 2000). On the other hand, Xu & BUSHll (2()(1l) show that SS}~ 

may possess magnetic fields, having the observed strengths. These magnetie fi('ldH, t,lwHI' authors 

argue, originate due to dynamo effects. In our analysis here, we ignore the eff<~ct!<l of maglld,k fi.·ld. 
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In thi" I'}mpt.~r, W(I ('aknlilt(~ (:om;tant gravitational mass equilibrium sequences of rotating SSs, 

r(\lI~idprillg till' fllll t1tft!(t of W~Ilt!raJ rt>lativity. We Holve Ein::;tein field equations and the equation 

for hytiw:.;t.a.tk ('<{llilihriulll simultaneollsly for diffenmt SS equations of state (EOS) models, using 

tht' sauli' llt'ot'!'duI'e UN (ksrrilH~d ill eha.pter 2. We compare our theoretical results with those 

oht..dlll'd for NSs (Challtt'r :~). In additioll, we calculate the radial profile::; of effective tempera.ture 

ill It('(Tt~U()U diskH around SSH (s.mw pro(:e<iurc as described in Chapter 3). These profiles are 

import-aut. iuputs ill ,L(Tl'dioll disk SlH)drllTll calculations, crucially depending on the radius of the 

imwt' (Id$~(~ of the a.(·(·!'(~ti()11 disk. This radius iH determined by the location of Torb with respect to 

that of tlll' surfan' (H) uf til!! star, both of which are sensitive to the EOS, through the rotation of 

ttl<' ('tmtral nbjt·et. In parti<:llinr, W(~ llotiee tha.t 1'orh increases with stellar angular momentum (J) 

IH'Y!llld a ("'rtaiu n'itkal vahI(' (a propnrty HOt. seen in either rotating black holes or neutron stars). 

Wt· tmcp tlli:; hdmvior t.o til<' depclldmlce of drol'b/ d.J 011 the rate of ehange of the radial gradient 

of tiH' Kt'p\('riall ~tngula.1' velodty a.t r'o!,!> wit.h respect to .1. The prospeet of using the temperature 

profilflS for calculation of ,u'('rf~t.ion disk spedrmn and subsequent comparisoll with observational 

dllta. tlw!'('fon', p;iVt's rise to t.he possibility of eonstmining SS gOS, and eventually to distingui!;h 

I H'j,WPI'1I SSs awl NSs, 

III I*~('tioll 7.2, W(' dis(~t1ss the equatiOlH> of state used in this dmptm·. We display the result;H ill 

HI~ctioll 7.a mill giVl~ a snlllmar,Y of t.lw dmptm' ill section 7.4. 

7.2 gQl1<ltion of Stat(~ 

For st.nuIW' qllmk lIIat.t.'l' we IlS(l two plwnmneuologieal models for the gOS. The first one is a 

simpit l EOS (Fal'hi & .Jaffe 1984) based em th~! MIT bag model for hadrons. We begin with the ea.'lC 

of lIla.'lsl~~ss, llo11,illt.t~nI.("ting (i,I'~. QeD structure consta.nt a c :::: 0) quarks and with a bag eonstallt 

H 00 M .. V Ifm:1 (lH!n~(tfter gOS H). Next, we Gonsider a finite value for th~l mass of the Htmnge 

(pmrk withiu til(' saIne MIT bag model gOS, We ta.ke rna == 200 MeV and mu == md = 0, B = ()O 

M(!V jfm:I, <LlIel Ir.. () (EOS 0), To investigate tIw effeet of the bag constant, we take (almost) 

tIll' larK~·st. p()sHihl(~ vahw of n for which SqM is still the ground state of strongly interacting 

lllat.tm', a.ccording t.o tlH' st.range matter hypothesis. 1:<01' ma.ssless non-interacting qua.rks this gives 

Ii :::;; .. 90 Ml.,v jflll:1 (E()S F). The second model for SQM is the EOS given by Dey et al. (1998), 

which is h;\.'leci on a different qua.rk model than the MIT bag model. This EOS has asymptotic 

fr(~edom built. ill, ShOWil eoufinement at 7.ero baryon density, deeonfinement at high density, and, 

for a.n appropria.te dwice of tlH~ EOS parameters entering the model, gives <Lbsolutely stable SQM 

(I.<:eordillg to tlw stmnge lnatter hypothesis. In the model by Dey et al. (1998), the quark interaction 
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is described by a screened inter-quark vector potentia.! ()rigim~ting from glmlll (~xth<mge, and by 

a density-dependent scalar potential which restores ehiral symmetry at. high den~ity (in UH~ limit 

of massless quarks). The density-dependent scalar potEmtial arises from the dt'UHity dl'IHmdl'IlCi' 

of the in-medium effective quark masses Mq , which are ta.ktm to depend UpOIl tJw baryoll tlllmlH'\, 
rin . 

density nB according to Mq = rnq + 310MeV x sech(lI-), where no is t.Jw uorlll1tlllUd(~I},r mattI'\, 
no 

density, q( = u, d, s) is the flavor index, and II is (L parameter. The effediv(' qUltrk ma.SH .1\1'1 (711\) 

goes from its constituent masses at zero density, to its current rna.Sf) rr~(\! as rIn gum! to infinity. 

Here we consider a parameterization of the EOS by Dey et al. (1998), whkh t:orrf'l'llltHilil'l to tiw 

choice II = 0.333 for the parameter entering in the effective quark ma.ss, and w(~ dt"'II()t(~ t.hiH lW.HI.'1 

as EOS E. 

For NSs, we use three representative equations of state which SI)(Ul a. widH ra.llW' ()f 8titrw:··~s. 

These are EOS models A, Band D, as mentioned in section 2.4. 

A list of the designation along with the salient features of the EOS models us(~d IU.ll't! is providt.'d 

in Table 7.1. 

EOS label compact star EOS modd 

E 5S Dey et al. (1998), t.heir modd SSI 

F 58 Farhi and Jaffe (1984), B = 90 M~N Ifma, 11111 0 

G 55 Farhi and Jaffe (1984), B = 60 MeV Ifm:!' 1n.~ 200 MI'V 

H S5 Farhi and Jaffe (1984), B :::::: 60 MeV Ifm:!, rll.~ 0 
---------------------------------

A 

B 

D 

N5 

NS 

NS 

Pandharipande (1971), hYPHronic Uitttt.N 

Ba.ldo et al. (1997), uuclear matt-PI' 

Sahu et al. (1993), llud(\<1r uwJ,tel' 
========================= 

Table 7.1: The list of EOS models used ill this ch'-qlter. 

We also display the qualitative variations in these EOS models in a. log log plot. of Fig. 7.1. 

The differences between SS and NS EOS (~re plainly evident, espt>,dally at lowt~r prl'.l'lsnrt's. 

7.3 The Results 

We have calculated the structure parameters and the disk temperature profiles for ra.pidly rotatillg, 

constant gravitational mass sequences of SSs in general relativity. The results for SS are compared 
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Fi~r,IU'~' 7.!: LO~~lll'ithlllk plot of preSHlU'(' Vii. matt(~r density for the gOS models llsed here. The 
dl'u~jt.y and Ilf'("NHun' m't' in IInits of 1.0 x 101-1 g em,:3 and (1.0 x 101/1 ) c2 cgs respectively. 

with tllllHf' for NS. For illustmt,ivp IHlq)()HeS here, we have chosen the value of gravitational mass 

t,q IH' I.-I At,., 

Fig. 7.2 dl'pkts t.he variat,iml of U. with tlw total angul(~r momentum (.1) for constant gravi­

taJiollal m;ll'll'! ami for t.lw foll!' SS EOS. The eurveii extend from the static limit to the mass-shed 

limit. T1H' strikill~~ fpH.ture here is t.ha.t, a.lthough .J incren ... 'les monotonically from slow rotation to 

1Il11.'is·slwd limit, n. showli a. nou-monotonic behavior: maximum value of D* (i.e. nZ1ax) occurs 

at a \'/\1\1(1 (If J low('l' t.hml tht~t, for mass shed limit. Although this seems to be a generic feature 

for SS EOS, n. is always a 1Il0llotouic function of J for constant gravitationa,l mass NS sequences 

and Iww'l' coustitllt.es all PH:-Iellti;d diff()renee between S8 and NS (see section 7.4 for discussions). 

()ur ('ltl('1I1atiotlH show Umt. at lwtximlllll n .. , the ratio of rotational kinetic energy to total gravi­

tatiollH.l Pllel'gy: 7'/W approadws tlH~ vahw of 0.2 (S(~ next paragraph). It ha'! bElen pointed out 

by GOllr~o\llhon et a1., 1999 that sllch high vahws of T /W make the configurations unstable to 

t.riaxial instability. It can also be lloticed that for stiffer EOS, the star possesses a higher value of 

J at ma.'iH-sh(.~d lixnit (n~nlt.x alHo occurs proportionately at higher ./), 
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Figure 7.2: Angular speed (D*) as a function of total angular mOllwnt,mu (.n fOl' stnt.!llr,t' 14t:U', 

The curves are labelled by the nomenclature of TablE.! 7.1 and are for I~ ibwd gmvitatillllld maNS 

(M = 1.4 M(:)) of the strange star. 

In order to ~)xpand upon the results of Fig. 7.2, Wt\ plot H* vs. T/IA/ for Variltml SS !·;OS ill 

Fig. 7.3. It is seen that for all SS EOSs, TjW becomes greater than O.:U; at. nW.'ls'Hllf'd limit. \vhih· 

for NS EOSs it is usually between 0.1 and 0.14 (Cook et al. 19n·1). Illt('n~:-ltill~~ly. fill' all S:-; EnSs. 

Q~lax occurs at about the same value ofTjW (~O.2). 

Fig. 7.4 displays Q* and Din (i.e. the Kepleriall a.ngular SIH\E\d of a t,pst partic\I' at rill) ;t~~aiw'it 

.1. The four panels are for the four SS EOS we use. We notice tlw illt('t'!!stil1~r, lwbavior that H. awl 

Qin curves cross each other at a point near n~l"X. For rotatiIl~ NS (',olltigllmtio!)x, SillC/.' t.11l' "qllality 

rin = R is almost always (except for very soft gOS models: Fip;. :U) aC'ili('wd for rotatiilll rafl'!'i 

well below that at mass-shed limit (for M = 1.4 M(:») , always n. ~ nill (tlw p(pmlity hi <\('hi.'v/·d 

only at mass-shed limit). On the other hand, for SSs, 'torh is almost. always grl'at,l'l' tha,lI Ii (as 

explained in the next paragraph) a.nd when tht~ star approaches K(~jlleriall allgllI;~r Iip,It'd at thl' 

equator, Q* becomes greater than nino 

Fig. 7.5 is a plot of the variation of nIl and R with n. for four SS EOSs. WI' Hf:(' t.hat till' 
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Figlln' 7.a: Angular ~l)(\('d (n.) H.'l (~ fnn<:tioll of the ratio of rot~1ti(mal kinetic energy and gnwi­
tatiollai hiwling .'fU'f')W (TjW) for stmllge star. Curve labels have the same meaning &'3 in Fig. 
7,2. 

1 u'lmviol' of Il is 1ll0llOt.ouic frolll :;jow r()tation to the mass-shed limit, even though tha.t of n* is 

1I0t.. As lIlt'Uti01lt'd parlier for all S2. from static limit up to mass-shed limit, r'in > R for 3 SS EOSs. 

()Illy fill' till' stiffl'!'It SS EOS, that wp have chosen, does the disk tOllch the star (for an intermediate 

valtH' of H.). 'rhis i:; diHtilld from th(l ea."ltl of N8 (see Fig. 3.1). The rea.'3on for sllch a behavior is 

till' IIOU llHlllotOllic variatioll of 7'011> with .J for SSs (contrary to the case of NSs and black holes); 

tlli1'l is dis<'llsSP(\ fnrtlH!r ill tIl(' next section. 

III Fil!.. 7.(;, w(~ plot tlw variation of riu with n. for three S8 EOSs and two NS EOSs: for 

(~a('h ("I..'H', OUl' Hoftest EO;"; amI our stiffest r~OS have been chosen. In addition, we display the 

mrrt~spolldill~ n~:mlts for gOS Illodd F too. It ill c1()ar that in the 7'inO* spa,ee, there exists a 

rt'gioll t.hat is spamwd by hot.h NS and S8 configurationI-!. Interestingly, however, there also exists 

(,f~rtaill l'egicms occllpiml (lxdusively by either S8 or NS configurations. The possible observational 

(,OllSl'<jlH'llCI!S of this result is disc1l!;sed in the next section. 

Fig. 7.7 displays the radial profiles of temperature: (i) assuming a purely Newtonian accretion 
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Figure 7.4: Angular speed (D*) of the strange star (solid curve) and the Kt~pl(~!,i;m angulllr HpN.d 
(Din) of a test particle at the inner edge of the disk (da .. <;hed curve) as fundioHH of total a!lfo~ulal' 
momentum (J) of strange star. The curves axe for a fixed gravitat.iowd 111ll,sH (M 1.-1 i~.I. ) lit' tilt' 
strange star. Different panels are for different SS EOS modeh;. 

disk and (ii) considering general relativistic accretioll disks for (a) SS (l~OS II) and (b) (E( )S 

B), each represented by two configurations: the non r()tl~tillg a.nd llUlHH Hhed for M I AM .. , \V" 

also display the temperature profile (curve 5) for a SS eonfiguratioll of M 1 AI,.,. (if'HCri \it'd I,)' 

EOS (A) (the constraints obtained by Li et a1. 1999a; 1999b) ami ha.ving a pm'iod l' 2,7[1 IllS 

(the mass and period corresponding to that inferred for the source ·iU 172H·:~·1: tV1('W\II;I, .I.' vall 

der Klis 1999). It must be remembered that in this figure (a.nd the 1I(lXt.), CIlTVP !i n'pn':-lPnts till' 

temperature profile for a different M value than the rest of the eurveH and iH dispi;Wl'd ill thE' ~1il.l!lI' 

figure, only for illustrative purpO::le::l. FrOUl this figure we see that for M 1.'l M,. , the Nl'wt.< "lilm 

value of temperature is about 25% higher than the general relativiHtic vahw III 'aI' !.Iw illlll'l' I'df';p (If 

the disk. This shows the importance of general relativity a.nd rotation near tlw ~mrfa('p of t Iii' star. 

The difference between the effects of SS EOS and NS EOS on ternpemt.nrf' profil/ls (at. tr\!' imwl' 

portion of the disk) is also prominent at rna.ss-shed limit (due to the differml('E~ ill rotatioll ratl's for 

these two configurations). Such differences in temperature profiles are ah'1o !>XIH~("tE~d to show IIJl ill 
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Figur(~ 7.5: Disk itlw'l' edp;(! radiuH (rill' Holid <:llrvi~) and strange star radiali (R, dalihed curve), as 
fnm:tiolls of angulal' speed H .. for variOlili EOS modds. The curves ar(~ for cL fixed gmvitational 
1ll1!.'!S (M~;· 1.4 M,,!) of the strange star. 

the mkula.tiolll-l of H}wctra at higher energiml. 

In tll!~ panel (a) of Fig. 7.8, we display the tmnperature profileH for configurations (as in Fig. 

7.7) COmI)()~wd of SS gOS (11) (curV(~s 1 4), represented by different n* (eorr(lsponding to &2* = 0, 

for minimum r'illl S2.. nz"l,X l:tJld mil.liS-shed limit); curve (5) is the same as in Fig. 7.7. The 

behavior of t.mXlpel'at.nre profileH ili uon-mouot.onic with n",. The p::md (b) shows the temperature 

profiles }tt ma.'iS-Shf'<l for va.riolls S8 g08 a.lollg with curve (5). Here the tempera,ture profiles show 

Ulonot.ollk beha.vior with th(! st.iffllUHS of g08. The behavior of the tempen~ture profiles in both the 

!la.llehi are Himilar to th()s(~ calculated for NBs (Chapter 3). Notice the substa.ntial differeuce in the 

ma.ximum tl.~lI1pemture; lmffidmltly sensitive obliervatiolls are, therefore, (lxpeeted to complement 

tlw findingH of Li et al. (1999(1,; 1999b). 

TIw variatiolls of ED, 8m" the ratio BBL/ En and T~ffax with f2", (l,re displayed in Fig. 7.9. Each 

plot contains (:\lrv(~S corresponding to all the S8 EOS models considered here. The behavior of all 

the curves are Himilal' to those for any NS BOS (see Fig. 3.5). The only difference being that due 
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Figure 7.6: Disk inner edge Ta,dius (nn) as (1 function of angular speed S~. of t.he compact sta,l\ '1'111' 
curves have their usual meaning. 

to the non-monotonic behavior of 0 .. from slow rotation to ma.sH-Hlwd limit. for SS E( )Ss, llI:tkilll~ 

the curves turn inward at the terminal (ma.ss-shed) rotation rate. 

In Fig. 7.10, we make a comparison between SSs and NSs for t.he ~HmH' qmmtitit's (!ispla~'l'd ill 

Fig. 7.9. We have used three SS EOSs and two NS EOSs modeb (the s()ft~lst, :m<l till' Htitfi'st fllr 

each case and the EOS model F). In all the panels, S8 and N8 both an' H!~~H til havp tlu'il' own 

exclusive regions in the high and low 0 .. parameter Hpae(! respectively. This is espl'cia.lJy prOll1illl'llt 

for EBL and EnL/ ED. We also notice that for SS, at 0. = n~lll)(, the valllPH of 1';111, (i,ll;) awl 

EnL/ ED ~ 1.0 for all EOS. On the contrary, for neutron sta.rs, both Eill. awl 8m.! i':!J lwcu)w' II 
at n~ax (= nms). 

7.4 Summary and Discussion 

In this chapter we have calculated the structure parameters and the disk temperaturE' prnfil('~ for 

rapidly rotating SSs (for constant gravitational ma.ss sequence with M = 1,4 lVh,) and ('ompan'd 
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Figure 7.7: Ac(:nltic)ll disk temperature pH)files: Curve (1) eorresponds to the Newtonian case, curve 
(2) to the Schwar7,schild cas(.~ (coincident curvt~s for NS g05 lnodel f3 amI 55 EOS model H), eurve 
(3) to a, neutron star (EOS model B) rotating at the centrifugal mass-shed limit and curve (4) to a 
strange star (EOS model II) rotating at the centrifugal mass-shed limit. For eurve (1) it is a.'3stuned 
that, r'in = 6G M / (:'1.. The curves (1 4) are f()r a fixed gravitational 111<:1.SS (M == 1.4 M(:)) of the 
compact star. Curve (5) corresponds to a configuration that has M =: 1 Mc:.) ~~nd nit< corresponding 
to a period P = 2.75 In . .':! (illferr(~d for 4U 1728-:34; see text) and described by EOS model E. In this 
and all subsequent figures, the tempera.ture is (!xpressed in units of M; {t X 105 K, where M17 is 
the steady stat(~ mass aecretion rate iu units of 10 17 g s-' 1 • 

thmn with those for NSs with the aim of finding pOHsible ways to distinguish between the two. For 

the sake of completmwss, we have compared the properties of these two types of stars all the way 

from slow rotation to ma.,'ls-shed lirnit. 

The striking feature of SSs iH the non monotonic behavior of n* with J such that n;.nax oceurs 

at lower value of .I than that of the maHS shed limit. HenC(l the other S8 structure parameters 

be<:ome non-monotonic fUlIctions of n*. This behavior iH observed eVtlll for the constant rest mass 

sequences of SSs (e.g. Gourgoulhou et al 1999; Bombac:i et a1. 2000). In contra.'lt, for NSs, the 

structure parameters are all monotonic functions of D... An implication of the nonmorlotonie 

behavior of D* with J is that if an isolated sub rnilIil:lecond pulsar is observed to be spinning up, 

it is likely to be an S8 rather than an NS. 

Because of higher values of T jW (~O.2), SSs are more prone to secular instabilitiel:l compared to 

NSs at rapid rotation (Gourgoulhon et a1. 1999). Our calculations show that at n:;nax, T /W > 0.2. 
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Figure 7.8: Temperature profiles incorporating the effects of rotation of th(l stra.ng(~ stm". '1'111' plots 
correspond to (a) EOS model H and an assumed strange star m(k'{s of M =:: 1.4 f..,'ir~\ (CHrWH I ·r, 
for rotation rates: n* = 0 (curve 1), n", = 3.891 x lOa rad S-l (curve 2), n .. ,,':-; 7.:~n x 10:1 rad~; I 

(curve 3), D", = 7.163 X 103 rad S-I = nrns (curve 4), (b) the same asslltlwd mass and n. ~~!W; fill' 

the four EOS models (E):curve 1, (F):curve 2, (G):curve 3 and (H):curve 4. In hoth pmlt'ls. C1!rVf' 

(5) is the same as that in Fig. 7.7. 

Another important feature of SS gravitational Inass seqUellG(~ (in coutra.'lt to t.lH! (,OITl'SPOlldillg 

NS sequences) is the crossing point in n", and nino This feature has irnportant implicat.ion ill TIIo(il'is 

of kHz QPOs: for ex<~mple jf n* is greater than Din, the beat frequm<:y modds a.s('rihilll!, hiV;lwf 

frequency to Keplerian frequencies will not be viable. 

It can be noted from Fig. 7.4, that with the increase in 8tiffnesf) of the EOS modl'}H, ./( rml', 

increases and n*,cross (the subscript "cross" corresponds to the point ~~ill =: U .. ) dpcn'a.'l(,~ 1110110 

tonically. It is also seen that in general all the quantities vary monotonically wit.h tlw stifflWl'iH fpI' 

both S8 and NS EOSs (see Chapter 3). 

For SSs, the inner-edge of the accretion disk rarely touches the surfatl~ of the :.Itar (f~Vf'll for 

maximum rotation rates), while for rapidly rotating NSs, the accretion di:.lk extends upto the stl~llitr 

surface for almost all rotation rates. Since the inner accretion disk bOlllldary condition is diffenmt 
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Figurt.l 7.9: The varia.tions of dw Bn, BBl" lEm,/ En and 7~rn.ax with ~~* for a chosen strange star 
Ina.SH value of 1.4 M(~) for the four S8 gOS models. The turves have t.he same significance as Fig. 
7.3. 

for both thesH e,tS(~Sj we expect important observabk! diff(~r(mees (both temporal and spectral) in 

X ray emission (from the boundary layer a.nd the inner aceretion diHk) from SSs and NSs. 

A brief note on the va.riation of TO!'b with spedfic angular momentum is in order here. As men­

tioned earlier, beyond a certain value of the angular momentum, the radius of the ISCO increases 

with increa!;ing a.ngular momentum a prop<>,rty not seen either in the case of NSs or black holes. 

The reason for this can be trac(ld to the ra.dial gradient of the angular velocity of the particles at 

the marginally stable orbit and the analysis is described as follows: 

For the metric described by Eq. (2.:.~), the s(~cond derivative of the effective potential is given 

by Eq. (2.47). Simplification of this, using the other equations of motion (Bardeen 1970) j yield 

= -x [ rn,r 1 - i)2 xl 
r. + 2-2 H-W V 

(7.1) 

where n is the angular speed ofthe particle and X = f;2(2+r"r -rp,r) +rb,r + p,r). The marginal 

stability criterion, therefore, yields the rate of change of the marginal stable orbit, with respect to 
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Figure 7.10: Same as Fig. 7.9, except the fact that here two NS FX)S mo(h.~h" a,ud thrPf' SS }O;OS 
models are used. The curves have t.he same significa.nce a8 Fig. 7.6. 

Torb,j = r'orb { (~ ~ ~,j - ~~~'~: +21j(tS~~'-i) +:~l_} (.., '») I .... 

where the terms in the bracket. are to be eVl;tluat(ld at Tori,. We takulatH the [om t.i~nus ill till' 

bracket in Eq. (7.2) and find that the second term domirmt(~H t.he llet rat,(~ of dlall$!;(~ of I'''lh with 

j. This implies that at the va.lue of j where Torb,j changes Hign, although tbp tinit, thX"*~I,' tl~nU:i a.n' 

observed to change sign, the net sign is only dependent ou that of n,rJ at lSeO. 

From Fig. 7.6 we see that for Sl* in the range (0, 4(28) rad !,( 1 (the S(!('mH\ qUillltity ill 

the range is the rotation rate of PSR 1937+21: I3acker et al. 1982, tlw fa.'ltest. rotatillg plliHa.r 

observed so far), a major portiOll of the 7'in-Sl* space is occupied exdusively by NS. So if rill nm 

be determined independently from observations (for example, by fitting tlw soft COml)('ltelit of till' 

observed spectrum by the XSPEC model "diskbb" available in XANADU: H(~(~ foX" mmmpk Kllbot:;~ 

et al 1998, or, from the observed kHz QPO frequencies), there is a fa.ir chaIlc!~ of illff~rrillg t.h~~ 
central accretor to be an NS rather than an SS (provided the ma.ss of the central accret.(Jr iii known 

by other means). This is also applicable to Em, and Em) En (Fig. 7.10). It. is also to be llot.ed 
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that Li et al. (1999 a; 1999b) did a similar search in the M - R parameter space and concluded 

the millisecond X ra.y pulsar SAX .11808.4-3658 and the central accretor in 4U 1728-34 to be likely 

SSs. If, indeed t.his is true, then it is possible to constrain the stiffness of the equation of state of 

SQM (Bombaci 20(0), and to exclude EOS models (like EOS G and EOS H) stiffer than our EOS 

model F. 

Calculat.ion of the aeeretioll disk speetrmn involves the temperature profiles as inputs. The 

spectra of accretion disks, incorporating the full effects of general relativity for NSs (Chapters 5, 6) 

show sensitive <kpendem:e on the gOS of high density matter. However, the simih~rity in the values 

of the maximum disk temperature implies an indistinguishability between the spectra of SSs and 

thos(~ of NS:-; ill general. NeverthelesH, jUHt a.s Em, and other quantities show that NS exclusively 

occupy cmtaiu regions ill the ml<'v<tut pammeter space, we expect that it will be possible to make a 

differentiati<)ll between thmle two compad objects by modeling the boundary layer emission. If as 

mentioned in previous paragraph, WI~ exdud(~ EOS models stiffer than F, then from Fig. 7.10, we 

Se{\ that a, fairly accurate nW<l .. 'lUrmlHmt. of Em, (Lm.!!VI (:2) (~nd n,. ea,n indicate whether the central 

accretol' is all NS or all SS if t1H~ c()rn~sp()ndil1g point falls outside t.he strip defim~d by curves F 

and A. 

The Cllrnmt unc(~rtaiIltif\H ill t.h(~oretical models of boundary la.yer emission a.nd t.he variety of 

eases preHf.'lltpd by models of rot.ating compact obj~~ets, ea.lh; into order (\, detailed investigation into 

these aspeds of LMXBH (~sJl!'cially wit.h t.he la,uneh of ut!W g(m(lrat.ion X-ray satellites (having 

bett(\r s(nlsitivitieH and larger colI(~ctillg area.s) on the anvil. 
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Chapter 8 

Summary and Conclusion 

8.1 Introduction 

Tlw X ray binary systemll <:onsist of two stars, rotating around each otlwr. One of them (primary) 

is a COlUP<l.et st.a.r (neutron stal', strange star or black hole) and the other Olle (secondary companion) 

is a main-seqmmce sta.r or an evolved star (red sub-giant., blue super-giant or white dwarf). When 

tlH~ tOlnpanion star fills its Roeh~~-lobe, matter from its surface Hows towards the (:ornpact sta.r. 

Du(>, tC) itliti<~1 angular momentulll, this matter Gan not fa.ll radially; ratlH~r it followll a Ilpira1 path 

and forms a. disk. Such a disk is ealled an accretion disk. Due t.o viscoull dissipation, energy is 

radiat.ed from tllf~ disk. As t.he temperature of thtl inner portion of the disk is v~~ry high ('" lOti 

K), Xra.ys are gmwratml in this region. If th(>, compact sta.r ha.'l a, hard surface (Le., if it is not a 

blaek hole), the infi()wiIlg matter hits this Ilul'faee and another eomp<ment of X ray is produced in 

a thin la.YE~r, <:I:l.lled the boundary layer. However, it is to be rernetnbered that the disk aCGretion 

is not thE~ only mechanism for accretion proe(~ss. Such a proeesfl Gall also happen from the wind of 

the cOlnpanion star. 

There <Lre two dassell of X ray bill<~ry systerw,: HMXBs and LMXBs. The secondary companion 

in an HMXB ill a high m,tss Iltar (generally, 0 or B type). As mentioned in Chapter 1, the age of 

!-luch a system is rather low ('" 107 yrs). Most of the energy coming out of such systems is in the 

villibl(~ range. On the other hand, an LMXB consists of (l, low rnass (.;5 IMc:)) companion star, with 

the age typieally r'V lO(l yrll and most of its radiated erwrgy is in X raYIl. 

For our work, we have chosen LMXB systems with neutron stars or strange stars as the centn.l.l 

accretors. These systems offer several advanta.ges over the HMXBs in understanding the properties 

of the compact stars. For exa.mple, most of the energy (in X rays ) from such systems come from the 

inner regions of accretion disks. The motion of matter in these regions is expected to be influenced 

101 
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by the mass-radius relation and the total angular momentum of the compad st.l~r. T}lf'l'l'fon~, tIll' 

analysis of X--ray spectra from these system.':! may shed light 011 the propert.ies of tlw mmpart stars, 

Moreover, the accretion disks of such systems may ext~md very dose to tlw Htdlar :mrf;u'." a.'i tilt' 

magnetic fields of the primary stars in LMXBs are ~~xpeeted to b~1 decay<'d to IOWN v'LhH':-l ( w" 
G; see Bhattacharya & Datta 1996 and BhattadHl.rya. & van dEem IhnlV(~1 1!l91), ThiH !'u:-;mt'H thaI 

the observed spectra can actually reflect SOlne propertieH of the eomp'.wt Ht<~rs. B('sidl'S, ;t('('rl't iOIl 

via wind is negligible in LMXBs, which may ma.ke the sp(~ctml <:akulntioll for l{\lch Syst!'UlH ;.limp!!·r 

than that for HMXBs. 

LMXBs exhibit many complex spectntl and temporal behavior. It is II. rhall!'lIy't' t.o Ilxplaill 

these phenomena using theoretical models. However, most of tlw ~!xistittg modds for lllwt'frai 

fitting are Newtonian, But near the surface of a comp<:l.ct star, the aceretion How is PXP(·('t~.·d tii bl' 

governed by the laws of general relativity due to the presence of strong gravit.y. 1'her(~fon' 

relativistic models should be used for the purpose of fitting to get th(! ('orr(~d b.·:-It"th vahlE'S of 

the parameters. Besides, the principal motivation behind the Ht.Ud.y of t.lw HIH~('tml and tl'lIlpnl'ili 

behaviors of compact star LMXBs is to l.mden,t.and the proptlrt.itls of VE~ry high (,'" 10 It, ~~ ('til ;\ I 

density matter at the compact star core (van del' Klis 2000). This is a. funtl:\UHmta\ p.'obh·JII 1)1' 

physics, which can not be addressed by any kind of 1.1boratory ()xperinwut.. Tlu~ ollly w.~y to atl:-iWI'1 

this question is to assume an equation ofsta,te (E()S) model for HH~ eompart, Htltl' ('orf', to ('alnllah' 

the structure parameters of the compact st.ar and t.hen to cakulate !l.u appropl'iat.' Hlwdral 1IIllil.·! 

By fitting such models (for different (:hosen EOSs) to the observa.t.ional data, om' call hnJH' to 

constrain the existing BOS models <1nd hence to understand t.he pl'opert.ieM of hi~h 1{t·llsit.y IImtt,,!, 

However, general relativistic cakulation is essential to eakllh\te the Htrud.1lI'e paraUlPtl'J':4 of a 

compact star and therefore to constrain the EOS models. 

It is expected that the compact stars in LMXBs a.r(~ rapidly rotat,illg; dlW to accretiolliwill('!'d 

angulax mom(~ntum transfer. LMXil!:! a.re thought t.o be tIl() Jlrog~mit()rs of milli-:-«'('ond (IW.) radio 

pulsars (Bhattacharya & van den Heuvel1991) lih~ PSH. 1937+21 with [) "'" Ul/) IUS (Bal'kl'r I't ;(1. 

1982). The recent discovery of rns (P "" 2.49 ms) X r,w pulsations ill XTJo: .I1RUH":~G9 (Wi,ill;\,W!:; 

& van der Klis 1998) has strengthened this hypothesis. Therefore it is 1I{l(,(~HStLry to mklllat!· till' 

structure of a rotating compa,ct star considering the full eff(,'(:t of gmleral rdativity, 'T'hiH wa~ dow' 

by Cook et a1. (1994) and the same procedure W(l.!:! llsed by Thmnpan & Datta (W9H) t.o c;dnliatl' 

the luminosities of the disk and the boundary layer. 

In our work, we have calculated the structure parameterH of a. rapidly rotating IU'lltWII star 

and the metric coefficients in and around it. Then we have computed disk ternp(~mt.urt· prnfHf'H 

and disk spectra for various EOS models and many (M, n*) combina.tions. We have (:onHid{'n~d 
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the accretion disk to be geometrically thin and radiating locally like a blackbody. This may be the 

tl"lle CH.se for luminous LMXDs, as shown by Mitsuda et aJ. (1984). These authors showed that the 

obst,"rved speetra of Sco X~l, 1608-52, GX 349+2 and OX 5-1, obtained with the Tenma satellite, 

('all be well-fitted with the sum of a multicolor blackbody spectrum (possibly from the accretion 

disk) and a l:!ingle temperature blackbody spectrum (believed to come from the boundary layer). 

Apa.rt from the temperature profile, we have also calculated the disk hllninol:lity and the boundary 

layer lumiuosity. Comparing the thE!oretical va.lues of the luminosities and the disk temperature 

with t.lw fitted values (fitted to EXOSAT data), we have constrained several properties of five 

LMXB s()urces: Cygnus X-2, XB 1820-:30, G X 17+2, GX 9+ 1 and GX 349+2. We have also fitted 

t.lu' ca.l<:ulated speth'a with au analytical fuucticm and tried to distinguish between Newtonian and 

g()llt)ral rtilativiHtic Hpectra. 

It h(l.8 been knowll for nlll.llY yean; that the neutron star may ill fact be a 'hybrid star' consisting 

of ordimu'y lludear matter in the outer parts and quark matter in the central regions. This will be 

the ease if stmngE: quark rnatter' (SQM; see Chapter 7 for discussion) is metastable at zero pressure, 

lwillg flta.bilized relative to hadrouic rua,tt(~r by the high pressure within a neutron star (Baym & 

Chin 1976; Chaplirw & Nau(1ulH!rg 1976; Preedman & MtLerran 1978). If SQM is absolutely stable 

at the z(!ro pr(~ssur(\ au (!Yen more iutriguing pOHsibility opens up, namely the existence of strange 

llt,a.rs (~(msisting completely of SQM (Witten 1984; Haew:!el, Zdunik & Seha.effer 1986; Alcock, Farhi 

& Oliuto 1986). 

The identification of a strange star will prove that the so ealled ,~tran{)e matter hypothesis is 

true, According to this hypotheHis, strange quark matter, ill equilibrium with respeet to the weak 

illtt!l'<J.cti(H1s, c(mld lw th('. a.etual ground state of strongly interacting matter rather than 56 Fe. 

This is a. fuu<1a.ment<ti problem of physics, which ma.y be solved only if it is possible to distinguish 

bntwc(!ll a lwutron star and a. strange star. 

Strange stars are expected to behave quite differently from neutron stars due to an unusual 

equation of sta,te. But, evml then, it is very difficult to distinguish between them. For example, 

more 1I1H.ssive neutron st.a.rs ha.ve the lower values of ra,dii, while this relationship is opposite for 

stl'll,ng(! stars. Nevertheless, for a valu(~ of gravitational mass equal to 1.4Mc:) (the canonical mass for 

eompact star ca.ndi(h~t~)s), the difference between the predicted radii of llonrotating configurations 

of a stra.nge star and (;1 neutron star comes out to be, at most, only about 5 km. It is very difficult 

to observe such a small VGl.IllC directly. Another distinction between strange stars and neutron stars 

was for a long time bdieved to be a much more rapid cooling of SQM due to neutrino emitting 

weak interactions involving the quarks (Alcock et al. 1986). Thus a strange star was presumed to 

be much colder than a neutron star of similar age, a signature potentially observable from X --ray 
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satellites. But recently the story has been complicated considerably by the finding tha.t ordina.ry 

neutron {3-decay may be energetically allowed in nuclear matter (Lattimer et a1. 1991) I so tha.t the 

cooling rate may be comparable to that of SQM. There are other possible ways (for exa.mpk" study 

of pulsar glitches, oscillation and maximum rotation rate of the stars) to distinguish hetweml ttWl-W 

two kinds of stars (see Madsen 1998 for discussions). 

In Chapter 7, we have computed the structure parameters of a strangtl st;'1r and c{tkulHt~~d Hit' 

corresponding disk temperature profiles and luminosities. We have then eompa.red tlH'!!('! V!~hWH 

with those for a neutron star and tried to distinguish between them. 

In sections 8.2 and 8.3, we discuss the conclusions from the calculations of disk tmnl.H~r<~tun~ 

profile and spectrum respectively. We give the summary of the work with strang(~ starR in st~dion 

8.4. In s~ction 8.5, we discuss the future prospects and in section 8.6, we give the fhud (~(mdn!!i()u. 

8.2 Disk Temperature Profile 

We have calculated (in Chapter 3) the temperature profiles of (thin) a.ccretion disks a.round ra.pidly 

rotating neutron stars (with low surface magnetic fields), taking into account tht~ full ('ffm~ts of 

general relativity. We have also computed the corresponding disk luminositi~ls and boundary layt'r 

luminosities. All of these have been calculated as functions of M and n ... for va.rious gOS mndpl:4. 

It is important to notice (as shown in Fig. 3.3a) that the disk tempera.tun~ profilt!s do not. hitVI' 

a monotonic behavior with respect to 0... This is a result of two mutually opposing ~~ffe('tH: (1) 

the energy flux emitted from the disk increases with 0 .. and (2) the nonmonotonk naturf' of tlw 

dependence of Tin on 0* (see Fig. 3.1). Such a behavior of temperature profileH is n1th~et!\d OIl disk 

spectra and one has to be careful when trying to constn~in 0* by spettral fitting. 

We have then considered a model (in Chapter 4) for the spectrUIl'l of the X ra.y emission froUl 

the disk, parameterized by the mass accretion rate, the color temperature and the rotation mtl' of 

the neutron star. We derive constraints on these parameters for the LMXB SOlll'C~lS: Cygnus X.2, 

XB 1820-30, GX 17+2, GX 9+1 and GX 349+2, using the estimates of the ma.ximunl t.mxllH!rat.nn> 

in the disk along with the disk and boundary layer luminosities, taking the SP()ctrum inf(~rred froln 

the EXOSAT data. 

Our calculations suggest that the neutron stars in Cygnus X-2 and ax 9+1 rotatt'. dose to tlw 

centrifugal mass-shed limit. The LMXB source GX 349+2 also contains a rapidly rotating lll;mtron 

star. This is in accord with the belief that LMXBs are the progenitors of mill i-second ra.dio pulsars. 

Such a result also shows that the inclusion of rapid rotation in the neutron star structure-paranH~ter~ 

calculation is very important. However at this point it should be mentioned that using a sea.lar 
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theory of gravitation, Papaloizou & Pringle (1978) have concluded that a neutron star rotating with 

a frequency close to 1 kHz may be unstabl(:~ to the radiation of gravitational waves by non-radial 

stellar modes. 

W(~ have also discussed the possible constraints on the neutron star equation of state. We could 

not actually rule out any EOS model, but looking at the QPO frequencies, gravitational masses 

(M) and coklr fadors (f) for the sourees, we have tried to conclude what kind EOS models could 

best represent tlH~ tnH! EOS of a neutron star (S(le Chapter 4). According to our results, soft and 

stiff EOS models anl ullfav()red, i.e., the EOS models with intermediate stiffnesses are supported. 

In our work, we have not tried to model the observational temporal behaviors of the sources, 

and ill particular, the QPO observa.tions. Our results do not tally with the simple beat-frequency 

Inodel. Ifowev()r, a pure beat-frequency model ha.s been called into question because of several 

observatiolls (see 8(~etion 4.4 for a brief diHCllssiou). 

In our analysis, we have a.'1smned that the boundary layer does not affect the inner region of 

the disk. This approximation will lH~ valid wlH)ll the boundary layer hllninosity is smaller than the 

disk luminosity and the bouudary laYE~r extent is small eompan!d to the radius of the star. This 

has been shown to b(~ true for th(:~ chmltnl LMXB sources (see section 4.4). 

It iH to be rmnembered that hI our caJeula.tions, we have mlglectE~d the effect of neutron star's 

magneti<; field on the acereti<')ll flows. Therefore, our re!olUlts (m~ valid if tlw AlfvtlU nulius is less than 

the radius of the illU<.lr (ldge of tlH~ accretion disk. As we ha.ve !:leen in Chapter 4, this requires the 

upper !ilnit of the surface lUl\.gnetk fi(~ld of thtl neutron sta.r to be '" 108 G, which is a f(~a.'lonable 

value for LMXBs. 

8.3 Disk Spectrum 

We have (:ompnted Xray speetra, (in Chapter 5), as seen by a distant observer, from the accretion 

disk around a rapidly rotating neutron star. Our eakulat.iolls haVE>. been carried out in a fully 

general relativistic fra.mework, with exact treatment of rotation. We have taken into account the 

Doppler shift, gravitational redshift B,nd light bending effects in ord(~r to compute the observational 

spectrum. For this pUrp08{l, we ha.ve tomputed th~~ differentia.l equations of motion for photons 

(Eqs. 5.7 - 5.11) in a space-time specified by the metric given by Eq. (2.3). Then the paths of 

the photons have been backtracked for the calculation of the disk spectrum (see section 5.3 for the 

description of the procedure). We have calculated the spectrum a.'3 a function of M and n ... for 

various EOS models. 

We have found that light-bending significantly modifies the high-energy part of the spectrum. 
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It can be seen (see Fig. 5.1) that the inclusion of light-bending effect enhances the predicted flux 

from the disk. This is because, due to light-bending, the disk sub tends a larger solid angl.:) to tIlt! 

observer than it otherwise would. We also see (from Fig. 5.2) that the spectrum, 8pE;)(:ia,lly the 

high energy part, is very sensitive to the accretion rate. This may be useful for constraining thE! 

accretion rate by fitting the observational data with our model. 

The inclination angle i is a very important parameter in determining the shape of the speetrum. 

For lower energies, the observed flux is higher for lower values of i, while this effect i::l oppositt! <:l,t 

higher energies due to Doppler blue shift. We can also notice (from Fig. 5.4) that the beha,vior of 

the disk spectrum is not monotonic with Q*. This is expected from the non-monotonic behavior of 

the disk temperature profile. We can also expect to constrain EOS models by spectra.l fitting, '.1Ii 

the disk spectrum is fairly sensitive to the chosen EOSs. However, as the spectrum is ~~ fUll<;ticm 

of a large number of free parameters, it is very difficult to constrain the equations of StI:1tt.\ in a 

decisive way. But, it may actually be possible with the data of new generation X my satdlit.e8 

with very good spectral resolution. 

The calculations presented here deal only with the thin Keplerian blackbody (li!:lk. In fNtlity, 

there may be other X-ray emitting components (boundary layer, accretion disk (;oroua, (!t('.) pn'H(~llt 

in the LMXB source. In addition to that the disk may not be thin, Keplerian or ~~ blnekhody. Our 

results will change for such cases. For example, our temperature profile (I,nd hence the Hpedrulll 

will not be valid for a non-Keplerian disk. The effect of such uncertainty of the rmtlln~ of tJw sourct' 

may be more important than the effect of general relativity and rapid rotcttiOll. Howevpr, thf'l'f' 

is no competition between these two kinds of effects. General relativi::;tie modifkat.iOlIH should btl 

considered to calculate the spectra from all the X-ray emitting components to hav!~ tllt' full ~(,ll('ral 

relativistic spectrum of a source. However, as this is a first step for this kind of work, W!~ ('homw 

the simplest system, i.e., a thin blackbody disk. 

As mentioned in section 5.5, our results for non-rotating neutron lltars did not. ma,teh with t.hOHP 

of the spectral fitting routine GRAD. With the help of Ebisawa & Hanawa (private Nmmwni(:aticm) 

we traced this mismatch to certain simplifying approximations, as well as a COUphl of erl'Orl-! IImdl' 

in the GRAD code. 

The computation of our model spectrum is rather time-consuming and thE~ref(m·l not quitt' sllit..·d 

to routine use. To facilitate direct comparison with observations, we have present.f!d a. simplE! 1'111-

pirical function which describes the numerically computed relativistic spedra well. This mnpil'kal 

function (which has three parameters including normalization) also describes the NE~wtoniall H~W(,. 

trum adequately. Thus the function can in principle be used to distinguish b~!tween tht! two. III 

particular, the best-fit value of one of the parameters (,6-parameter) is ~ 0.4 for the Nt!wtonian 
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ea.<l(~\ whilt' it mngcs froUl 0.1 to 0.35 for relativistic ca.'le depending upon the inclination angle (if i 

is not t.oo high), gOS, spin rate a,nd ma,,':!s of the neutron star. Constraining this parameter by fits 

to fut\ln~ obst'l'vatiollal d[tta of X-ray binaries may, th<>.refore, indicate the effect of strong gravity 

in the ohH(~l'vat,iollaJ Hpectrulll. 

8.4 Strange Star 

We have cmnplltf.'d til(> tmnperat.llr(~ profilml of accretion disks around rapidly rotating strange stars, 

using constant. gmvitationa.l nUl.'lH t~quilibrinm sequeneeB of theBe objects, considering the full effect 

of gt!IH:'ral relativity. WI! have alHO cakult~ted the corresponding disk luminosity, the boundary 

lay(lr luminosity and the bulk structure paramet;(!rs for the strange stars. These results have been 

compar{~d with thoS(~ fol' tWutr<.Hl lit.ars. 

The Ht.riking ft'atur(' of stmngn st(~rH is the nOll-mollotonic: belmvior of Sl", with .l such that SlZ'a.x 

occurs at It lower v.thlt~ of" than that. of t;}w ma.lis-shed limit. For neutron stars, such a thing never 

OGC\U"S. Tlwrt'fore, if an isolat.ed sub"millis<~(:ond plllHaI' iH ObH<lI'ved to b(l spinning up, it is likely to 

bl! a Htmng(' lita.l' l'/l,tiH'r tha.lI a. wmt.roll st.,.~r. 

Bfl(:aUSf! of hi~~lwt' vahH'1'l of T / W t:: n. 2), t.lw t(~ndallcy of stra.nge stars to l)(! unstablt! to tri(~xial 

inHt(~bilit.y is largm tha.u nentroll :-It.a!':; ill rapid rotatioll. Another intenlsting a.':lP()ct of Htrange stars 

is t.ha.t tlwir gravit.atiolla.i nw.ss H.~q\leI\C(IS (ill coutra. .. ·:lt to tlH~ corrmlponding neutron (:Itar sequen(:(~s) 

for n ... and nil! (H(~~ Clmpt(~r 7 for the IIWltllin~~s of t.ho symbols UH(~d) erOSH at Horne point. This 

ma.y h(w(! impOl't:mce ill kHz QPO moddillg, a.s uwntiorwd in Chapt<!r 7. It CMl also be noticed 

that for Htmnge stars, the a(:(:r(~tion diHk sddom toudws the surfa.tt! of the star (even for very high 

rotation mtes), while for rapidly rotltt.ing rwutron Htars, the disk <thrwRt always extends upto the 

stella.r Hllrfae(l. This may }mv(~ illlp()rt,l~nt. obB(!rva.ti<nutl effeetH !l..'"1 rrumtkmed in Chapter 7. 

BEwond a (~ertain trit.kal value of Htellar angular momentum (.I), we ohSerV(l the radius (forb) of 

t.he innermost st.ahle ein:ulal' orbit (18CO) to increa.S{l with.! (a property Heen neither in rotating 

blaC'.k hol~~H nor in rot.a.tjng neutron Ht./tn-I). The reason for this is tnte(!d to the <:l'udal dependence 

of drorb/d.! on tlw rate of dmngtl of tlw ra(iial gra.dient of the Kepierian angula.r velocity at forb 

with respect. t.() .J. 

The t<mlll<lra.tun~ profiles obtained are compared with those ()f neutron stars, a8 an attempt 

to provid(l signatures for distinguiHhing bet.ween tlH~ two. Wt~ show that when the full gamut of 

strange star flquation of stat.(~ modds, with varying degrees of st.iffness are considered, there exists 

a substantial overlap in properties of both neutron stars and strange stars. However, we also notice 

that neutron stars and strange stars exclusively occupy certain parameter spaces. This result 
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implies the possibility of distinguishing these objects from each ntill!f by StlUllitiwl nhSt'l'Vilt,inm:l 

through future X-ray detectors. 

8.5 Future Prospects 

Our work may be considered as a first step in understanding the E!ffeet of both gf)tu.~rnll'l'lativity and 

rapid rotation on the properties of accretion disk. 'For the sake ofsimplidty, ~l ha.Vf' IUI~mm\d tilt' 

accretion disk to be thin and a blackbody. Now, a,s a future project, this work nm.y liP t'xtl~IHh'd til 

the other kinds of disks (optically thin, geometrically thkk, non-Keplt~ria.ll ~~t{:.). Tlw (lfft~l't tlf 

rotation can also be estimated for the other possible Xray (mutting rt~gions! sudl n."!, llolllll!al'.v 

layer, disk corona etc., following the same procedure mentioned h~!n:. 

We observe broadened iron lines from LMXBs such as Cygnus X 2, GX 31\9+2 t't.I~. An ill· 

trinsically narrow iron line emitted by an accretion disk around a (:ompact Ntar is h(1li(~v.·d to la' 

broadened and skewed by Doppler effect and gravit<~tional redshift. AH a ft.'suIt, til('. fiu.lut!; of till' 

line components of the observed spectra by proper theoretical model Hhmlld reveu.l tJI(' Wl.tllfl' !If 

the flow of matter near the compact star's surface and help us to coustl'u-ill the equation flf ~tatt' of 

the compact star. It is, therefore, very important to calculate tht; Htructurtl of thE~ bro!t(h.~lwd JillI' 

as a function of the compact star's angular speed and other paxcuxwterl'l for Vltrimtl4 gOH 1IIml.+" 

using the metric given by Eq. (2.3). 

So far we have not considered the effect of the magnetic fidd (of the emupa,("t »tm"} lit! till' 

accretion disk, assuming that it has been decayed to a. very l:imall Vl~h!tl (:::::: 1014 G), But tJu~ maf1;w·tk 

field may play some role in determining the flow of the :1eel'et(~d matter nmtr the :ml'fu.!,t, of tIll' 

compact star. It is, therefore, instructive to look into this prob)(~m and include tilt' !'Iff'l't iiI' 

magnetic field in calculating the accretion disk spectrum. 

In order to calculate the full spectrum of an LMXB souree, it is IWCt'Ssary t.o COUlPUt.f' till' 

spectrum of the boundary layer. One should model this spectrum (spt~dally durin~~ tilt' TYJiI' I 

Burst) using the metric coefficients suitable for a rapidly rotating cmupH.d star. Addition of thhl 

spectrum to the accretion disk spectrum (we have already (;alcuh~ted) may give th!! full Hpect.nul! 

from LMXBs. 

For a compact star which is not rotating clolle to the masll-sh~)d limit, the l)O\md;~ry l;~yl'r 

luminosity is fairly high. The inner region of the disk around such ll. emnpact star may) therdon~\ 

be radiation pressure dominated. It is necessary to calculate the sptdrum from !mdl a disk for t}U' 

space-time geometry appropriate for a rapidly rotating compact star. 

Once the spectrum of an LMXB is calculated considering all the major effects d(lSCrihHd abow, 
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one can, in principle, fit the observational data by this model spectrum and constrain the equation 

of state and the parameters of the source effectively. However, computation of such a general 

relativistic spectrum is time-consuming and rather unsuitable for the fitting procedure. Therefore, 

it is important do a series of parametric fits to this spectrum for making it available for routine 

spectral fitting work. 

8.6 Final Conclusion 

The ma.in purpose of the study of the properties of an LMXB with a neutron star or a strange star 

as th(~ c(mtral ae<'TetOl" is to understand the properties of very high density matter and to address 

th~l questiou of the existence of strange quark matter. These can be achieved only by fitting the 

observed sJH~ctral and temporal behavior of such sources with appropriate theoretical models. It 

is not possible to illcorpomte a.ll the importa.nt factors in such a, model in a single work and one 

should pmceed litep by step. III our work, we have included two major factors,· namely, the effects 

of gellera.l rHlativity (essential for (;ollstra-ining EOS) and rapid rotation, which we think is a step 

forwa.rd towards our ~dm. 
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