Fodatianal obseruatoxy.

BULletin No. XCIII.

Rotation of Ha dark markings near the equator COMPARED WITH OTHER DISC PHENOMENA.

G V. KRISHNASWAMI, M.A.

Abstract

Abstrect.-In Kodaikanal Observatory Bulletin No 89, Dr Royds has mvestrgated the rotation of Ha dark markings, from the spectrohelograms of the years 1926-1929 Owing to the paucity of markings near the equator during that porrod much weight cannot be attached to the values obtaned for latitudes less than 15°. In order to obtam reliable data for the rotation of markings near the equator, the $\mathrm{H} a$ spectroheliograms for the eight years 1918-1925 have now been exammed

The results show that the speeds of rotation of $\mathrm{H} a$ markings near the equator are in close agreement with the values of rotation of spots and that they are lower than those obtanedi from Doppler displacements of the $\mathrm{H} \boldsymbol{r}$ line by Adams. The polar retardation in the case of $\mathrm{H} a$ dark markings is smaller than for sunspots. These results are in agreement with those of D'Azambuja for K_{3} filaments

Dr. Royds' values of heights of $\mathrm{H} / 4$ dark markings near the equator have to be slightly modified m consequence of the more accurate determination of rotation now avalable. A revised table is appended.

Introduction.

Dr. Royds has recently determinel the speed of rotation of $\mathrm{H} a$ absorption markings by measurements near the central meridian for successive rotations of the same marking, basing his results on the Kodarkanal IIf spectroheliograms for the years $1!19$ - $1929 .^{1} \quad$ Not many measures were possible in the belt between 0° and 15° owing to the paucity of markings of long duration there. Much weight could not therefore be attached to the values obtained in this belt as has been indicated by dotted lines in Fig. 1, Bulletn No. 89.

Material and method.

With a view to obtain more accurate data for this region the $\mathrm{H} a$ spectrohelograms for the period 1918-1925 were examined. The life of each marking was traced in the solar charts of the Kodarkanal Observatory for at least a revolution and a half, from the time it first appeared on the eastern limb to its second disappearance at the western limb. A few could be followed for two or three rotations and more.

[^0]Oit of 117 markngs discossed 90 markngs conld be traced for one rotation only 10 persisted for two rotations 1 for three and another for four rotations Each recurent series of markinss was then examined from the orginal photogiaphs when they were near the central menidian Measures were made on the western edge of the absorption markings and the longitades of the points on the marking at 5 intervals of latitude were noted In very many cases the photographs of two successive days were measured and the mean of the resalts taken

The times of actually crossing the central meridian were deduced for intervals of 5 of latitude assuming the approximate value of 13 per day for sy nodic rotation to reduce the positions near the central meridian to the actual time of crossing it The synodic periods of each markang at the several points were thus oblaned from which the synodie dally angular motion were easily calculated Adding to this the dally angular motion of the sun in longitude at the time of the year the sidereal daily angolar motion at the several points is obtanned.

Results

The mean of all such velocities at varions latitudes for the several years and for the whole period is given in Table I The results for 1926-1929 are taken from Dr Royds measurements The numbers in the brackets indicate the number of markngs used to obtan the mean lhe results do not vary greatly from markng to marking in the same latutades nor from year to year The difference in the hemispheres 1s not also marked

Table I-Datiy angular Sidbreal Motion in drefbreni Latitodms acoording to Hemisphere and Yaar

Y ar	0	5		10		15	
		N	s	N	s	N	
1918	1437 (9)	1438 (11)	1451 (2)	1487 (10)	1448 (1)	1434 (9)	
1919	1451 (6)	1449 (8)	1451 (5)	1436 (6)	1440 (3)	1498 (4)	1428 (1)
1920	1439 (6)	1440 (6)	1433 (7)	1434 (8)	1439 (7)	1428 (8)	1480 (7)
1921	1435 (5)	1431 (2)	1433 (9)	1427 (4)	1429 (11)	1424 (5)	1480 (106)
1922	1430 (5)	1435 (5)	1433 (2)	1440 (2)	1438 (3)	1455 (1)	
1923		1434 (3)		1426 (3)		1426 (3)	\% 1
1924					1415 (1)		
1925	1441 (1)	1430 (3)		1424 (4)		1414 (5)	
1926		1441 (1)		1432 (1)	1445 (2)	1424 (6)	14 42 (9)
1927	1448 (1)	1455 (1)	1459 (1)	1437 (7)	1446 (2)	1426 (9)	14864)
1928	1450 (1)	1440 (2)	1447 (1)	1428 (1)	1444 (2)	1423 (3)	144840
1929	1466 (1)	1451 (4)		1440 (4)	1406 (1)	1429 (7)	146464
M an	1440 (36)	1440 (46)	1439 (27)	1435 (33)	1434 (50)	1428 (60)	1404,

Table II gives the mean values for the whole period at 5° intervals of latitude near the equator of the synodic period，dally synodic angular motion and daily sidereal angular motion．I＇he motion is here assumed to be symmetrical with respect to the solar equator．

Table II．－Mean Rotation of Ha absorption Markings．

－Latitude	0°	5°	10°	$* 15{ }^{\circ}$	$\cdots 20^{\circ}$	＊ $25{ }^{\circ}$	＊30 ${ }^{\circ}$	＊35 ${ }^{\circ}$	＊ $40{ }^{\circ}$	Measures of all 151°
Number of markangs ．．．	35	73	83	93	47	40	＇30	23	6	
Synodic period ．．	26.83	2685	2695	2705	27.22	27.38	27.54	2781	2786	2711
Daily angular velocity synodic	$13 \cdot 42$	1341	1336	1333	$13 \cdot 22$	1314	13.07	$12 \cdot 94$	12.91	$13 \cdot 29$
Daily angular velocity sid̈ereal．	$14 \cdot 40$	$14 \cdot 10$	14．34	14.30	14：21	14.13	1406	1393	$13 \cdot 90$	1427

＊From Table 1，Bulletin No 89.
In Table III has been collected，for purposes of comparison，the speeds of rotation of the sun at dufferent latitudes as obtained from various disc phenomena．The values given are（ a ）for the sunspots those derived from Greenwich observations of recurrent sunspots（M．N．85，April 1925），（b）for the faculae，those derived from Greenwich measures of recurrent faculae as given by formula II which is more in accord with the observed data（M．N．84，April 1924）；（c）${ }^{3}$ for the Calcium filaments，the values obtained from the formula derived by D＇Azambuja from recurrent K_{3} filaments（C．R．176，p 950，1923）；（d）for spectroscopic results of the reversing layer ${ }^{4}$ and the $\mathrm{H} \alpha$ line，the mean existing values（Handbuch－der Astrophysik，B．D．IV，ch． 2 ， ciph．16，p．169）；and（e）for Ca prominences，the values obtained by Evershed（M．N．89，January 1929）． The speeds for the 5° zones have been computed，when necessary，as the mean of the speeds at the boundaries of the zone．

Table III．－Velocities of Solar Rotation derived from various Solar Phenomena．

Daly sidereal	H a dark marking．	Sunspots．	Faculae．	Calcium filaments．	Spectroscopic determinations．		
Zone of latitude．					Reversing layer．	Haline	K prominences．
$0 \pm 5 \mathrm{~m}$	1440	1439	1449	14.45	1427	1500	
$\pm{ }^{5} \pm 10$ ．．．	1437	1433	1446	1442	14.26	1498	171 （99）
王10 $\ddagger 15$ ．．．	14.32	14.25	1440	14.36	14.16	1494 1488	$17 \dddot{1}\left(18^{\circ}\right)$
$\pm 15 \pm 20$ ．．．	1426	1413	14.30	1428	1402 1383	1488 14.80	171 （18）
	$14 \cdot 17$ $14 \cdot 10$	14.01 13.85	14.6 13	1404	1360	1470	$20 \cdot 2\left(25^{\circ}\right)$
圭 30 圭 35 ．．．	14.10 1400	1.85	13.71	13889	1335	1460	
主35 壬40 ．．．	140	．．．．	13.39	1375	$13 \cdot 07$	1448	166 （35 ${ }^{\circ}$ ）
立40 $\pm 45 \ldots$	．＂	．．	1302	1359	1279	1436	173 （51 ）

[^1]The abobe valusa are represented graphically in fig 1 It will be neticed that the speed of rotutiton of
 higher latitudes The duference near the equatof is practically zerb and as about 025° per day in the w wote $25^{\circ}-30^{\circ}$ From the closeness of the values of the speeds of rotation of sunspots and Ha dark markings near the equator it is to be inferred that these markangs in the equatorial regions are anchored to the sunspots It would appear that this is not true in higher latitudes where the speed of rotation of Hadark markngs is higher than that of sunspots in corresponding latitudes

Fig 1
Comparison of speeds of rotation

A. 前 $\begin{aligned} & \text { dark markitro }\end{aligned}$
D Fratue
B Sunspots.
E Oaloum filaments
O Haline
F Peversang layen

markings are projections of the prominences on the sun's disc then since Evershed has shown the velocities increase with levels, it appears that an absorption marking moves slower than the gases constituting the prominence which exhibits itself as that marking.

Fig. 2 shows graphically the law of the polar retardation corresponding to the various solar phenomena. A difference in the rate of change of angular velocity with latitude is indicated by a lack of parallelism in the curves. To show this more clearly the values have all been reduced to a common origin (14.50°), by the addition of some constant quantities to the results. The spots and the faculae give values which are practically identical throughout. Intermediate between these and the $\mathrm{H} a$ dark markings are the K_{3} filaments. The $\mathrm{H} a$ dark markings and the $\mathrm{H} a$ line are also nearly identical and show notably less equatorial acceleration. The H and K. lines of the Ca prommences, as far as the results could be relied on, show the least polar retardation.

Fig. 2.

Heights of Ha absorption markings.
The values of h_{1} and h_{2} obtained by Dr. Royds require slight modification in view of the more reliable values now available for equatorial regions. The daily synodic rotation has been interpolated from Table II and λ is thence obtained. The values of ϕ have been taken as the means of the intervals and the heights deduced from the formula $2 \mathrm{~h}=\mathrm{a} \cos ^{2} \lambda \cos ^{2} \phi\left(a=960^{\prime \prime}\right)$. The revised

276

values are given whable IV The dufferenee in the values of h and h is not veiy appr crable and there is practically no change un the mean values The difference between h and h is also unaltered and so the main arguments of the paper continue to hold

Tablif IV-Quadrantali Timeg for Ha absorplion Markings and thfir Corbegponding Huights

Lathlade	Numbea f m g	Edg n 1 th lumb				Edg farthe f on th lupl			
			\%	λ^{\prime}	H $h^{\text {ght }}$		ξ	λ	$\mathrm{H}_{\mathrm{h}}^{\mathrm{Ighl}}$
0-5	6	45	1342	731	405	547	1342	794	391
6-10	1	530	1338	709	504	542	1338	725	426
11-15	19	559	1334	746	321	574	1394	706	245
16-20	29	554	13.26	795	350	5 c6	1326	751	287
21-25	26	562	1317	740	312	576	1317	759	238
26-80	35	548	1308	717	372	562	1308	735	305
31-35	38	557	1300	725	305	569	1300	740	258
36-40	7	560	1292	724	273	567	1292	733	247
41-45	15	548	1284	704	289	551	1284	707	284
+973		W ght dm			384				279

Fr m Tabl 2 Bull tin $N 89$

+ Corr po ding t th w ghtedm ns f s ϕ
In conclusion I wish to express my thanks to Ir Royds Director for permitting me to work in the Observatory for setting me on to work at this preblem and for his valuable guidance and many suggestions

G V KRISHNASWAMI
5th July 1931
Reader in Mathematios Annamalai University

[^0]: ${ }_{2}$ Kodankanal Observatory Bulletnn No 89 The rotation of hydrogen absorption markngs and their herght above the surface of the sun.

[^1]: ${ }^{3}$ See Handbuch－der Astrophysik，B．D．IV，ch．2，ciph．10，p． 105.
 －This includes perhaps the results of Aletti and Novokova at the mean epoch 19288．See Bulletin de la Societé Astronomique de France，Tome XLIV，1930，p． 554

 2

