Fodatianal obsexvatory.

BULLETIN No. CIII.

SUMMARY OF PROMINENCE OBSERVATIONS FOR THE FIRST HALF OF THE YEAR 1933

In pursuance of the programme of work adopted since lst January 1923 under the auspices of the International Astronomıcal Union, all observatories taking spectroheliograms of the sun have been asked to co-operate with the Kodaikanal Observatory by supplying copies of their photographs for those days when the Kodaikanal records are imperfect or wanting. In response to our requirements for the first half of the year 1933, the Mount Wlison Observatory supplied calcium (K_{23}) prominence plates for 25 days, $\mathrm{H} a$ dise plates for 5 days and the Meudon Observatory supplied calcium (K_{3}) dise plates for 7 days and Ha disc plates for 30 days.

When only incomplete or mperfect photographs for any day are avalable from more than one observatory, the best photograph is chosen as representing the solar actıvity of that day, after weighting it according to its quality, and the remaming photographs are ignored.

Calcum Prominences at the Limb.-The mean daily areas and numbers of prominences photographed daring the half-year by means of the K line of calcium are given below. The means are corrected for incomplete or imperfect observations, the total of 180 days for which plates were avalable being reduced to 167 effective days.

Mean daly areas \quad| Mean dally |
| :---: |
| nambers. |

Compared with the previous half-year, areas and numbers show an increase of 20 per cent and 10 per eent, respectively.

For comparison with bulletins issued prior to the co-operation of other observatories, the means based on Kodaikanal photographs alone are also given, 166 days of observation being counted as 1434 effective days.

North (Kodaikanal photographs only)	$\stackrel{.}{ }$			Mean danly areas (square manutes).$1: 28$	Mean dauly numbers.
South (do.)			...	0×89	450
		Total	...	217	9.57

 lune gives the inean dauly areas and the broken line the mean dally numbers for each zone of 5 of latitude. The ordinates represent tenths of a square manate of are for the full line and numbers for the broken line Compared with the previous half year there has been an merease of activity in the northern hemisphere near 20°, and in the southern hemisphere near 40°

The monthly, quarterly and halt-yearly areas and numbers and the mean herght and mean extent oft thic: prominences on photographs from all co-operating observatories are given in Table I The thte "of ditan 1 square minute of arc The mean height 18 derived by adding together the greatest heights featoled wing dividual prominences and dividing by the total number of prominences observed, the mean extent lis dedtcod
 the total number of prominences -

TABLI L-Abstragir for the First Hali of 1933

Months	$\begin{gathered} \text { Nomber } \\ \text { of days } \\ \text { (effective) } \end{gathered}$	Areas	Numbers	Daily menns		Mean height	Mean extent.
M 1938*				Areas	Numbers		
January	\% 8	577	262	21		416	74
February	274	463	265	17	97	344	436
March	30	583	290	\cdots	915	856	20\%
April	274	741	266	+27	$9 \cdot 7$	$40^{\circ} 9$	436
May	264	487	222	18	83	365	464
June	27	621	232	23	86	432	511
First quarter	85 ${ }_{1}$	1623	817	18	96	371	$4 \cdot 60$
Second quarter	811	1849	720	23	88	393	$4 \cdot 69$
Frrst half	167	3472	1, 537	21	92	38.2	4.64

Distrıbution East and West of the Sun's Axvs.-As in the previous half-year, areas show a sllght defect and numbers an excess at the east limb as will be seen from the following table -

1933 January to June				East.	West.	Percentage East.
Total number observed	...	\ldots	.	790	747	$51 * 40$
Total areas in square minutes	\ldots	$171{ }^{\circ} 2$	$176{ }^{\circ} 0$	49330

Hydrogen Prominences at the Limb.-During the half-year, photographs of the prominences in hydrogen light were taken at thas observatory on 157 days which were counted as 141 effective days. The mean daily areas of hydrogen prominences in square minutes of arc are given below -

North										
Mean danly areas										
(square manutes)										

Compared with the prerious half-year, H α prominence areas show an merease of 76 per"cent. The ratio of $\mathrm{H} a$ areas to calcium areas is 52 per cont, a considerable increase over the previous half-year. The curve of $\mathrm{H} a$ prominences is intermediate between those of calcum promınences and $\mathrm{H} a$ absorption markngs.

Metallac Prominences.-Three metallic prominences were observed during the half-year The detalls are given below :-

Table II.-List of Metallic Prominences.

Date.		Time	Base.	Latitude.		Lımb.	Height	Lines
1933		H. M	-	-	-		"	
January 2	".	850	1	85		W	35	${ }_{6677}^{49241,5016,} \mathrm{~b}_{4}, \mathrm{~b}_{3}, \mathrm{~b}_{2}, \mathrm{~b}_{1}, 5234 \cdot 8,53168, \mathrm{D}_{2}, \mathrm{D}_{1}$, and
3	.		1	95		E	10	$49241,5016,5018 \cdot 6, b_{4}, b_{3}, b_{2}, b_{1}, 52348,52762$ r 5316853630 D $\mathrm{D}_{1}, 6677$ and 7065
14	..'	959	3	...	95	W	15	$49241,5016,5018 G_{1}^{\prime}, b_{4}, b_{3}, b_{2}, b_{1}, 51975,5206 \cdot 2$, $52087,52348,52697,52706$ 6,52762 $2,52443,53168$, $53369,53630, \mathrm{D}_{2}, \mathrm{D}_{1}^{\prime}$ and 6677

Displacements of the Hydrogen Line.-Particulars of the displacements observed in the chromosphere and prominences are given on the following table:-
table III.-Displacements of the Hydrogen Line.

Date.		Time	Latritude,		Displacement.				Remarks.	
		North.	South.	Lımb.	Red.	Violet.	$\underset{\text { Ways }}{\substack{\text { Both }}}$			
1933.			н. м.	-	。		A	A.	A.	
January	1	855		18.0	W	05			In chiomosphere	
	2		46°		$\stackrel{ \pm}{*}$	0.5				
	3	$\begin{array}{ll}8 & 50 \\ 9\end{array}$	85	480	W	10	Shght		$\begin{aligned} & \text { At top. } \\ & \text { Do }^{2} \end{aligned}$	
	4	1117	860		W			10	To vrolet at top and to red at base.	
	13			420	E	05			In chromosphere,	
	14			420	W.		1.0	.	At top.	
			80		W	10			${ }_{\text {Do }}^{\text {Do }}$	
		931	80		W		10		At base.	
			110		W		05		Do.	
			38.0		W	05			At top	
	26		30		E		1.0		At base	
	30		280	160	$\underset{\sim}{\text { E }}$	$\underset{\text { Slight }}{05}$			In chromosphere.	

Table III -Displaomments of then Hydrogen Ling-cont

Date1993		$\begin{aligned} & \operatorname{Tm} \\ & I S T \end{aligned}$			Limb	$\xrightarrow{\text { D splac ment }}$			R marka
			$\mathrm{N} \text { rth. }$	$S \text { 地 }$		Red	Volt	$\begin{aligned} & \text { B th } \\ & \text { w ys } \end{aligned}$	
		H M				A.	A		
F bruary	1	1051	150		\pm		Sl ght		At top
			150		E			60	
	2	918	150		E	05			At bas
		919	120		$\stackrel{\text { E }}{\square}$		10		At top
			10		W	05			D
	4	1117	75		W	05			D
	6		345		W	05			In chr m spher
	8		635		W	0.5			D ${ }^{\text {d }}$
	10	919		140	$\underset{\sim}{W}$	05			At top
	12		10		W		Sl ght		In ch m spher
	13	910	95		W	10			At top
	17	845	130		W	10			${ }^{\text {Do }}$
			495		W	Sl ght			In hr mosph
	18	851	705		W	05			D
	20	939	565		W		Slight		D
	21		785		W	05			D
	22			415	E	Slught			D
			755		W	20			At top
	23		210		\%	0.5			At bas
	25	918	480		E	15			At top
	26	835	535		W	0.5			Do
March	1	913	355		W	10			At top
	4			12.5	D	$0 \cdot 5$			D
	5	914	755		$\underset{\sim}{\text { E }}$	Slight			D
	6	930		135	W	Sl ght			At bas
	7			375	W	05			At top
	17	907		405	$\stackrel{N}{W}$	05			
		851 850	660		W	05 05			I chrom sph re
	19 20	8 50 9 24 10	660	830	$\stackrel{\text { E }}{\text { W }}$	05	Slught		At t p I chr mo phere
	25		230		E	S1 ght			D
		1051	80		E		25		
			50		E	15			At bas Extends from 4 tia 6 en
April	3			$14: 0$			1.0		At top
	7	910		585	E				In ohr mosphere
	12	88	39%	$8 \cdot 0$	W	05			Att P
		850		120	E		05		Atb ${ }^{\text {d }}$
	19	11.15		785	E	05			I chromo ph e
	18	848		210	W		Slught		Do
	21				W	Slight			D
	$\begin{aligned} & 24 \\ & 28 \end{aligned}$	${ }_{9}^{9} 04$	760				05		D
	28	911	440		E		05		At top
		${ }_{8}^{9} 12$	350		E		10		D
	30	850	125		W	15			Do
M j	10		320		E	05			At top
		$\begin{array}{ll} 9 & 30 \\ 9 & 21 \end{array}$	$\begin{aligned} & 160 \\ & 380 \end{aligned}$		$\underset{\mathrm{W}}{\mathrm{E}}$	10	05		At base
Jon	8	1012		200	E		10		At top
	14	858		40.0	E		Slight		Do

The total number of displacements was 64 as against 25 in the previous half year and theil dustrindound was as follows -

		North	Soutifil
1-30 ${ }^{\circ}$		22	10.
31-60		13	8
61-90 ${ }^{\circ}$		9	2
		-	-
	Total	44	20
		-	\cdots

East limb			\ldots	31
West limb	.	\ldots	\ldots	33
								-	
						Total	...	64	
									-

Of these displacements 41 were towards the red, 21 towards the violet and 2 both ways simultaneously.
Reversals and Displacements on the Sun's Disc.-Seventy-seven bright reversals of the Ha line, 67 dark reversals of the D_{s} line and 3 displacements of the $\mathrm{H} a$ line were observed during the half-year. Their distribution is given below :-

					North	South	East	West
Bright reversals of $\mathrm{H} a$	\ldots	\ldots	\ldots	\ldots	77	.	34	43
Dark reversals of D s	..	\ldots	\ldots	\ldots	67	..	31	36
Displacements of $\mathrm{H} a$		\ldots	\ldots	.	3	.	1	2

Two displacements were towards the red and one towards the violet.
Prominences projected on the Disc as Absurption Markings.-Photographs of the sun's disc in Halught were, available from Kodaikanal and the co-operating observatories for a total of 180 days, which were counted as $175 \frac{1}{4}$ effective days. The mean dally areas of $\mathrm{H} a$ absorption markings (corrected for foreshortening) in millionths of the sun's visible hemisphere and their mean daily numbers are given below :-

North	\cdots	...	\cdots	...	$\begin{aligned} & \substack{\text { Mean dally } \\ \text { areas } \\ \text { _.. } 995} \end{aligned}$	Mean daily numbers 634
South 292	2×20
						Total	.. 1,287	8.54

The above show an increase of 46 per cent in areas and 40 per cent in numbers, compared with the previous half-year.

For comparison with bulletins issued prior to the co-operation of other observatories, the means based on Kodaikanal photographs alone are also given, 157 days of observation being reckoned as 1494 effective days.

North (Kodaikanal photographs only)				...	$\begin{gathered} \text { Mean dauly } \\ \text { areas } \end{gathered}$		Mean dally numbers	
				...	945	596		
South (Do.	do.)			281	214	
					Total		1,226	8.10

The distribution of the mean danly areas in latitude is shown in the following daagram. The distribution is almost uniform in the northern hemisphere. Compared with the previous half-year there is, in the northern hemisphere, an increase in all latitudes up to 50°, whilst in the southern hemisphere there is a notable increase in the belt $0^{\circ}-5^{\circ}$.

As in the previous half year, both areas and numbers show an eastern preponderance, the percentage for both being 51 The ar eas of $\mathrm{H} a$ absorption markangs uncorrected for foreshortening are given below -

	Mean dally areas North South
	539
	164

Total 703

The uncorrected areas amount to 55 per cent of the corrected ones, almost the same as for the previous half-year

The curve of distribution in latitude is simular to that for the corrected areas as usual
Thanks are due to the co operating observatories for the photographs supphed by them

KODAIKANAL,
20th January 1934

T ROYDS,
Director, Kodarkanal Observatory

