Zodatkanal Observatory.

BULLETIN No. CI.

THE HYDROGEN CONTENT OF PROMINENCES

BY
C. P. S. Menon, ba. (Hons), msc (Lond.), f.r A.S

Abstract

The enormous value obtaned by Pannokoolk and Doorn for the density of hydrogen in the promenences they observed during the total solar eclipse of 1927 is due to than hypoth ssis of a condition resembling thermodynamic equilibrium in the prominences

It is shown that such an assumption must automatically load to high values for the density, independent of the intens1ties observed and that it is inconsistont with conditions of line-absorption and raduation

It is also sought to explann how tho intensty of a particular Balmer line, such as H_{γ}, can provide us with no clue to the number of hydrogen atoms in the ground lovel, of the state is not one of thermodynamic equilibrium This number can be found only from a knowledge of tho intenstios of the Lyman lines.

An attempt is made to estmate the density of hydiogon in prominonces, using Pannekoek and Doorn's dati of intensities of the Balmer hanes to derive the number of atoms in the second quantum state, the probable number of atoms in the first quantum state absorbing the Lyman lines is, in the absence of adequate data, guessed at A very rough upper hmit to the density of hydrogen is arrived at of the ordor of 1,000 atoms per co

The density of Ca + atoms in the prominencus of Pannokook and Doorn as recalculated. After applyng cartann corrections (indioated by Pettrit) to tho donsitios of Cat and lydrogen, it is shown how therr partial pressures are comparable with Milne's estimates for the pressure of Cal in the chromosphere

The question of the hydrogen content of prommences is of considerable importance, especially the question of the proportion of hydrogen to ionissd calcium Pannekoek and Doorn have found ${ }^{(1)}$ that in their prommence " a " of the eclipse of 1927 the number of hydiogen atoms was 1.6×10^{11} per cc. and of ionised calcium atoms only 0.13 per c.c.; in their prominence " b " the number of hydrogen atoms was 33×10^{11} per c.c. and of calcium atoms only 10 per cc. In other words, they find the calcium content of prominences to be insignificant, the ratio of the number of hydrogen to calcuum atoms beng of the order of 2×10^{12}. Pettit has improved ${ }^{(2)}$ upon thor estimatus of the densities by assuming a more reasonable shape, and hence a better value of tho volume for exther promunence, and by allowing for the comparative "weakness" of the prominences observed; but thus leaves tho proportion of hydrogon to calcium unchanged.

In Milne's theory of selective radiation pressure as the force supporting prominences, the radiation pressure can be effective only on Ca^{+}atoms, that on other atoms being comparatively insignificant A dufficulty of this theory is to explain the prosence of hydrogen and helium at all in prominences; Pannekoek and Doorn's estimate of the enormous (xcess of hydrogen in prominences increases the difficulty considerably and, indeed, if it were true, would be fatal to the theory of radiation pressure as the supporting force. For, if the prominence is supported by pressure on the calcium content alone, how are we to explain the presence of 2×10^{12} as many atoms of hydrogen? Even if we could find an explanation of how the lifting force acting on calcium atoms could be coinmunicated to atoms of other elements (for mstance, by collisions, "turbulence," or other means), we are unlikely to succeed in explaining in this way an enormous excess of hydrogen of the order of 2×10^{12} times.

[^0]Now Pannekoek and Doorn＇s result depends on the factor which they have used for ascertanng the number of unexcited hydrogen atoms from the evalnated number of atoms in the fifth quantum state This factor they have taken as $\frac{1}{12 \times 10^{-18}}$ by assuming that $1 t$ would be the same as for a gas in thermodynamio equulibrium It is easily possible to show，without considering the observed intensities at all，that Pannekoek and Doorn＇s assumption of thermodynamic equulibrium must necessarily lead to a high density，mach higher than that obtained when monochromatic radiative equilibrium holds，and fuither that，in conditions of line absorption and efmission their high densaty leads to results which cannot possibly be true There appears to be little doabt that thear high value for the hydrogen content of prominences is due to the unwarranted （though tentative）assumption of thermodynamic equilibriam to deduce the number of normal atoms

It should also be mentroned that Pannekoek and Doorn＇s deduced density of the＂atoms in the fifth quantum state＂relates in fact only to those atoms which fall from state 5 to state 2 thereby emitting $\mathrm{H} \gamma$ ， the two aggregates are not identical ${ }^{(1)}$ ，and it is not legitimate to infer from the density of the excited H γ particles the density of atoms in state 1

In this paper an attempt is made to calcalate the hydrogen content of prominences using Pannekoek and Doorn＇s observational data but abandoning the assumption of thermodynamic equilibrium The results indicate an entirely different order of magnitade for the hydrogen content，but until more oomaplete observations are avalable，it is not clamed that the results here derived do more than indicate the order of magnitude

2 The assumed simulanty of the condition existing in a piominence to that of a gas in thermodymamio equulibrium is certaunly opposed to Milne＇s niewi ${ }^{(9)}$ of the solar atmosphere，according to which the state of local thermodynamic equilibrium in lower layers changes to one of monochromatic radiative equilibrium in the upper layers

If the matter were in local thermodynamic equilibrinm，whatever the nature of the radxation moident on it，the radiation emitted will have a definite frequency－distribution，and the number of atoms emitting a particular erequency will bear a definite relation to the total namber of atoms of the substance partioipating in the radiation，so that ore may infer，as Pannekoek and Doorn did，the number of atoms in state y frota the number of atoms in state $b \quad$ On the other hand，monochromatic radiative equilibrium involves a partio coular frequency being absorbed and re emittel without change of wavelength by an atom during transitioutis between two stathonary states，the relative numbers of atoms in the two states beas a defmite relation to eaxich ofther，depending on the intensity of the inchdent radiation Whereas in the former case，the rations depetit on the temperature at the point and not at all on the incident radiation（which as accoidingly redistributed before emission），in the latter case the ratios depend on the intensities of the several frequencies which tart， in general，independent，so that there is no necessary relation between the atoms in the various quaritaim sstatels of the substance in monoohromatic radiative equilibrium，and one cannot infer the number of atoms in state 1 from that of atdoms in state 5 emitting the frequency

Fpurther，in monodirdmatic raduative equilibritum，the set of atoms in a particalar quantum state，sfay atatite 5，emitting a frequency ν_{6} is not，in general，co termunots with the total namber of atoms in that state 巩转 évin possible to regerd the atomis passing between states 5 and 2 absorbing and emitting $\boldsymbol{H} \gamma \boldsymbol{y}$ as a statiodiod aggregiate distinct from andifilar aggregates partalang in the radiations of other frequencies Even if a prith ctlar atom in state 5 passes to another state such as state 1 ，the principle of detanled balancing requirest thatit
为z，$\sigma^{\circ} \rightarrow 2$ It is not enough if the atorn＂passing from state 5 to state 218 replaced somehow，eg，by ain atiom passing from state 3 ，the latter being replaced by an atom from state 1 ，this would introdace a cydlab

[^1]transitions. and there appeais to be good reason to taboo cychc processes. ${ }^{(1)}$ Thus, for every atom passing from state 2 to state 5 there is another passing from state 5 to state 2 Or, statistically regarded, these form a set of atoms making the reversible transition state $2 \overleftrightarrow{\longrightarrow}$ state 5 , absoibing and emitting ν_{25}.

If there are n_{2} atoms in state 2 , of which the number $n_{2}\left(\nu_{25}\right)$ are capable of absorbing the frequency v_{35} and arriving at state 5 , the number of atoms which actually make this transition in time $d t$

$$
=\mathrm{B}_{25 \cdot} \quad \mathrm{n}_{2}\left(\nu_{26}\right) \quad\left(\int \mathrm{I}_{25} \frac{\mathrm{~d} \omega}{4 \pi}\right) \cdot \mathrm{dt}
$$

where B_{25} is the Einstein probability coefficient for the transition $2 \rightarrow 5$ in the presence of isotropic radiation of intensity I_{25}. And the number passing Lrom state 5 to state 2 ks , by the principle of detaled balanemg equal to this.

Similarly, the number leaving state 5 for any other state, say state 1 wall be

$$
=\mathrm{B}_{15 .} \quad \mathrm{n}_{1}\left(\nu_{16}\right) .\left(\int \mathrm{I}_{15} \frac{\mathrm{~d} \omega}{4 \pi}\right) d t
$$

The coefficients $B_{15}, B_{25} \ldots \ldots$ are constants for the atom. The intensities I_{15}, I_{25},have no known relations with one another, unless the matter be in local thermodynamic equilibrium. So that the number of atoms leaving state 5 for state 2 so as to emit $\mathrm{H} \gamma$ is distinct from that of atoms leaving for state 1 , not to mention the total number of atoms in the fifth state Hence it is easily seen that the number of atoms in the filth state found from the intensity of $\mathrm{H} \gamma$-radiation can afford no clue to the total number of atoms in the lowest state, if we regard the conditions in the prominence to be the same as in the chromosphere. All that we can infer is the number of atoms in state 2-the "normal state" for the Balmer lines-partaking in $\mathrm{H} \gamma$-radration In the same way the intensities of other Balmer lines may give the nambers of hydrogen atoms partaking in the radiation of the corresponding lines, $\mathrm{n}_{2}\left(\nu_{29}\right), \mathrm{n}_{2}\left(\nu_{24}\right)$, etc. These sets of atoms are not in gencral coincident with the $n_{8}\left(\nu_{25}\right)$ atoms absorbing ν_{25}. supposing that they do not partially overlap, the maximum number of atoms in state 2 is given by the sum of these separate numbers. Similarly we may find the number of atoms in state 1 if we knew the intensities of the Lyman lines.
3. The objection to the assumption of thermodynamic equilibrium may agan be presented from other standpoints.
(a) Milne shows ${ }^{(1)}$ that in any steady state, the equation of transfer of racliation can be expressed as

$$
\frac{\mathrm{dI}_{\nu}}{\mathrm{d} \tau_{\nu}}=-\mathrm{I} \nu+\frac{\int \mathrm{I}_{\nu} \frac{\mathrm{d} \omega}{4 \pi}+\eta \mathrm{B}_{\nu}(\mathrm{T})}{1+\eta}
$$

where T is a parameter corresponding to an assumed pseudo-Maxwellian distribution of velocities,
τ_{ν} is the optical depth for colour μ, and
η is the factor depending on the probability coefficients of transition by collssion, it is independent of T, and varies as the density ρ.

$$
\left\{\begin{array}{l}
\eta \longrightarrow \infty \text { as } \rho \longrightarrow \infty \\
\eta \longrightarrow 0 \text { as } \rho \longrightarrow 0
\end{array}\right.
$$

At high densities, $\eta \rightarrow \infty$, and the equation takes the form

$$
\frac{\mathrm{d} \mathrm{I}_{\nu}}{\mathrm{d} \tau_{\nu}}=-\mathrm{I} \nu+\mathrm{B}_{\nu}(\mathrm{T})
$$

which is the equation of transfer for thermodynamic equilibrium. Thus he infers that the more the atoms are battered about by collisions, the more closely will emıssion correspond to the Kirchoff emıssion. No wonder then that Pannekoek and Doorn by assuming thermodynamıc equilibrıum arrıved at high densities; in a sense the reasoning involves a vicious circle.

Further, at low densities $\eta \rightarrow 0$, and the equation becomes

$$
\frac{\mathrm{d} I_{\nu}}{\mathrm{d}_{\nu}}=-I_{\nu}+\int \mathrm{I}_{\nu} \frac{\mathrm{d} \omega}{4 \pi}
$$

which is the form of the equation of transfer for monochromatic radiative equilibrium We mas point out that the converse is easily seen to hold so that, if monochromatic radiative equilibrum were assumed instead of thermodynamic equilibrium, we should get only low values for the density
(b) That Pannekoek and Doorn's high value of density of atoms in the first state is inconsistent with conditions of line radiation can be shown in another way

If the number of atoms in state 1 be denoted by n_{1} per co the number of atoms that absorb the 4th Lyman line (say) in time dt

$$
=\mathrm{n}_{1} \mathrm{~B}_{1 \mathrm{~b}}\left(\int \mathrm{I}_{\nu} \frac{\mathrm{d} \boldsymbol{\omega}}{4 \pi}\right) \mathrm{dt},
$$

where $I v$ is the intensity of the incident radiation
The amount absorbed per sec per c c $=n_{1} B_{16}\left(\int I_{\nu} \frac{d \omega}{4 \pi}\right) h v_{15}$
This is a fraction sy of the radiation incident on unit volume

$$
=\xi_{\nu} \int I \nu \frac{d \omega}{4 \pi}
$$

the lumits of integration being the same as before, for instance, in the case of isotropic radiation, the integration is carried over a complete sphere round an internal point so that the integral rednces to I_{y} in either case, while at the boundary, the integration is cunfined to the lower hemisphere, and the integral becomes $\frac{1}{2} \mathrm{I} \boldsymbol{y}$ -

Also

$$
\begin{aligned}
& \mathrm{n}_{1} \mathrm{~B}_{16} \mathrm{~h} v_{16}=\mathrm{s}_{\nu} \\
& \frac{A_{61}}{B_{15}}=\frac{2 h_{\nu_{16}}{ }^{8}}{c^{2}} \frac{q_{1}}{q_{6}} \\
& \underline{q}_{1} \mathrm{q}_{b}=\mathrm{n}_{1} \quad \mathrm{~A}_{\mathrm{s} 1} \frac{\mathrm{c}^{2}}{2 v^{8}} \\
& =\mathrm{n}_{1} \quad \mathrm{~A}_{61} \frac{1}{2}\left(\frac{25}{24 \mathrm{R}}\right)^{2}
\end{aligned}
$$

Using Panneknek and Doorn's value for $n_{1} 16 \times 10^{11}$, and Francis Slack's value ${ }^{(1)}$ for $A_{41}=4 L 8 \times$ 10^{7}, in the right hand side we get

$$
\frac{q_{1}}{q_{b}} s \nu \sim 3 \times 10^{7}
$$

which is absurd, since the left-hand side is a proper fraction
(c) Pannekoek and Doorn make ase of the Schrodinger-Pauli formala for intenaties in termas of that series nomber and temperatare-assuming thermodynamic equilibriam-in order to derive the tempergdaduk T from their observed values of the intensities for the 5 Balmer lines The curve plotted-log Il/ $\$(\sqrt{\prime})$ against $1 / l^{2}$ mast be a straight lune whose slope depends upon the temperature T But the attempt to fas straight line to the plotted values cannot be clamed to be entirely successful-even allowing for the axpemb mental errors mentioned the discrepancy is most glaring in the relative positions of Ha and fis, Though the anthors suggest the varions experimental defects as the canse of the high value of temperatiget obtained, the error may at least in equal (if not greater) probability, be due to their tentative asgumption of thermodynamic equilibrium

4 We may now proceed to estimate the densities of hydrogen atoms in various states, on the assminptiont that conditions in prominences resemble the condition of the chromosphere, 10 , a state of monochenting radıative equilıbrium
(1) Phys Rev 31, 527 (1928)-quoted by Caroll in M.N.R.A.S 90,590

Considering radiation of a particular colour, there will be some relation between the number of atoms in the "excited state" and that in the lower state. For matter in local thermodynamic equilibrium, this relation will depend ou the temperature T at the point, and is given by Boltzmann's equation.

$$
\frac{n_{1}}{n_{s}}=\frac{q_{1} e-\chi_{\mathrm{s}} / k T}{q_{s} \cdot \theta-\chi_{\mathrm{s}} / k T}
$$

where n_{1}, q_{1}, χ_{r} represent the number of atoms per cc., the "statistical weight," and the internal atomic energy corresponding to state r.

$$
\begin{aligned}
\therefore \frac{n_{1}}{n_{s}} & =\frac{q_{r}}{q_{s}} \cdot e^{\left(x_{s}^{\ell-x_{1}}\right) / k T} \\
& =\frac{q_{1}}{q_{s}} \cdot e^{h \nu / k T}
\end{aligned}
$$

where ν is the frequency emitted when the atom passes from state s to state r.
As this formula depends on the temperature sheerly in vurtue of the velocity-distributions, it may be talken to hold wherever there is a simular velocity-distribution ${ }^{(1)}$ Such may be assumed to be the state in monochromatic radiative equilibrium also. Though we cannot talk of a temperature T (since there is no thermodynamic equilibrium) yet there is a parameter T corresponding to the pseudo-Maxwellian distribution, which will behave just like the temperature \mathbf{T} for all intents and purposes, masmuch as a thermometer exposed to these velocities will receive such a number of collisions of varying magnitudes as will cause it to register a temperature T

But this parameter T will in general vary with each colour, except in the case of local thermodynamic equilibrium ; it is, in fact, mcasurable only from the observed intensities which, as stated above, have no fixed relations with one another, in a stale of monochromatic radiative equilibrium.

For want of definite data, we assume $\mathrm{T}=5500^{\circ}$ in the following calculations. This is not to mean that a unform temperature is concoded in the case of the several radiations considered; on the contrary, 5500° is adopted as the parameter in the hope that it will be roughly of the same order of magnitude. Even so, this is radically different from the assumption of a uniform temperature for the complete continuum of frequencies such as exists in a state of thermodynamic equilibrium.

Thus, for the Balmer lines, ignoring statistical weights,

$$
\frac{\mathrm{n}_{8}}{\mathrm{n}_{\mathrm{r}}}=\mathrm{e}^{\mathrm{hc} / \lambda \mathrm{kT}}, \quad-(1)
$$

where T may be taken as $\sim 5500^{\circ}$.
Also, the emission by the atoms in the rth state per c.c.

$$
\begin{equation*}
=n_{1} . A_{12} \cdot h \nu_{\mathrm{r}_{2}} . \text { ergs per sec. } \tag{2}
\end{equation*}
$$

Denoting by Ev the intensities given by Pannokook and Doorn, and the volume of the prominence by ∇, the emission per c.c. $=\frac{\mathrm{W}_{\nu}}{\mathrm{V}}$. From this and (2), we get

$$
\mathrm{n}_{\mathrm{r}}=\frac{\mathrm{E}_{r}}{\mathrm{~V}} \quad \frac{\lambda}{\mathrm{hc}} \quad \frac{1}{\mathrm{~A}_{\mathrm{r}}}
$$

Using Pannekoek and Doorn's value of the volume of prominence " a " as $5.8 \times 10^{29} \mathrm{c} \mathrm{c}$. and their intensity-values for the different images (see column 5 of the following table), and Francis Slack's values ${ }^{(2)}$ (column 4) for tho probability co-efficients $A_{r_{8}}, n_{r}$ can be calculated (column 6) And from this the values of n_{2} can be known with the aid of equation (1) (column 7). The number of atoms ($n_{2}+n_{1}$) taking part in the radiation of each line is given in the last column of the table. Assuming that there is no overlapping,
the tutal number of atoms partaking in the raduation of the Balmer lines is obtained by adding wo these namber: $\mathbb{Z}\left(n_{s}+n_{r}\right)$

r	Line	Wrvelength A U	Transition probability $\mathrm{A}_{\mathrm{r} 2}$	Intensitios erg/sec Ep	Number of atoms in excited state, $\mathbf{n}_{\mathbf{r}}$	Number of atoms in second state, n_{p}	Number of atoms $n_{8}+n_{r}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
3	Ha	6563	442×10^{7}	1890×10^{23}	0246	13028	1327
4	H8	4861	845	512	0258	$54 \cdot 813$	55.07
5	H γ	4341	254	126	0189	76130	7642
6	H\%	4102	102	115	0406	231910	23232
7	H;	3890	046	188	0139	112680	11283
						Total	48890

The number of atoms in state 218 found to be increasing as we pass from $H a$ to H δ, because $A_{r s}$ decreases mach moie rapidly than the observed intensities In this connexion we have to bear in mind the uncertannties in the measuren of the intensities which, in the words of the authors, ${ }^{(1)}$ are "caused by the great density of the promurence images, the extrapolation from the density curves, and the large influence of the Schwarzschild exponent", these factors obviously make the errol greater, the denser the image, so that the values of \mathbf{n}_{9} are piobably more and more reduced as we go from H 8 to $H a$ It is satisfactory to note, however, that the number begins to decrease as we come to $\mathrm{H} \xi$, and perhaps one may conjecture that it will contunue to decrease as we go to other members of the series The total number of atoms partaking in the radiation of the Balmer lines may therefore be taken as of the order of 500 Talkng account of the facts that the dufferant sets of $\left(n_{9}\right)$ atoms found above may overlap to some extent, and that the statistical weights will tend to reduce these numbers, we may safely put 500 as the maarmum number of atoms

The number of atoms in state 1 can be found as argued above, only from a knowledge of the intenaties of the Lyman lines The ratio used by Pannekoek and Doorn (120×10^{-12}) is really the ratio $n_{1}\left(\nu_{13}\right)$; $n_{1}\left(\nu_{15}\right)$, $n_{6}\left(\nu_{16}\right)$ can be found only af the intensity I (ν_{18}) were known The intensities of the Lyman Hines in prominence spectra are not known, but if the intensity I (ν_{16}) were $\sim 10^{-9}$ times that of $\mathrm{H} \gamma$, we get the same order of magnitude for the density of atoms in state 1 absorbing and emitting the first Lyman line, for that of the $\mathrm{H} \gamma$ particles

We arrive at the same resalt from calculations similar to that made in a previous section (3 c)
Since the fraction $\frac{q_{1}}{q_{s}} s_{\nu}<\frac{1}{25}$, we get $n_{1}<22 \times 10^{2}$
Thas we may estmate the number of hydrogen atoms per coin the prominence to be at most of the order of 1,000 This produces a pressure of about 75×10^{-16} atmospheres, takang a temperature of $5500^{\circ} \quad 0 \times$ if, with Pettit ${ }^{(1)}$, we regard Pannekoek and Doorn's estimate of the volume of the prominence as 20 times too large, the pressure becomes 15×10^{-14} atoms again, following Pettit in considering that, since the prominence " a " is comparatively " weak," the intensities of lmes will be about six times as great in a " repressmtative prommence" such as the prominence " c " of Pannekoek and Doorn, the partial pressare of hydroget becomes 9×10^{-14} or alightly less than 10^{-18} atmospheres

5 The above estimate of the pressure of hydrogen is comparable with Milne's estimate of the pressure of Ca^{+}at the top of the chromosphere ${ }^{(3)}, \mathrm{nz}, \sim 10^{-18}$ atmospheres Pannekoek and Doorn obtain as low a pressure for Ca^{+}as 96×10^{-80} atmospheres ; but it appears to me that this low estimate is due to an error similar to that in the case of hydrogen

 erg/sec But certainly, this is the amount emitted by each atom of Ca^{+}in state 2 , and not the average amouratb
(${ }^{(1)}$ Pannekoek and Doorn Op oit p 22
(${ }^{8}$) Of Monthly Notices of the RAS 88, 193 (1928)
(2) Loo dit
emitted by each atom of Ca^{+}. By regarding $7.69 \times 10^{-4} \mathrm{erg} / \mathrm{sec}$. as emitted by each Ca^{+}atom, they obtain from their value of the total emission of H and K radation by prominence " a" as 6.03×10^{25}, the total number of Ca^{+}atoms as 78×10^{28} or 13 per c c But it 1 s obvious that this 1 s only the number of atoms in the excited state (n_{2}).

The number of atoms in the lower state $\left(n_{1}\right)$ is given as before by the equation

$$
\begin{aligned}
& \frac{n_{1}}{n_{2}}=\frac{q_{1}}{g_{2}} e^{h_{0} / \lambda k T},(\lambda=3950 \AA \mathrm{~A} .) \\
& =7.30 \times 10^{2} \text { (omitting statistical weights) } \\
& \therefore \mathrm{n}_{1}=13 \times 730=949 \\
& \mathrm{n}_{1}+\mathrm{n}_{2}=9503 . \\
& \sim 702 \times 10^{-17} \text { atmospheres }
\end{aligned}
$$

The pressure due to $n_{1}=730$ times the presssture due to n_{2}.
\therefore The pressure of Ca^{+}atoms $=731 \times 96 \times 10^{-20}$
Correcting, as in the caso of hydrogen, for the excess of the assumed volume and the weakness of the lines, the partial pressure of Ca^{+}atoms in a "ropresentative prominence"

$$
\begin{aligned}
& =6 \times 20 \times 7.02 \times 10^{-17} \\
& \quad \sim 8.4 \times 10^{-15} \text { atmospheres }
\end{aligned}
$$

Thus the partial 1 ressure of Ca^{+}atoms is $\frac{1}{10}$ of that of hydrogen. The hydrogen content, as measured by its mass, will he only \ddagger of that of Ca^{+}.

6 Conclusion.-We may thorefore conclucle that, if we do not assume a state of thermodynamic equillbrium in the prommences, the density of the hydrogen is no longer of ammense proportions, on the other hand, it is comparable with the density of Ca^{1} in the prommences and, what is more, both these values agree closely with Milnc's cstmates of the densitv of Ca^{-1} at the top of the chromosphere We can be more certan of the estimates of hydrogen-content of prominences, only if wo know the intensities of other series of hydrogen lines, especially the first few Lyman lines. If theso intensities should happen to be large, the density of hydrogen atoms in the first state will bo preponderatingly large, and the condition in the prominence will approximate to one of thermodynamic equilibrium ; if, on the contrary, these intensities should be very low-as we imagine them to be-then the densities will be low as stated above and the condition approximate to one of monochromatic radative equuhbrium. What exactly is the condition existing in the prommence cannot at present be known for certam. Nevertheless one may hazard the conjecture, in the light of Milne's theory and tho experienco of hydrogen mages being less denso than ionised calcium images, that the conditions in prominences corrispond more to thoso in the upper layers of the sun's atmosphere than in the lower layers, that 15 , to monochromatic radiative equilibrium rather than theimodynamic equilibrium, to lower densities of the gases rather than high, and to lower densities of hydrogen than of calcium.

I wish to express my sense of gratitucle to Dr. T. Royds for kindly suggesting the above problem to me for investigation and for the valuable criticism and assistance he afforded me in preparing this paper

Kodatkanal Observatory, 14th June 1933.

C P. S MENON, Research Fiellow of the University of Madras,

[^0]: ${ }^{(1)}$ Verhand d Koninklyke Akadomie v.w t Amsterdam, etc, Deel 14, No. 2
 (${ }^{2}$) Ap. J. 76, 1 P. 17 seq (1932),

[^1]: （）．This is explained in greater detanl in the followng section
 （ ${ }^{2}$ ）Tide several papers in the Monthly Notices of the R A S A concise account appears in Handbuch d Astrophy＂ suk Bd III，I half，Chap 2

