派的datianal obseruatory.

BULLETIN No. CIV.

SUMMARY OF PROMINENCE OBSERVATIONS FOR THE SECOND HALF OF THE YEAR 1933.

In pursuance of the programme of work adopted since lst January 1923 under the auspices of the International Astronomical Union, all obsertatories takmg spectrohelograms of the sun have been asked to co-operate with the Kodalkanal Observatory by supplying copies of therr photographs for those days when the Kodaikanal records are imperfect or wanting In response to our requirements for the second half of the year 1933, the Mount Wilson Observatory supplied calorum (K_{28}) prommence plates for 50 days and $H a$ dise plates for 28 days the Meudon Observatory suppled calcum (K_{3}) disc plates for 7 days and $\mathrm{H} a$ diso plates for 45 days, and the Pitch Fill Observatory, Ewhurst (Mr J Erershed's), supplied Ha disc plates for 7 days.

When only incomplete or imperfect photographs for any day are avalable from more than one observatory, the best photograph is chosen as representing the solar activity of that day, after weighting it according to its quality, and the remamnng photographs are ignored

Calcum Prominences at the Lumb -The mean darly areas and numbers of prominences photographed durmg the half-year by means of the K line of calcrum are given below The means are corrected for incomplete or imperfoct obscrvations, the total of 182 days for which plates were avalable bemg reduced to $161 \frac{1}{2}$ effective days

Compared with the previous half-year, areas show an merease of 9 per cent manly in the northern hemisphere, and numbers a decrease of 11 per cent.

For comparison with lulletins issued prior to the co-operation of other observatories, the means based on Kodalkanal photographs alone are also given, 137 days of observation being counted as 110 effective days

The dustribution of prommences in latitude is represented in the followmg diagram, in which the full ime gives the mean daily areas and the broken line the mean daily numbers for each zone of 5° of latitude. The ordmates represent tenths of a square munute of are for the full line and numbers for the broken lme. Comparng the distribution of prommence areas with the previous half-year there has been moreased activity m the belt

$$
\text { Price annas } 2 \text { or } 3 d .
$$

$30^{\circ}-50^{\circ}$ in the northern hemisphere and in the belt $30^{\circ}-40^{\circ} \mathrm{m}$ the southen, and decreased activity near the ${ }^{-}$quator, the marimum activity is near $35^{\circ} \mathrm{m}$ both hemispheres Prominence areas are agam considerably greater in the northern hemisphere than in the southern

The monthly, quarterly and half yearly areas and numbers and the mean height and moan exient of the prominences on photographs fiom all co operating observatories are given in Table 1 The unit of area is I square munte of are The mean height is derived by adding together the greatest heights reached by individual prominences and dividung by the totr] number of prominences observed the mean extentis derived by addung together the lengths of the base on the chromosphere of mdividual prommences nnd dividing by the total number of prominences

Table I -Abstradt for thet seoond halt of 1933

Months 1933	$\begin{gathered} \text { Number } \\ \text { of days } \\ \text { (effective) } \end{gathered}$	Areas	Numbers	$r_{\text {Areas }}^{\text {Daily }}$	$\underbrace{\text { acans }}_{\text {Numbers }}$	Mean herght	Moan extent
July	284	719	238	25	84	423	4 61
August	288	642	243	19	86	401	386
September	26 年	609	225	23	84	414	400
October	243	502	188	21	78	390	4.52
November	254	64.9	209	26	83	413	411
December	$28 \frac{3}{4}$	636	224	22	78	381	475
3rd quarter	833	1870	706	22	85	412	416
4th quarter	781	1787	621	23	79	395	447
2nd half year	161 $\frac{1}{2}$	3657	$\overline{1327}$	23	82	$\overline{40} 4$	

Distribution East and West of the Sun's Axis.-Areas showed a considerable defect and numbers a slight defect at the east limb as will be seen from the following table. -

1933 July to Decomber		East	West	Peroentage East	
Total number observed			651	676	$49 \cdot 06$
Total areas in square mmutes	.	.		166.8	1989

Hydrogen Prominences at the Lımb - During the half-year, photographs of the prominences in hydrogen light were takn m this Observatory on 108 days which were counted as $81 \frac{1}{4}$ effective days The mean daily areas of hydrogen prominences in square minutes of arc are given below .-

Compared with the previous half-year, $\mathrm{H} a$ prominence areas show only a small merease, viz., 3 per cent. The ratio of H a areas to calcium areas is 46 per cent, which is less than in the first half-year. The latitude distribution of $\mathrm{H} a$ prominences is simular to that of calcuum prominences

Metalluc Prominences -No metallic prominences were observed during the half-year, as aganst 3 in the first half

Drsplacement of the Hydrogen Line -Particulars of the displacements observed in the chromosphere and prominences are given below -

Tablit II.--Displacmments of the Hydrogen Line.

Dato		Latitudo				Imb $\sim_{\text {- Displacement }}$				Remarks
				-						
				North	South		Red	Violet	Both ways.	
1933			M	-	-		A	A	A	
July	3	9	58	06		E		05		At top ${ }^{\text {a }}$, ${ }^{\circ}$ from
	18	8	47	32		W		$0 \cdot 5$		At base, extends over 2° from $+31^{\circ}$ to $+33^{\circ}$.
August	25	8	18	465		W	05			At base
	28	9	28		28	W	05			
Septornber	16	9	15		$34 \cdot 5$	E		0.5		At base.
	23	9	01	58.5		W		05		In chromosphere.
October	22	10	02	37		E		2		At base Extends over 2° from $+36^{\circ} \text { to }+38^{\circ}$
	23	8	32	21		E		05		In chromosphere
	26	9	14	31		W	Slight			
November	2	10	20	85.5		E	1			At top
	1.3	9	06	42		E	1			
	1.6	9	17		63	W		Slight		At base In chromosphere.
	23	10	17	34		E				In chromosphere.
Decomber	4	0	52	87		E	15			At top
	6	9	01	56		E	05			${ }_{\text {Do }}$ Do
	9	9	40	10		E		05		In chromosphere
	11	10	01		57	W		${ }^{0} 5$		In chromosphere
	17	8	35	42		W		${ }^{0} 5$		At base
	19	9	09		27 54	$\stackrel{\mathrm{E}}{\mathrm{W}}$		Slight		In chromosphere.
	21	9	27	45	64	E		Slight		Do
	29 30	9 9	${ }_{25}^{14}$	5.		W		15		At top

The total number of displacements was 22 as agamst 64 in the previous halt year and therr distribution was as follows -

$$
1^{0}-30^{\circ}
$$

	North	South
	2	2
	11	3
	3	1
	-16	-

East limb		12
West limb	Total	10
		22

Of these displacements 7 were towards the red, and 15 towards the violet
Reversals and Displacements on the Sun's Disc -One bright reversal of the Ha line und one dark Ievorsal of the D_{3} line were observed during the half year No desplacements of the $\mathrm{H} a$ line wore observed The dis tribution is given below -

North	South	East	West
1		1	
1		1	

Bright reversals of Ha
1 1
Dark reversals of D_{3}
.
Displacements of $\mathrm{H} a$
Prominences projected on the Disc as Absorption Markengs.-Photogiaphs of the sun's dise in Halight were avalable from Kodalkanal and the co operating observatories for a total of 184 days which were counted as $162 \frac{1}{2}$ effective days The mean darly areas of $\mathrm{H} a$ absorption markings (corrected lor foreshortenmg) in millionths of the sun's visable hemisphere and therr mean daily numbers are given below -

	Mean dauly areas	Mean danly numbers	
North		588	407
South	Total	-286	207
		-874	$\mathbf{6 1 4}$

The above show a decrease of 32 per cent in areas and 28 per cent in numbers compared with the previous half year, the decrease being greater in the northern hemisphere than in the southern

For comparison with bulletins issued prior to the co operation of other observatories, the means based on Kodaukanal photographs alone are also given, 124 days of observation beng reckoned as $99 \frac{8}{4}$ effectrve days

		$\begin{gathered} \text { Mean dauly } \\ \text { areas } \end{gathered}$	Mean dady numbers
North (Kodaukanal photographs only)		581	382
South Do		310	200
	Total	891	582

The distribution of mean dally areas in latitude is shown in the following duagram Compared with the first half of the year there is decreased activity in the northern hemisphere from 0° to 40°, and decreased activity in the southern near the equator and in the belt $40^{\circ}-45^{\circ}$

As in the previous half-year, both areas and numbers show an eastern preponderance, the percentage in areas being 54 and in numbers 52 .

The mean dally areas of $\mathrm{H} a$ absorption markmgs uncorrected for foreshortening are given below :-

The uncorrected areas amount to 59 per cent. of the corrected ones, which is a slight increase over the two previous half-years.

The curve of distribution in latitude is similar to that for the corrected areas as usual.
Thanks are due to the co-operating observatories for the photographs supphed by them

Kodatranal, 28ih January 1935.
T. ROYDS, Director, Kodaukanal Observatory.

