Eadatkanalobsexbataxy

BULLETIN No. CX.

SUMMARY OF PROMINENCE OBSERVATIONS FOR THE SECOND HALF OF THE YEAR 1935.

In pursuance of the programme of work adopted snce lst January 1923 under the auspices of the International Astronomical Union, all observatories taking spectrohelograms of the sun have been asked to co-operate with the Kodarkanal Observatory by supplying copies of their photographs for those days when the Kodaikanal rocords are imperfect or wantung In response to our requirements for the second-half of the year 1935, the Mount Wilson Observatory suppled calcuum (K_{232}) prominence plates for 54 days and $\mathrm{H} \alpha$ disc plates for 43 days, the Meudon Observatory supplied calcium $\left(\mathrm{K}_{3}\right)$ dise plates for 8 days and $\mathrm{H} \alpha$ disc plates for 36 days and the Ewhurst Observatory (Mr J Evershed's) suppled $\mathrm{H} \alpha$ promunence plates for 4 days and $\mathrm{H} \alpha$ dise plates for 6 days

When only incomplete or imperfect photographs for any day are available from more than one observatory the best photograph is chosen as representing the solar activity of that day, after weighing it according to its quality, and the remaining photographs are ignored.

Calcium Prominences at the Lrmb - The mean danly areas and numbers of prominences photographed durng the half-year by means of the K line of calcuum are given below. The means are corrected for incomplete or imperfect observations, the total of 173 days for which plates were avalable being reduced to 145 effective days

Compared with the previous half-yoar, aleas show an increase of 19 per cent, numbers remaining almost the same. The increase in areas is considerably more in the northern hemsphere than in the southern

For comparison with bulletins issucd prior to the co-operation of other observatories the means based on Kodarkanal photographs alone are also given, $\mathbf{1 2 5}$ days of observation being counted as $109 \frac{1}{2}$ effectrve days.

The distribution of prommences in latitude is represented in the following dagram, in which the fall line gives the mean dally areas and the broken line the mean danly numbers for each zone of 5° of latitude. The ordinates represent tenths of a square minute of are for the full line and numbers for the broken hne. Compared whth the previous half-year, the distribution remanns unchanged in the northern hemisphere, whereas in the
(397)
Price annas 7 or 9d.
southern hemisphere the zone of maximum activity has advanced 5° towards the pole and there is reduced activity in the zones $10^{\circ}-15^{\circ}$ and $40^{\circ}-45^{\circ}$

The monthly, quarterly and half-yearly areas and numbers and the mean height and the mean extent of the prominences on photographs from all co-operating observatories are given in Table I The unit of area is 1 square munute of arc. The moan height is derived by adding together the greatest heights reached by individual
prominences and duviding by the total number of prominences observed, and the mean extentis derived by adding together the lengths of the base on the chromosphere of individual prominences and dividung by the total number of prominences.

Table I -Abstraot for the second haif of 1935.

Months	Number of days (effective).	Areas.	Numbers.	Daily means.		Mean height.	Mean extent
				Areas.	Numbers.		
1935.						*	。
July	231	1088	294	46	125	398	$5 \cdot 65$
August	24	$117 \cdot 5$	321	49	$13 \cdot 4$	38.3	5.79
September	27	$166 \cdot 5$	353	62	$13 \cdot 1$	$40 \cdot 3$	608
October	$24 \frac{1}{2}$	101.5	372	$4 \cdot 1$	$15 \cdot 2$	387	$4 \cdot 76$
November	$22 \frac{1}{2}$	$137 \cdot 7$	322	61	$14 \cdot 3$	38.0	$6 \cdot 12$
December	$23 \frac{1}{2}$	$142 \cdot 8$	301	6.1	128	41.7	$7 \cdot 39$
Third quarter	741	392.8	968	$5 \cdot 3$	13.0	395	585
Fourth quarter	$70 \frac{1}{2}$	$382 \cdot 0$	995	54	141	$39 \cdot 4$	600
Second half-year	145	7748	1,963	53	13.5	395	593

Dnstribution East and West of the Sun's Axis.

Both areas and numbers show a defect at the east limb, that in areas being more marked, as will be seen trom the followng table -

1036 July to December.	East.	West.	Percentage East
Total number observed Total areas in square minutes	970	993	$49 \cdot 41$
	$352 \cdot 1$	$422 \cdot 6$	$45 \cdot 45$

Metallic Promnences.

Thircoon metallic prominonces wero observed during the half-year and ther details are given below -

The distribution of metallic prominences was as follows:-

		$10^{\circ}-10^{\circ}$.	$11^{\circ}-20^{\circ}$	$21^{\circ}-30^{\circ}$.	$31^{\circ}-40^{\circ}$.	Mean latitude.	Extreme latitudes.	
North			\ldots	\ldots	1	\ldots	$25^{\circ} .5$	$25^{\circ} \cdot 5$
South	.	.	\ldots	2	8	2	$26^{\circ} .4$	$19^{\circ} \cdot 0$ and $33^{\circ} \cdot 0$

Frour were on the east limb and nine on the wost limb;

Displacements of the Hydrogen Lane
Particulars of dısplacements observed in the chromosphere and prominences with the spectroscope are given in the following table \cdot -

Table III -Displacements of the Hydrogen Line July to December 1935

Date.		$\begin{aligned} & \text { Hour } \\ & \text { IS.T. } \end{aligned}$		Latitude		Limb.	Displacement			Remarks.
				North	South.		Red.	Violet.	Both ways.	
		H.	M.	-	-		A.	A.	A.	
October	3	$\begin{aligned} & 9 \\ & 9 \end{aligned}$			${ }_{5}^{195}$	$\stackrel{\mathrm{E}}{\mathrm{~W}}$	$\underset{2}{\text { Slight }}$			At base. At top"; oxtends over 3° from -53.5° to $56-5^{\circ}$
	6	9	18	72		E	0.5			In chromosphere.
	21	9	25		15.5	W		1		At base.
	22		27		19	W	Slight			At, top
	26	19	38		30	$\underset{\sim}{\text { W }}$		Slight		Do
				19						Over the wholo dotached prommence.
November	1	10	29		23	E	Slight			At base.
	3	8	58		30	$\underline{1}$		1		At top.
		8	58		31	W	1			At base.
		8	55		83	E	1			At top
	5	8	35	80		H	05			Do.
	6	10	34	31		10		Slught		Do
		10	32	23		E		Slight		Do
	8	9	00		16	W	Slught			At top, extends over 2° from -15° to -17°.
	9	9	42	21		\pm		1		At top.
		10	12	07		W	Slight			Do.
	19		40		27	E		Slight		At top; extends over 2° from -26° to -28°.
			30		51.	W		$0 \cdot 5$		At base, extends over 2^{0} from -50° to - 52°.
			23		30.5	W		2		At base; extends over 3° from -29° to -32°
	27	9	38				Slught			
		9	4 4		17.5	W		1		Over the whole prominence.
		9	46		15	W		1		At base.
	28	9	11		16	W		0.5		At top.
			11		12	W			05	Do
	29	9	29		30-5		Slight			At base.
	30	11	03	68		W		1		In chromosphere
		11	05	83		W				At top.
December	2	9	22		12.5	W		$2 \cdot 5$		At base.
		9	17	68.5		W		1		At top
	3	8	24	7		W	Slight			In the middle of prominence
	4	11	19		23	E				At top
	6	9	38	86		E		Slught		At base.
	8	10	39	23		\pm	1			Do.
		10	32		69	W		Slight		In chromosphere.
		10	23		38	W		0.5		At top.
		10	20		25	W	1			Do.
	9	11	05		83	E	1			Do.
			48		32	W	1.5			At top, extends over 2° from -31° to -33°.
		9	35		28	W		0.5		
			38		27	W	4	2		To red at top and to violet at base.
			35		26	W	1			At top; extends over 2° from -25° to -27°
			35		20	W	1			At top; extends over 4° from -18° to -22°.
		8	30	85		W	Slight			In chromosphere.
	11	10	43		28	W	1			At top.
		11	9	50		W	1.5			Do.
	14	10	26	13		E			1	At base; extends over 2° from -12° to -14°
	23		12		12.5	E		1		At top; extends over 7° from -9° to -16°.
	. 30	10	21		30.5	E	2			At base; extends over 3° from -29° to -32°.
		10	40 43		${ }_{32}^{30} 5$	$\underset{\mathrm{E}}{\mathrm{E}}$		$\stackrel{2}{1.5}$		At base. At top.
					325	E		1.5		At top.

The total number of displacements was 83 as aganst 91 in the previous half-year and their distribution was as follows.-

Of these displacements, 43 were towards the red, 37 towards the volet and 3 both ways simultaneously. Reversals and dusplacements on the Sun's disc.
Onc hundred and minety six bright reversals of the $H \alpha$ line, 164 dark reversals of the D_{3} line and 14 displacements of the $\mathrm{H} \alpha$ l hno were observed with the spectroscope during the half-year Their distribution is given below :-

Seven displacomonts were towards the 1ed, two towards the volet and five both ways smultaneously.
The Hale spectroheloscope has been used dally (except on Sundays and holdays) for the observation in the light of the $H \alpha$ line of changing phenomena and of displacements which cannot readuly be photographed. The hours allotted by the International Astionomical Union to this observatory for spectrohelioscope observations are $2-30$ to $3-00,4-00$ to $4-30,5-30$ to $6-00$ and $6-30$ to $7-00 \mathrm{G}$ M T or $8-00$ to $8-30,9-30$ to $10-00,11.00$ to $11-30$ and 12-00 to 12-30 I S. T but observations are continued at other tames in cases where interesting developments aro likely to occur A summary of the observations made during 1935 are given below

Displacomonts in prommencus		North. 42	$\begin{aligned} & \text { South } \\ & 89 \end{aligned}$	East llmb. West llmb. 20 23 Easi. West. 59 72		Total. 43 Total. 131
Displacements in H α dark markings						
Displacements in H α bright fiocculs		6	8	8	6	14
				Displacemen	nts towards	
Prominonces			$\begin{gathered} \text { Red. } \\ 25 \end{gathered}$	$\begin{gathered} \text { Violet. } \\ 17 \end{gathered}$	Both ways. 1	$\begin{gathered} \text { Total. } \\ 43 \end{gathered}$
H α dark markings			78	53	.	131
H α bright flocculı			8	6	.	14

Prominences projected on the Dusc as Absorption Markings

Photographs of the sun's dise in $\mathrm{H} x$ light were available from Kodalkanal and the co-operating observatories for a total of 175 days which were counted as 160 effective days. The mean dally areas of $\mathrm{H} \alpha$ absorption markungs (corrected for forcshortoning) in millonths of the sun's visible hemsphere and ther mean daily numbers are given below:-

Mean daily	Mean dauly
areas.	numbers.
2079	12.76
3415	1497
5494	2773

The above show an increase of 58 per cent in areas (the increase in the northern hemisphere being 117 per cent), and 43 per cent in numbers, compared with the previous half-year.

For comparison with bulletins issued prior to the co-operation of other observatories the means based on Kodaikanal photographs alone are also given, 102 days of observation being reduced to 94 effeetive days:-

The distribution of mean dally areas in latitude $1 s$ shown in the following diagram Compared whth the premous half-year the zone of maximum activity has advanced less than 5° towards the poles, and the secondary maxima near 30° remam unchanged in position

Compared with the previous half-year, both areas and numbers show a slight eastern preponderance, the percentage in areas being $50 \cdot 97$ and in numbers $50 \cdot 73$.

The mear darly areas of $\mathrm{H} \alpha$ absorption markungs uncorrected for foreshortening are giren below :-

The uncorrected areas amount to 50 per cent of the corrected ones. The curve of distribution in latitude is simlar to that for the corrected areas as usual

Thanks are due to the co-operating observatories for the photographs suppled by them.
T. ROYDS,

Kodatranal,
The 12th December, 1936.

ADDENDUM TO BULLETIN No. GVIII.

Page 372. Please insert the following before the last paragraph--
The above figures show an increase of 36 per cent. 10 areas and 62 per cent. in numbers, compared mitb the previous half year

For comparison with bulletins issued prior to the co-operation of other observatories the means based on Kodarkanal photographs alone are also given, 158 days of obeervation beng reduced to 153 effective days.

