Kodaíkanal Observatory.

BULLETIN No. XCII.

SUMMARY OF PROMINENCE OBSERVATIONS FOR THE SECOND HALF OF THE YEAR 1930.

In pursuance of the programme of work adopted since 1st January 1923 under the auspices of the International Astronomical Union, all observatories taking spectroheliograms of the sun have been asked to co-operate with the Kodaikanal Observatory by supplying copies of their photographs on those days when the Kodaikanal records are imperfect or wanting. In response to our requirements for the second half of the year 1930, the Mount Wilson Observatory supplied calcium (K_{28}) prominence plates for 49 days and Ha disc plates for 23 days, the Meudon Observatory supplied calcium (K_{3}) disc plates for 10 days and Ha disc plates for 33 days and the Pitch Hill Observatory (Mr. Evershed's) at Ewhurst, Surrey, England, supplied one Ha prominence plate and two Ha disc plates.

When only incomplete or imperfect photographs for any day are available from more than one observatory, the best photograph is chosen as representing the solar activity of that day after weighting it according to its quality, and the remaining photographs are ignored.

Calcium prominences at the limb.

The mean daily areas and numbers of prominences photographed during the half-year by means of the K line of calcium are given below. The means are corrected for incomplete or imperfect observations, the total of 181 days for which plates were available being reduced to 156 effective days.

	Mean daily a (square minut		ean daily areas uare minutes)	Mean daily numbers.					
North					•••	•••		1 31	571
\mathbf{South}	•••	•••	•••	•••	•••		••	1.76	6 08
						Total	•••	3 07	11.79

Compared with the first half of the year, areas show a decrease of 38 per cent, the decrease in the northern hemisphere alone being as large as 55 per cent, whilst numbers show a slight increase. As opposed to the previous half-year, activity now preponderates in the southern hemisphere.

For comparison with bulletins issued prior to the co-operation of other observatories, the means based on Kodaikanal photographs alone are also given, 146 days of observation being counted as $125\frac{1}{2}$ effective days.

					М. (sq	ean daily areas uare minutes).	Mean daily numbers.
North (Kodaikar	al photograph	s only)	•••	•••	•••	1.36	6'26
South (do.)	•••	' 	***	196	6.64
				Total	• • •	3 32	12 90

The distribution of prominences in latitude is represented in the following diagram in which the full line gives the mean daily areas and the broken line the mean daily numbers for each zone of 5° of latitude. The ordinates represent tenths of a square minute of arc for the full line and numbers for the broken line Apart from the general falling off of activity, the northern hemisphere shows a notable decrease in latitudes $15^{\circ}-20^{\circ}$ and $40^{\circ}-60^{\circ}$, whilst the southern hemisphere shows a decrease between $20^{\circ}-30^{\circ}$ and an increase of activity in the belt $35^{\circ}-60^{\circ}$

The monthly, quarterly and half-yearly areas and numbers, and the mean height and mean extent of the prominences on photographs from all the co operating observatories are given in Table I The unit of area is one square minute of arc The mean height is derived by adding together the greatest heights reached by individual prominences and dividing by the total number of prominences observed, the mean extent is derived by adding together the lengths of the base on the chromosphere of individual prominences and dividing by the total number of prominences a

Months	Number	A1 000	Numbers	Daily	means	Mean	Mean	
MOTUR	(effective)	Alcas	Numbers	Areas	Numbers	height	extent	
1930					1	n	6	
July	241	83 4	302	84	111	29 9	5 03	
August	251	60 9	263	24	10 9	80 6	4.80	
September	271	72 0	284	26	104	296	4 81	
October	251	83 0	264	32	10 2	34 8	5 51	
November	251	68 7	243	27	95	35 3	6 22	
December	271	110 1	484	37	17 4	26 8	3 71	
Third quarter	77	216 3	849	28	11 0	80 0	4 89	
Fourth quarter	79	261 8	991	33	125	81 0	4 80	
Second half year	156	478 1	1,840	31	11 8	30 6	4 84	

TABLE I -ABSTRACT FOR THE SECOND HALF OF 1930

Distribution east and west of the sun's axis.

Like the previous half-year, there is an excess of areas but a defect of numbers at the east limb, as will be seen from the following table .---

 1930 July to December.	East.	West	Percentage East	
Total number observed	893	943	4864	
Total areas in square minutes	251 2	226 9	$52\ 54$	

Hydrogen prominences at the limb.

During the half-year photographs of the prominences in hydrogen light were taken in this observatory on 122 days which were counted as 113 effective days. The mean daily areas, in square minutes of arc, of hydrogen prominences are given below —

							Mean daily aieas (square minutes).	
North (Kodaık	anal photograph	s only)	•••		•••	•••	0 48	
South (do.)	•••				0 66	
							Hard Contraction of C	
				r	Fotal	•••	1 14	

Compared with the previous half-year, Ha prominence areas show a decrease of about 49 per cent The percentage of Ha areas to calcium areas has also decreased from 42 to 34. The curve of distribution of Ha prominences in latitude is similar to that of calcium prominences. As in the case of calcium prominences, the preponderance of activity is now in the southern hemisphere, the ratio of the southern areas to the northern being 1.38 and 1.44 for Ha and K prominences, respectively.

Metallic prominences

Date.		Time I.S T.		Base.	Latitude		Limb	Height.	Lines,
		1.0	<i>~</i> ·		North.	South			
1930.		ш	м.	0	0	o		"	
July	8	8	54	2	10		w	10	5018.6, b ₄ , b ₃ , b ₂ , b ₁ , 5276 2, 5316 8, D ₂ , D ₁
September	14	9	4	2	14		Е	15	4924 1, 5018 6, b ₄ , b ₃ , b ₂ , b ₁ , 5276·2, 5316 8, D ₂ , D ₁
	21	9	27	1	85		w	10	$\begin{array}{c} 4924 \ 1, \ 5016, \ 5018 \cdot 6, \ \mathbf{b_4}, \mathbf{b_5}, \ \mathbf{b_2}, \ \mathbf{b_1}, \ 5363 \ 0, \ \mathbf{\dot{D}_2}, \ \mathbf{D_1}, \ 6677, \\ 7065 \end{array}$
November	13	9	11	4	5		w	20	b_4 , b_3 , b_2 , b_1 , D_2 , D_1 (faintly metallic)
December	22	8	55		5		w	15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		8	55		9		w	15	4924.1, 5016, 5018 6, b ₄ , b ₃ , b ₂ , b ₁ , 5234.8, 5276 2, 5316 8 5363 0, D ₂ , D ₁ , 6677, 7065
<u></u>	26	9	6	4	45		w	30	b ₄ , b ₈ , b ₂ , b ₁ , D ₂ , D ₁ .

1-a

265

The distribution of metallic prominences was as follows ----

	1 -10°	11°20°	21°30°	31°—40	41 -50°	Mean latitude	Extreme latitudes
North	5	1			1	1 3° 8	5° and 45°
South	• - FIL				-		

One was on the east limb and six on the west limb

- - - - - - - Displacements of the hydrogen lines

Particulars of the displacements observed in the chromosphere and prominences are given in the following table ----

-

-

Dite	Bota Hour		ur	Latı	tude	.		Displacemen	t	Domaylan
Date		1.8	Ť	North	South	Limp	Red	V 10]et	Both ways	LUGIDAT KS
1930	(-H.	м		0		A ,	A	A	
July	7 8 13 14 17 21	8 8 8 9 8 8 9 8	56 54 40 48 50 58	26 10 1 10	88 16	WWWW WWW E	0.2 1 1	25 05 Slight 15		At top Do To red at top, to violet at base At base At top
August	7 12 13 18 19 21 22 24 26	10 8 10 9 9 9 8 8 8 8	18 46 37 11 38 25 6 47 44 46	78 62 5 19 72 5 69	37 42 5 13	eevvvvvvee	15 1 2 15 1 05	05 05 Slight Do		At top Do Do Do At base At top At base Do At top
September	4	9	21	22	1	E	25			At base ; extends over 2 from 21° to
	11 12 16 19 21 25 27	33888889999999 999	21 0 58 49 48 54 49 8 30 27 20 30 30	20 27 31 5 15 5 8 5 1 45 5 46 5	45 1 28 28	E V V V V V V V V V V V V V V V V V V V	15 05 15 05 1 2 1 Slight	1 0.5 1 1 1 5 Slight		At top Do Do No prominence Do To violet at base, to red at top At top Do At base Do At top Do At base At top
Octobe r	2 3 8	9 10 9 9	50 46 2 2	47 5 4 10	80 13	W W W W		15 19		At base At top No prominence At top At top, extends over 2° from 9° to
	30	8 9 9	59 50 23	21 61 9 27	5	W W E	2 2 5	05		In chromosphere At top No prominence
				1	1	1	l	1		1

TABLE III

n	07
4	07

TABLE III-cont.

		Hour	Latu	tude	- 1	l	Displacement		
Date		LST,	North	South	Limb -	Red	Violet	Both ways	Remarks
1930		н. м.	0	o		A.,	A	") A	
November	1 9 12	$\begin{array}{ccc} 11 & 0 \\ 9 & 35 \\ 8 & 45 \end{array}$	84 54	59	W W E	15	1 1		At top Do A floating filament the whole
	13	$egin{array}{cccc} 8 & 36 \ 8 & 34 \ 9 & 0 \ 9 & 27 \ 9 & 14 \end{array}$	47	65 69 48 40	E E W E W	05 1 15	1 1 2		displaced To red at base, to violet at top At top At base At top. At top, extends over 2° from 39°
	14 17 27	$ \begin{array}{ccc} 9 & 0 \\ 10 & 12 \\ 10 & 8 \\ 9 & 2 \end{array} $	13 48 11 5	61	W W W W	1 15	$\begin{array}{c} 0 \ 5 \\ 0 \ 5 \end{array}$	•	to 41 At top. Do At base At top, extends over 3° from 10° to 13°
December	5 6 13 14 15 17 18 19 21 22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 6 84 8 13 18 52 77 86 5 54 70 5 9	3 9 88 14 2	E E W E W E W E W E W E W W E W W	05 1 Shght 05 05 15 1 15	1 15 Slight Do 4 1 05 05 25 05		At top. No prominence. At top Do. Do Do Do At base Do At top, extends over 2° from 13° to 15° At top, extends over 2° from 76° to 78°. At top Do. At base Do To red at top, to violet at base At base
	26 27 28 31	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	64 27 15 7	W E W E W	1 05 15 05 15			At top, extends over 4° from 43° to 47° At top Do Do.

The total number of displacements was 79 as against 197 in the first half of the year and their distribution was as follows :---

Latitude							North	South.
1°30°						••	31	16
$31^{\circ}-60^{\circ}$					• • •		10	6
$61^{\circ} - 90^{\circ}$	•		••	••			10	6
					Total	•	51	28
East limb				•••	•••	•••		24
West limb	•••	•••		•••	•••	•		55
					Total			79

268

Reversals and displacements on the sun's disc

One hundred and thirty four bright reversals of the Ha line, 129 dark reversals of the **D**_s line and 25 displacements of the Ha line were observed during the half-year Their distribution is given below.---

	North	South	East	West.
Bright reversals of Ha	80	54	78	56
Dark reversals of Ds	78	51	75	54
Displacements of Ha	14	11	15	10
-				

Eighteen displacements were towards the red, 3 towards the violet and 4 both ways simultaneously

Prominences projected on the disc as absorption markings

Photographs of the sun's disc in Ha light were available from Kodaikanal and the co-operating observatories for a total of 176 days, which were counted as 167 effective days The mean daily areas of Ha absorption markings (corrected for foreshortening) in millionths of the sun's visible hemisphere and their mean daily numbers are given below —

-		Mean daily areas	Mean daily numbers
North		1,289	949
South		1,205	8 41
	Total	2,494	17 90

The above show a decrease of 42 per cent in areas and 26 per cent in numbers, compared with the first half of the year The preponderance of activity in the northern hemisphere is maintained

For comparison with bulletins issued prior to the co operation of other observatories, the means based on Kodaikanal photographs alone are also given, 133 days of observation being reckoned as 1201 effective days

				Mean daily areas	Mean daily numbers
North (Kodaikanal photographs only)				1,302	9 44
South (do)		1,256	8 65
			Total	2,558	18 09

The distribution of the mean daily areas in latitude is shown in the following diagram Except for a very low trough in the southern hemisphere near 30° the distribution is very similar to that of calcium and hydrogen prominences at the limb The activity near 50° which in the first half of the year was confined to the northern hemisphere has now disappeared there and reappeared in the southern hemisphere

The areas are equally divided between the eastern and western hemispheres, but the numbers show a slight western excess, with an eastern percentage of 49 3.

The areas of Ha	absorption	markings	uncorrecte	d for t	fores	10 r ten:	ing are	gıven t	oelow	:
										Mean daily areas
\mathbf{North}		••	•				•••	•••	•••	797
\mathbf{South}	••		•			•••		•••		700
								Total		1 497
								rotar	•••	

The uncorrected areas amount to 60 per cent of the corrected ones, a slight increase over the previous three half-years. The curve of distribution in latitude is similar to that for the uncorrected areas Thanks are due to the co-operating observatories for the photographs supplied by them.

KODAIKANAL, 8th October 1931. T. ROYDS, Director, Kodaikanal and Madras Observatories.

MADRAS · PRINTED BY THE SUPERINTENDENT, GOVERNMENT PRESS-1931.